| /* |
| * Copyright 2022 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/graphite/dawn/DawnCaps.h" |
| |
| #include <algorithm> |
| |
| #include "include/core/SkTextureCompressionType.h" |
| #include "include/gpu/graphite/ContextOptions.h" |
| #include "include/gpu/graphite/TextureInfo.h" |
| #include "include/gpu/graphite/dawn/DawnBackendContext.h" |
| #include "src/gpu/graphite/ComputePipelineDesc.h" |
| #include "src/gpu/graphite/GraphicsPipelineDesc.h" |
| #include "src/gpu/graphite/GraphiteResourceKey.h" |
| #include "src/gpu/graphite/RenderPassDesc.h" |
| #include "src/gpu/graphite/ResourceTypes.h" |
| #include "src/gpu/graphite/UniformManager.h" |
| #include "src/gpu/graphite/dawn/DawnGraphiteUtilsPriv.h" |
| #include "src/gpu/graphite/dawn/DawnUtilsPriv.h" |
| #include "src/sksl/SkSLUtil.h" |
| |
| namespace { |
| |
| // These are all the valid wgpu::TextureFormat that we currently support in Skia. |
| // They are roughly ordered from most frequently used to least to improve lookup times in arrays. |
| static constexpr wgpu::TextureFormat kFormats[skgpu::graphite::DawnCaps::kFormatCnt] = { |
| wgpu::TextureFormat::RGBA8Unorm, |
| wgpu::TextureFormat::R8Unorm, |
| #if !defined(__EMSCRIPTEN__) |
| wgpu::TextureFormat::R16Unorm, |
| #endif |
| wgpu::TextureFormat::BGRA8Unorm, |
| wgpu::TextureFormat::RGBA16Float, |
| wgpu::TextureFormat::R16Float, |
| wgpu::TextureFormat::RG8Unorm, |
| #if !defined(__EMSCRIPTEN__) |
| wgpu::TextureFormat::RG16Unorm, |
| #endif |
| wgpu::TextureFormat::RGB10A2Unorm, |
| wgpu::TextureFormat::RG16Float, |
| |
| wgpu::TextureFormat::Stencil8, |
| wgpu::TextureFormat::Depth16Unorm, |
| wgpu::TextureFormat::Depth32Float, |
| wgpu::TextureFormat::Depth24PlusStencil8, |
| |
| wgpu::TextureFormat::BC1RGBAUnorm, |
| wgpu::TextureFormat::ETC2RGB8Unorm, |
| |
| wgpu::TextureFormat::Undefined, |
| }; |
| |
| #if !defined(__EMSCRIPTEN__) |
| bool IsMultiplanarFormat(wgpu::TextureFormat format) { |
| switch (format) { |
| case wgpu::TextureFormat::R8BG8Biplanar420Unorm: |
| case wgpu::TextureFormat::R10X6BG10X6Biplanar420Unorm: |
| case wgpu::TextureFormat::R8BG8A8Triplanar420Unorm: |
| return true; |
| default: |
| return false; |
| } |
| } |
| #endif |
| } // anonymous namespace |
| |
| namespace skgpu::graphite { |
| |
| DawnCaps::DawnCaps(const DawnBackendContext& backendContext, const ContextOptions& options) |
| : Caps() { |
| this->initCaps(backendContext, options); |
| this->initShaderCaps(backendContext.fDevice); |
| this->initFormatTable(backendContext.fDevice); |
| this->finishInitialization(options); |
| } |
| |
| DawnCaps::~DawnCaps() = default; |
| |
| uint32_t DawnCaps::channelMask(const TextureInfo& info) const { |
| return DawnFormatChannels(info.dawnTextureSpec().getViewFormat()); |
| } |
| |
| bool DawnCaps::onIsTexturable(const TextureInfo& info) const { |
| if (!info.isValid()) { |
| return false; |
| } |
| |
| const auto& spec = info.dawnTextureSpec(); |
| |
| if (!(spec.fUsage & wgpu::TextureUsage::TextureBinding)) { |
| return false; |
| } |
| |
| #if !defined(__EMSCRIPTEN__) |
| switch (spec.fFormat) { |
| case wgpu::TextureFormat::R8BG8Biplanar420Unorm: { |
| if (spec.fAspect == wgpu::TextureAspect::Plane0Only && |
| spec.getViewFormat() != wgpu::TextureFormat::R8Unorm) { |
| return false; |
| } |
| if (spec.fAspect == wgpu::TextureAspect::Plane1Only && |
