| /* |
| * Copyright 2020 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef skgpu_tessellate_WangsFormula_DEFINED |
| #define skgpu_tessellate_WangsFormula_DEFINED |
| |
| #include "include/core/SkM44.h" |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkTypes.h" |
| #include "src/base/SkFloatBits.h" |
| #include "src/base/SkUtils.h" |
| #include "src/base/SkVx.h" |
| |
| #include <math.h> |
| #include <algorithm> |
| #include <cstdint> |
| #include <limits> |
| |
| #define AI [[maybe_unused]] SK_ALWAYS_INLINE |
| |
| // Wang's formula gives the minimum number of evenly spaced (in the parametric sense) line segments |
| // that a bezier curve must be chopped into in order to guarantee all lines stay within a distance |
| // of "1/precision" pixels from the true curve. Its definition for a bezier curve of degree "n" is |
| // as follows: |
| // |
| // maxLength = max([length(p[i+2] - 2p[i+1] + p[i]) for (0 <= i <= n-2)]) |
| // numParametricSegments = sqrt(maxLength * precision * n*(n - 1)/8) |
| // |
| // (Goldman, Ron. (2003). 5.6.3 Wang's Formula. "Pyramid Algorithms: A Dynamic Programming Approach |
| // to Curves and Surfaces for Geometric Modeling". Morgan Kaufmann Publishers.) |
| namespace skgpu::wangs_formula { |
| |
| // Returns the value by which to multiply length in Wang's formula. (See above.) |
| template<int Degree> constexpr float length_term(float precision) { |
| return (Degree * (Degree - 1) / 8.f) * precision; |
| } |
| template<int Degree> constexpr float length_term_p2(float precision) { |
| return ((Degree * Degree) * ((Degree - 1) * (Degree - 1)) / 64.f) * (precision * precision); |
| } |
| |
| AI float root4(float x) { |
| return sqrtf(sqrtf(x)); |
| } |
| |
| // For finite positive x > 1, return ceil(log2(x)) otherwise, return 0. |
| // For +/- NaN return 0. |
| // For +infinity return 128. |
| // For -infinity return 0. |
| // |
| // nextlog2((-inf..1]) -> 0 |
| // nextlog2((1..2]) -> 1 |
| // nextlog2((2..4]) -> 2 |
| // nextlog2((4..8]) -> 3 |
| // ... |
| AI int nextlog2(float x) { |
| if (x <= 1) { |
| return 0; |
| } |
| |
| uint32_t bits = SkFloat2Bits(x); |
| static constexpr uint32_t kDigitsAfterBinaryPoint = std::numeric_limits<float>::digits - 1; |
| |
| // The constant is a significand of all 1s -- 0b0'00000000'111'1111111111'111111111. So, if |
| // the significand of x is all 0s (and therefore an integer power of two) this will not |
| // increment the exponent, but if it is just one ULP above the power of two the carry will |
| // ripple into the exponent incrementing the exponent by 1. |
| bits += (1u << kDigitsAfterBinaryPoint) - 1u; |
| |
| // Shift the exponent down, and adjust it by the exponent offset so that 2^0 is really 0 instead |
| // of 127. Remember that 1 was added to the exponent, if x is NaN, then the exponent will |
| // carry a 1 into the sign bit during the addition to bits. Be sure to strip off the sign bit. |
| // In addition, infinity is an exponent of all 1's, and a significand of all 0, so |
| // the exponent is not affected during the addition to bits, and the exponent remains all 1's. |
| const int exp = ((bits >> kDigitsAfterBinaryPoint) & 0b1111'1111) - 127; |
| |
| // Return 0 for x <= 1. |
| return exp > 0 ? exp : 0; |
| } |
| |
| // Returns nextlog2(sqrt(x)): |
| // |
| // log2(sqrt(x)) == log2(x^(1/2)) == log2(x)/2 == log2(x)/log2(4) == log4(x) |
| // |
| AI int nextlog4(float x) { |
| return (nextlog2(x) + 1) >> 1; |
| } |
| |
| // Returns nextlog2(sqrt(sqrt(x))): |
| // |
| // log2(sqrt(sqrt(x))) == log2(x^(1/4)) == log2(x)/4 == log2(x)/log2(16) == log16(x) |
| // |
| AI int nextlog16(float x) { |
| return (nextlog2(x) + 3) >> 2; |
| } |
| |
| // Represents the upper-left 2x2 matrix of an affine transform for applying to vectors: |
| // |
| // VectorXform(p1 - p0) == M * float3(p1, 1) - M * float3(p0, 1) |
| // |
| class VectorXform { |
| public: |