| spec.getViewFormat() != wgpu::TextureFormat::RG8Unorm) { |
| return false; |
| } |
| break; |
| } |
| case wgpu::TextureFormat::R10X6BG10X6Biplanar420Unorm: { |
| if (spec.fAspect == wgpu::TextureAspect::Plane0Only && |
| spec.getViewFormat() != wgpu::TextureFormat::R16Unorm) { |
| return false; |
| } |
| if (spec.fAspect == wgpu::TextureAspect::Plane1Only && |
| spec.getViewFormat() != wgpu::TextureFormat::RG16Unorm) { |
| return false; |
| } |
| break; |
| } |
| case wgpu::TextureFormat::R8BG8A8Triplanar420Unorm: { |
| if (spec.fAspect == wgpu::TextureAspect::Plane0Only && |
| spec.getViewFormat() != wgpu::TextureFormat::R8Unorm) { |
| return false; |
| } |
| if (spec.fAspect == wgpu::TextureAspect::Plane1Only && |
| spec.getViewFormat() != wgpu::TextureFormat::RG8Unorm) { |
| return false; |
| } |
| if (spec.fAspect == wgpu::TextureAspect::Plane2Only && |
| spec.getViewFormat() != wgpu::TextureFormat::R8Unorm) { |
| return false; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| #endif |
| |
| return this->isTexturable(info.dawnTextureSpec().getViewFormat()); |
| } |
| |
| bool DawnCaps::isTexturable(wgpu::TextureFormat format) const { |
| const FormatInfo& formatInfo = this->getFormatInfo(format); |
| return SkToBool(FormatInfo::kTexturable_Flag & formatInfo.fFlags); |
| } |
| |
| bool DawnCaps::isRenderable(const TextureInfo& info) const { |
| return info.isValid() && |
| (info.dawnTextureSpec().fUsage & wgpu::TextureUsage::RenderAttachment) && |
| this->isRenderable(info.dawnTextureSpec().getViewFormat(), info.numSamples()); |
| } |
| |
| bool DawnCaps::isStorage(const TextureInfo& info) const { |
| if (!info.isValid()) { |
| return false; |
| } |
| if (!(info.dawnTextureSpec().fUsage & wgpu::TextureUsage::StorageBinding)) { |
| return false; |
| } |
| const FormatInfo& formatInfo = this->getFormatInfo(info.dawnTextureSpec().getViewFormat()); |
| return info.numSamples() == 1 && SkToBool(FormatInfo::kStorage_Flag & formatInfo.fFlags); |
| } |
| |
| uint32_t DawnCaps::maxRenderTargetSampleCount(wgpu::TextureFormat format) const { |
| const FormatInfo& formatInfo = this->getFormatInfo(format); |
| if (!SkToBool(formatInfo.fFlags & FormatInfo::kRenderable_Flag)) { |
| return 0; |
| } |
| if (SkToBool(formatInfo.fFlags & FormatInfo::kMSAA_Flag)) { |
| return 8; |
| } else { |
| return 1; |
| } |
| } |
| |
| bool DawnCaps::isRenderable(wgpu::TextureFormat format, uint32_t sampleCount) const { |
| return sampleCount <= this->maxRenderTargetSampleCount(format); |
| } |
| |
| TextureInfo DawnCaps::getDefaultSampledTextureInfo(SkColorType colorType, |
| Mipmapped mipmapped, |
| Protected, |
| Renderable renderable) const { |
| wgpu::TextureUsage usage = wgpu::TextureUsage::TextureBinding | |
| wgpu::TextureUsage::CopyDst | |
| wgpu::TextureUsage::CopySrc; |
| if (renderable == Renderable::kYes) { |
| usage |= wgpu::TextureUsage::RenderAttachment; |
| } |
| |
| wgpu::TextureFormat format = this->getFormatFromColorType(colorType); |
| if (format == wgpu::TextureFormat::Undefined) { |
| return {}; |
| } |
| |
| DawnTextureInfo info; |
| info.fSampleCount = 1; |
| info.fMipmapped = mipmapped; |
| info.fFormat = format; |
| info.fViewFormat = format; |
| info.fUsage = usage; |
| |
| return info; |
| } |
| |
| TextureInfo DawnCaps::getTextureInfoForSampledCopy(const TextureInfo& textureInfo, |