| AI VectorXform() : fC0{1.0f, 0.f}, fC1{0.f, 1.f} {} |
| AI explicit VectorXform(const SkMatrix& m) { *this = m; } |
| AI explicit VectorXform(const SkM44& m) { *this = m; } |
| |
| AI VectorXform& operator=(const SkMatrix& m) { |
| SkASSERT(!m.hasPerspective()); |
| fC0 = {m.rc(0,0), m.rc(1,0)}; |
| fC1 = {m.rc(0,1), m.rc(1,1)}; |
| return *this; |
| } |
| AI VectorXform& operator=(const SkM44& m) { |
| SkASSERT(m.rc(3,0) == 0.f && m.rc(3,1) == 0.f && m.rc(3,2) == 0.f && m.rc(3,3) == 1.f); |
| fC0 = {m.rc(0,0), m.rc(1,0)}; |
| fC1 = {m.rc(0,1), m.rc(1,1)}; |
| return *this; |
| } |
| AI skvx::float2 operator()(skvx::float2 vector) const { |
| return fC0 * vector.x() + fC1 * vector.y(); |
| } |
| AI skvx::float4 operator()(skvx::float4 vectors) const { |
| return join(fC0 * vectors.x() + fC1 * vectors.y(), |
| fC0 * vectors.z() + fC1 * vectors.w()); |
| } |
| private: |
| // First and second columns of 2x2 matrix |
| skvx::float2 fC0; |
| skvx::float2 fC1; |
| }; |
| |
| // Returns Wang's formula, raised to the 4th power, specialized for a quadratic curve. |
| AI float quadratic_p4(float precision, |
| skvx::float2 p0, skvx::float2 p1, skvx::float2 p2, |
| const VectorXform& vectorXform = VectorXform()) { |
| skvx::float2 v = -2*p1 + p0 + p2; |
| v = vectorXform(v); |
| skvx::float2 vv = v*v; |
| return (vv[0] + vv[1]) * length_term_p2<2>(precision); |
| } |
| AI float quadratic_p4(float precision, |
| const SkPoint pts[], |
| const VectorXform& vectorXform = VectorXform()) { |
| return quadratic_p4(precision, |
| sk_bit_cast<skvx::float2>(pts[0]), |
| sk_bit_cast<skvx::float2>(pts[1]), |
| sk_bit_cast<skvx::float2>(pts[2]), |
| vectorXform); |
| } |
| |
| // Returns Wang's formula specialized for a quadratic curve. |
| AI float quadratic(float precision, |
| const SkPoint pts[], |
| const VectorXform& vectorXform = VectorXform()) { |
| return root4(quadratic_p4(precision, pts, vectorXform)); |
| } |
| |
| // Returns the log2 value of Wang's formula specialized for a quadratic curve, rounded up to the |
| // next int. |
| AI int quadratic_log2(float precision, |
| const SkPoint pts[], |
| const VectorXform& vectorXform = VectorXform()) { |
| // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) |
| return nextlog16(quadratic_p4(precision, pts, vectorXform)); |
| } |
| |
| // Returns Wang's formula, raised to the 4th power, specialized for a cubic curve. |
| AI float cubic_p4(float precision, |
| skvx::float2 p0, skvx::float2 p1, skvx::float2 p2, skvx::float2 p3, |
| const VectorXform& vectorXform = VectorXform()) { |
| skvx::float4 p01{p0, p1}; |
| skvx::float4 p12{p1, p2}; |
| skvx::float4 p23{p2, p3}; |
| skvx::float4 v = -2*p12 + p01 + p23; |
| v = vectorXform(v); |
| skvx::float4 vv = v*v; |
| return std::max(vv[0] + vv[1], vv[2] + vv[3]) * length_term_p2<3>(precision); |
| } |
| AI float cubic_p4(float precision, |
| const SkPoint pts[], |
| const VectorXform& vectorXform = VectorXform()) { |
| return cubic_p4(precision, |
| sk_bit_cast<skvx::float2>(pts[0]), |
| sk_bit_cast<skvx::float2>(pts[1]), |
| sk_bit_cast<skvx::float2>(pts[2]), |
| sk_bit_cast<skvx::float2>(pts[3]), |
| vectorXform); |
| } |
| |
| // Returns Wang's formula specialized for a cubic curve. |
| AI float cubic(float precision, |
| const SkPoint pts[], |
| const VectorXform& vectorXform = VectorXform()) { |
| return root4(cubic_p4(precision, pts, vectorXform)); |
| } |
| |
| // Returns the log2 value of Wang's formula specialized for a cubic curve, rounded up to the next |
| // int. |
| AI int cubic_log2(float precision, |
| const SkPoint pts[], |
| const VectorXform& vectorXform = VectorXform()) { |
| // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) |
| return nextlog16(cubic_p4(precision, pts, vectorXform)); |
| } |
| |
| // Returns the maximum number of line segments a cubic with the given device-space bounding box size |