| Mipmapped mipmapped) const { |
| DawnTextureInfo info; |
| if (!textureInfo.getDawnTextureInfo(&info)) { |
| return {}; |
| } |
| |
| info.fSampleCount = 1; |
| info.fMipmapped = mipmapped; |
| info.fUsage = wgpu::TextureUsage::TextureBinding | wgpu::TextureUsage::CopyDst | |
| wgpu::TextureUsage::CopySrc; |
| |
| return info; |
| } |
| |
| namespace { |
| wgpu::TextureFormat format_from_compression(SkTextureCompressionType compression) { |
| switch (compression) { |
| case SkTextureCompressionType::kETC2_RGB8_UNORM: |
| return wgpu::TextureFormat::ETC2RGB8Unorm; |
| case SkTextureCompressionType::kBC1_RGBA8_UNORM: |
| return wgpu::TextureFormat::BC1RGBAUnorm; |
| default: |
| return wgpu::TextureFormat::Undefined; |
| } |
| } |
| } |
| |
| TextureInfo DawnCaps::getDefaultCompressedTextureInfo(SkTextureCompressionType compression, |
| Mipmapped mipmapped, |
| Protected) const { |
| wgpu::TextureUsage usage = wgpu::TextureUsage::TextureBinding | |
| wgpu::TextureUsage::CopyDst | |
| wgpu::TextureUsage::CopySrc; |
| |
| wgpu::TextureFormat format = format_from_compression(compression); |
| if (format == wgpu::TextureFormat::Undefined) { |
| return {}; |
| } |
| |
| DawnTextureInfo info; |
| info.fSampleCount = 1; |
| info.fMipmapped = mipmapped; |
| info.fFormat = format; |
| info.fViewFormat = format; |
| info.fUsage = usage; |
| |
| return info; |
| } |
| |
| TextureInfo DawnCaps::getDefaultMSAATextureInfo(const TextureInfo& singleSampledInfo, |
| Discardable discardable) const { |
| if (fDefaultMSAASamples <= 1) { |
| return {}; |
| } |
| const DawnTextureSpec& singleSpec = singleSampledInfo.dawnTextureSpec(); |
| |
| DawnTextureInfo info; |
| info.fSampleCount = fDefaultMSAASamples; |
| info.fMipmapped = Mipmapped::kNo; |
| info.fFormat = singleSpec.fFormat; |
| info.fViewFormat = singleSpec.fFormat; |
| info.fUsage = wgpu::TextureUsage::RenderAttachment; |
| |
| if (fSupportedTransientAttachmentUsage != wgpu::TextureUsage::None && |
| discardable == Discardable::kYes) { |
| info.fUsage |= fSupportedTransientAttachmentUsage; |
| } |
| |
| return info; |
| } |
| |
| TextureInfo DawnCaps::getDefaultDepthStencilTextureInfo( |
| SkEnumBitMask<DepthStencilFlags> depthStencilType, |
| uint32_t sampleCount, |
| Protected) const { |
| DawnTextureInfo info; |
| info.fSampleCount = sampleCount; |
| info.fMipmapped = Mipmapped::kNo; |
| info.fFormat = DawnDepthStencilFlagsToFormat(depthStencilType); |
| info.fViewFormat = info.fFormat; |
| info.fUsage = wgpu::TextureUsage::RenderAttachment; |
| |
| if (fSupportedTransientAttachmentUsage != wgpu::TextureUsage::None) { |
| info.fUsage |= fSupportedTransientAttachmentUsage; |
| } |
| |
| return info; |
| } |
| |
| TextureInfo DawnCaps::getDefaultStorageTextureInfo(SkColorType colorType) const { |
| wgpu::TextureFormat format = this->getFormatFromColorType(colorType); |
| if (format == wgpu::TextureFormat::Undefined) { |
| SkDebugf("colorType=%d is not supported\n", static_cast<int>(colorType)); |
| return {}; |
| } |
| |
| const FormatInfo& formatInfo = this->getFormatInfo(format); |
| if (!SkToBool(FormatInfo::kStorage_Flag & formatInfo.fFlags)) { |
| return {}; |
| } |
| |
| wgpu::TextureUsage usage = wgpu::TextureUsage::StorageBinding | |
| wgpu::TextureUsage::TextureBinding | |
| wgpu::TextureUsage::CopySrc; |
| DawnTextureInfo info; |