| // would ever need to be divided into, raised to the 4th power. This is simply a special case of the |
| // cubic formula where we maximize its value by placing control points on specific corners of the |
| // bounding box. |
| AI float worst_case_cubic_p4(float precision, float devWidth, float devHeight) { |
| float kk = length_term_p2<3>(precision); |
| return 4*kk * (devWidth * devWidth + devHeight * devHeight); |
| } |
| |
| // Returns the maximum number of line segments a cubic with the given device-space bounding box size |
| // would ever need to be divided into. |
| AI float worst_case_cubic(float precision, float devWidth, float devHeight) { |
| return root4(worst_case_cubic_p4(precision, devWidth, devHeight)); |
| } |
| |
| // Returns the maximum log2 number of line segments a cubic with the given device-space bounding box |
| // size would ever need to be divided into. |
| AI int worst_case_cubic_log2(float precision, float devWidth, float devHeight) { |
| // nextlog16(x) == ceil(log2(sqrt(sqrt(x)))) |
| return nextlog16(worst_case_cubic_p4(precision, devWidth, devHeight)); |
| } |
| |
| // Returns Wang's formula specialized for a conic curve, raised to the second power. |
| // Input points should be in projected space. |
| // |
| // This is not actually due to Wang, but is an analogue from (Theorem 3, corollary 1): |
| // J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for |
| // Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000. |
| AI float conic_p2(float precision, |
| skvx::float2 p0, skvx::float2 p1, skvx::float2 p2, |
| float w, |
| const VectorXform& vectorXform = VectorXform()) { |
| p0 = vectorXform(p0); |
| p1 = vectorXform(p1); |
| p2 = vectorXform(p2); |
| |
| // Compute center of bounding box in projected space |
| const skvx::float2 C = 0.5f * (min(min(p0, p1), p2) + max(max(p0, p1), p2)); |
| |
| // Translate by -C. This improves translation-invariance of the formula, |
| // see Sec. 3.3 of cited paper |
| p0 -= C; |
| p1 -= C; |
| p2 -= C; |
| |
| // Compute max length |
| const float max_len = sqrtf(std::max(dot(p0, p0), std::max(dot(p1, p1), dot(p2, p2)))); |
| |
| |
| // Compute forward differences |
| const skvx::float2 dp = -2*w*p1 + p0 + p2; |
| const float dw = fabsf(-2 * w + 2); |
| |
| // Compute numerator and denominator for parametric step size of linearization. Here, the |
| // epsilon referenced from the cited paper is 1/precision. |
| const float rp_minus_1 = std::max(0.f, max_len * precision - 1); |
| const float numer = sqrtf(dot(dp, dp)) * precision + rp_minus_1 * dw; |
| const float denom = 4 * std::min(w, 1.f); |
| |
| // Number of segments = sqrt(numer / denom). |
| // This assumes parametric interval of curve being linearized is [t0,t1] = [0, 1]. |
| // If not, the number of segments is (tmax - tmin) / sqrt(denom / numer). |
| return numer / denom; |
| } |
| AI float conic_p2(float precision, |
| const SkPoint pts[], |
| float w, |
| const VectorXform& vectorXform = VectorXform()) { |
| return conic_p2(precision, |
| sk_bit_cast<skvx::float2>(pts[0]), |
| sk_bit_cast<skvx::float2>(pts[1]), |
| sk_bit_cast<skvx::float2>(pts[2]), |
| w, |
| vectorXform); |
| } |
| |
| // Returns the value of Wang's formula specialized for a conic curve. |
| AI float conic(float tolerance, |
| const SkPoint pts[], |
| float w, |
| const VectorXform& vectorXform = VectorXform()) { |
| return sqrtf(conic_p2(tolerance, pts, w, vectorXform)); |
| } |
| |
| // Returns the log2 value of Wang's formula specialized for a conic curve, rounded up to the next |
| // int. |
| AI int conic_log2(float tolerance, |
| const SkPoint pts[], |
| float w, |
| const VectorXform& vectorXform = VectorXform()) { |
| // nextlog4(x) == ceil(log2(sqrt(x))) |
| return nextlog4(conic_p2(tolerance, pts, w, vectorXform)); |
| } |
| |
| } // namespace skgpu::wangs_formula |
| |
| #undef AI |
| |
| #endif // skgpu_tessellate_WangsFormula_DEFINED |