| info.fSampleCount = 1; |
| info.fMipmapped = Mipmapped::kNo; |
| info.fFormat = format; |
| info.fViewFormat = format; |
| info.fUsage = usage; |
| |
| return info; |
| } |
| |
| SkISize DawnCaps::getDepthAttachmentDimensions(const TextureInfo& textureInfo, |
| const SkISize colorAttachmentDimensions) const { |
| #if !defined(__EMSCRIPTEN__) |
| // For multiplanar textures, texture->textureInfo() uses the format of planes instead of |
| // textures (R8, R8G8, vs R8BG8Biplanar420Unorm), so we have to query texture format from |
| // wgpu::Texture object, and then use it reconstruct the full dimensions. |
| const auto& dawnTextureSpec = textureInfo.dawnTextureSpec(); |
| wgpu::TextureFormat format = dawnTextureSpec.fFormat; |
| if (IsMultiplanarFormat(format) && dawnTextureSpec.fAspect == wgpu::TextureAspect::Plane1Only) { |
| // Dawn requires depth attachment to match the size of Y plane (texture size). |
| return SkISize::Make(colorAttachmentDimensions.width() * 2, |
| colorAttachmentDimensions.height() * 2); |
| } |
| #endif |
| |
| return colorAttachmentDimensions; |
| } |
| |
| const Caps::ColorTypeInfo* DawnCaps::getColorTypeInfo(SkColorType colorType, |
| const TextureInfo& textureInfo) const { |
| auto dawnFormat = textureInfo.dawnTextureSpec().getViewFormat(); |
| if (dawnFormat == wgpu::TextureFormat::Undefined) { |
| SkASSERT(false); |
| return nullptr; |
| } |
| |
| const FormatInfo& info = this->getFormatInfo(dawnFormat); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| const ColorTypeInfo& ctInfo = info.fColorTypeInfos[i]; |
| if (ctInfo.fColorType == colorType) { |
| return &ctInfo; |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| bool DawnCaps::supportsWritePixels(const TextureInfo& textureInfo) const { |
| const auto& spec = textureInfo.dawnTextureSpec(); |
| return spec.fUsage & wgpu::TextureUsage::CopyDst; |
| } |
| |
| bool DawnCaps::supportsReadPixels(const TextureInfo& textureInfo) const { |
| const auto& spec = textureInfo.dawnTextureSpec(); |
| return spec.fUsage & wgpu::TextureUsage::CopySrc; |
| } |
| |
| std::pair<SkColorType, bool /*isRGBFormat*/> DawnCaps::supportedWritePixelsColorType( |
| SkColorType dstColorType, |
| const TextureInfo& dstTextureInfo, |
| SkColorType srcColorType) const { |
| return {dstColorType, false}; |
| } |
| |
| std::pair<SkColorType, bool /*isRGBFormat*/> DawnCaps::supportedReadPixelsColorType( |
| SkColorType srcColorType, |
| const TextureInfo& srcTextureInfo, |
| SkColorType dstColorType) const { |
| auto dawnFormat = getFormatFromColorType(srcColorType); |
| const FormatInfo& info = this->getFormatInfo(dawnFormat); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| const auto& ctInfo = info.fColorTypeInfos[i]; |
| if (ctInfo.fColorType == srcColorType) { |
| return {srcColorType, false}; |
| } |
| } |
| return {kUnknown_SkColorType, false}; |
| } |
| |
| void DawnCaps::initCaps(const DawnBackendContext& backendContext, const ContextOptions& options) { |
| // GetAdapter() is not available in WASM and there's no way to get AdapterProperties off of |
| // the WGPUDevice directly. |
| #if !defined(__EMSCRIPTEN__) |
| wgpu::AdapterProperties props; |
| backendContext.fDevice.GetAdapter().GetProperties(&props); |
| |
| #if defined(GRAPHITE_TEST_UTILS) |
| this->setDeviceName(props.name); |
| #endif |
| #endif // defined(__EMSCRIPTEN__) |
| |
| wgpu::SupportedLimits limits; |
| |
| [[maybe_unused]] bool limitsSucceeded = backendContext.fDevice.GetLimits(&limits); |
| // In Emscripten this always "fails" until |
| // https://github.com/emscripten-core/emscripten/pull/20808, which was first included in 3.1.51. |
| #if !defined(__EMSCRIPTEN__) || \ |
| (__EMSCRIPTEN_major__ > 3 || \ |
| (__EMSCRIPTEN_major__ == 3 && __EMSCRIPTEN_minor__ > 1) || \ |
| (__EMSCRIPTEN_major__ == 3 && __EMSCRIPTEN_minor__ == 1 && __EMSCRIPTEN_tiny__ > 50)) |
| SkASSERT(limitsSucceeded); |
| #endif |
| |
| fMaxTextureSize = limits.limits.maxTextureDimension2D; |
| |
| fRequiredTransferBufferAlignment = 4; |
| fRequiredUniformBufferAlignment = 256; |
| fRequiredStorageBufferAlignment = fRequiredUniformBufferAlignment; |
| |
| // Dawn requires 256 bytes per row alignment for buffer texture copies. |
| fTextureDataRowBytesAlignment = 256; |
| |
| fResourceBindingReqs.fUniformBufferLayout = Layout::kStd140; |
| // The WGSL generator assumes tightly packed std430 layout for SSBOs which is also the default |
| // for all types outside the uniform address space in WGSL. |
| fResourceBindingReqs.fStorageBufferLayout = Layout::kStd430; |
| fResourceBindingReqs.fSeparateTextureAndSamplerBinding = true; |
| |
| #if !defined(__EMSCRIPTEN__) |
| // TODO(b/318817249): SSBOs trigger FXC compiler failures when attempting to unroll loops |
| fStorageBufferSupport = props.backendType != wgpu::BackendType::D3D11; |
| fStorageBufferPreferred = props.backendType != wgpu::BackendType::D3D11; |
| #else |
| // WASM doesn't provide a way to query the backend, so can't tell if we are on d3d11 or not. |
| // Pessimistically assume we could be. Once b/318817249 is fixed, this can go away and SSBOs |
| // can always be enabled. |
| fStorageBufferSupport = false; |
| fStorageBufferPreferred = false; |
| #endif |
| |
| fDrawBufferCanBeMapped = false; |
| |
| fComputeSupport = true; |
| |
| // TODO: support clamp to border. |
| fClampToBorderSupport = false; |
| |
| #if defined(GRAPHITE_TEST_UTILS) |
| fDrawBufferCanBeMappedForReadback = false; |
| #endif |
| |
| #if defined(__EMSCRIPTEN__) |
| // For wasm, we use async map. |
| fBufferMapsAreAsync = true; |
| #else |
| // For Dawn native, we use direct mapping. |
| fBufferMapsAreAsync = false; |
| fDrawBufferCanBeMapped = |
| backendContext.fDevice.HasFeature(wgpu::FeatureName::BufferMapExtendedUsages); |
| |
| fMSAARenderToSingleSampledSupport = |
| backendContext.fDevice.HasFeature(wgpu::FeatureName::MSAARenderToSingleSampled); |
| |
| if (backendContext.fDevice.HasFeature(wgpu::FeatureName::TransientAttachments)) { |
| fSupportedTransientAttachmentUsage = wgpu::TextureUsage::TransientAttachment; |
| } |
| if (backendContext.fDevice.HasFeature(wgpu::FeatureName::DawnLoadResolveTexture)) { |
| fSupportedResolveTextureLoadOp = wgpu::LoadOp::ExpandResolveTexture; |
| } |
| #endif |
| |
| if (!backendContext.fTick) { |
| fAllowCpuSync = false; |
| // This seems paradoxical. However, if we use the async pipeline creation methods (e.g |
| // Device::CreateRenderPipelineAsync) then we may have to synchronize before a submit that |
| // uses the pipeline. If we use the methods that look synchronous (e.g. |
| // Device::CreateRenderPipeline) they actually operate asynchronously on WebGPU but the |
| // browser becomes responsible for synchronizing when we call submit. |
| fUseAsyncPipelineCreation = false; |
| |
| // The implementation busy waits after popping. |
| fAllowScopedErrorChecks = false; |
| } |
| |
| fFullCompressedUploadSizeMustAlignToBlockDims = true; |
| } |
| |
| void DawnCaps::initShaderCaps(const wgpu::Device& device) { |
| SkSL::ShaderCaps* shaderCaps = fShaderCaps.get(); |
| |
| // WGSL does not support infinities regardless of hardware support. There are discussions around |
| // enabling it using an extension in the future. |
| shaderCaps->fInfinitySupport = false; |
| |
| // WGSL supports shader derivatives in the fragment shader |
| shaderCaps->fShaderDerivativeSupport = true; |
| |
| #if !defined(__EMSCRIPTEN__) |
| if (device.HasFeature(wgpu::FeatureName::DualSourceBlending)) { |
| shaderCaps->fDualSourceBlendingSupport = true; |
| } |
| if (device.HasFeature(wgpu::FeatureName::FramebufferFetch)) { |
| shaderCaps->fFBFetchSupport = true; |
| } |
| #endif |
| } |
| |
| void DawnCaps::initFormatTable(const wgpu::Device& device) { |
| FormatInfo* info; |
| // Format: RGBA8Unorm |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RGBA8Unorm)]; |
| info->fFlags = FormatInfo::kAllFlags; |
| info->fColorTypeInfoCount = 2; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: RGBA8Unorm, Surface: kRGBA_8888 |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kRGBA_8888_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| // Format: RGBA8Unorm, Surface: kRGB_888x |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kRGB_888x_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1(); |
| } |
| } |
| |
| // Format: R8Unorm |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::R8Unorm)]; |
| #if !defined(__EMSCRIPTEN__) |
| info->fFlags = FormatInfo::kAllFlags; |
| if (!device.HasFeature(wgpu::FeatureName::R8UnormStorage)) { |
| info->fFlags &= ~FormatInfo::kStorage_Flag; |
| } |
| #else |
| info->fFlags = FormatInfo::kAllFlags & ~FormatInfo::kStorage_Flag; |
| #endif |
| info->fColorTypeInfoCount = 3; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: R8Unorm, Surface: kR8_unorm |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kR8_unorm_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| // Format: R8Unorm, Surface: kAlpha_8 |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kAlpha_8_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle("000r"); |
| ctInfo.fWriteSwizzle = skgpu::Swizzle("a000"); |
| } |
| // Format: R8Unorm, Surface: kGray_8 |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kGray_8_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle("rrr1"); |
| } |
| } |
| |
| #if !defined(__EMSCRIPTEN__) |
| const bool supportUnorm16 = device.HasFeature(wgpu::FeatureName::Unorm16TextureFormats); |
| // TODO(crbug.com/dawn/1856): Support storage binding for compute shader in Dawn. |
| // Format: R16Unorm |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::R16Unorm)]; |
| if (supportUnorm16) { |
| info->fFlags = FormatInfo::kAllFlags & ~FormatInfo::kStorage_Flag; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: R16Unorm, Surface: kA16_unorm |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kA16_unorm_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle("000r"); |
| ctInfo.fWriteSwizzle = skgpu::Swizzle("a000"); |
| } |
| } |
| } |
| #endif |
| |
| // Format: BGRA8Unorm |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::BGRA8Unorm)]; |
| info->fFlags = FormatInfo::kAllFlags; |
| info->fColorTypeInfoCount = 2; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: BGRA8Unorm, Surface: kBGRA_8888 |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kBGRA_8888_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| // Format: BGRA8Unorm, Surface: kRGB_888x |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kRGB_888x_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| } |
| } |
| |
| // Format: RGBA16Float |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RGBA16Float)]; |
| info->fFlags = FormatInfo::kAllFlags; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: RGBA16Float, Surface: RGBA_F16 |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kRGBA_F16_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| |
| // Format: R16Float |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::R16Float)]; |
| info->fFlags = FormatInfo::kAllFlags; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: R16Float, Surface: kA16_float |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kA16_float_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| ctInfo.fReadSwizzle = skgpu::Swizzle("000r"); |
| ctInfo.fWriteSwizzle = skgpu::Swizzle("a000"); |
| } |
| } |
| |
| // TODO(crbug.com/dawn/1856): Support storage binding for compute shader in Dawn. |
| // Format: RG8Unorm |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RG8Unorm)]; |
| info->fFlags = FormatInfo::kAllFlags; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: RG8Unorm, Surface: kR8G8_unorm |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kR8G8_unorm_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| |
| #if !defined(__EMSCRIPTEN__) |
| // TODO(crbug.com/dawn/1856): Support storage binding for compute shader in Dawn. |
| // Format: RG16Unorm |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RG16Unorm)]; |
| if (supportUnorm16) { |
| info->fFlags = FormatInfo::kAllFlags; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: RG16Unorm, Surface: kR16G16_unorm |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kR16G16_unorm_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| } |
| #endif |
| |
| // Format: RGB10A2Unorm |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RGB10A2Unorm)]; |
| info->fFlags = FormatInfo::kAllFlags; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: RGB10A2Unorm, Surface: kRGBA_1010102 |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kRGBA_1010102_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| |
| // Format: RG16Float |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::RG16Float)]; |
| info->fFlags = FormatInfo::kAllFlags; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: RG16Float, Surface: kR16G16_float |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kR16G16_float_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag; |
| } |
| } |
| |
| // Format: ETC2RGB8Unorm |
| { |
| if (device.HasFeature(wgpu::FeatureName::TextureCompressionETC2)) { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::ETC2RGB8Unorm)]; |
| info->fFlags = FormatInfo::kTexturable_Flag; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: ETC2RGB8Unorm, Surface: kRGB_888x |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kRGB_888x_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| } |
| } |
| } |
| |
| // Format: BC1RGBAUnorm |
| { |
| if (device.HasFeature(wgpu::FeatureName::TextureCompressionBC)) { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::BC1RGBAUnorm)]; |
| info->fFlags = FormatInfo::kTexturable_Flag; |
| info->fColorTypeInfoCount = 1; |
| info->fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info->fColorTypeInfoCount); |
| int ctIdx = 0; |
| // Format: BC1RGBAUnorm, Surface: kRGBA_8888 |
| { |
| auto& ctInfo = info->fColorTypeInfos[ctIdx++]; |
| ctInfo.fColorType = kRGBA_8888_SkColorType; |
| ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag; |
| } |
| } |
| } |
| |
| /* |
| * Non-color formats |
| */ |
| |
| // Format: Stencil8 |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Stencil8)]; |
| info->fFlags = FormatInfo::kMSAA_Flag; |
| info->fColorTypeInfoCount = 0; |
| } |
| |
| // Format: Depth16UNorm |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Depth16Unorm)]; |
| info->fFlags = FormatInfo::kMSAA_Flag; |
| info->fColorTypeInfoCount = 0; |
| } |
| |
| // Format: Depth32Float |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Depth32Float)]; |
| info->fFlags = FormatInfo::kMSAA_Flag; |
| info->fColorTypeInfoCount = 0; |
| } |
| |
| // Format: Depth24PlusStencil8 |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Depth24PlusStencil8)]; |
| info->fFlags = FormatInfo::kMSAA_Flag; |
| info->fColorTypeInfoCount = 0; |
| } |
| |
| // Format: Undefined |
| { |
| info = &fFormatTable[GetFormatIndex(wgpu::TextureFormat::Undefined)]; |
| info->fFlags = 0; |
| info->fColorTypeInfoCount = 0; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////// |
| // Map SkColorTypes (used for creating SkSurfaces) to wgpu::TextureFormat. |
| // The order in which the formats are passed into the setColorType function |
| // indicates the priority in selecting which format we use for a given |
| // SkColorType. |
| |
| std::fill_n(fColorTypeToFormatTable, kSkColorTypeCnt, wgpu::TextureFormat::Undefined); |
| |
| this->setColorType(kAlpha_8_SkColorType, { wgpu::TextureFormat::R8Unorm }); |
| this->setColorType(kRGBA_8888_SkColorType, { wgpu::TextureFormat::RGBA8Unorm }); |
| this->setColorType(kRGB_888x_SkColorType, |
| {wgpu::TextureFormat::RGBA8Unorm, wgpu::TextureFormat::BGRA8Unorm}); |
| this->setColorType(kBGRA_8888_SkColorType, { wgpu::TextureFormat::BGRA8Unorm }); |
| this->setColorType(kGray_8_SkColorType, { wgpu::TextureFormat::R8Unorm }); |
| this->setColorType(kR8_unorm_SkColorType, { wgpu::TextureFormat::R8Unorm }); |
| this->setColorType(kRGBA_F16_SkColorType, { wgpu::TextureFormat::RGBA16Float }); |
| this->setColorType(kA16_float_SkColorType, { wgpu::TextureFormat::R16Float }); |
| this->setColorType(kR8G8_unorm_SkColorType, { wgpu::TextureFormat::RG8Unorm }); |
| this->setColorType(kRGBA_1010102_SkColorType, { wgpu::TextureFormat::RGB10A2Unorm }); |
| this->setColorType(kR16G16_float_SkColorType, { wgpu::TextureFormat::RG16Float }); |
| |
| #if !defined(__EMSCRIPTEN__) |
| this->setColorType(kA16_unorm_SkColorType, { wgpu::TextureFormat::R16Unorm }); |
| this->setColorType(kR16G16_unorm_SkColorType, { wgpu::TextureFormat::RG16Unorm }); |
| #endif |
| } |
| |
| // static |
| size_t DawnCaps::GetFormatIndex(wgpu::TextureFormat format) { |
| for (size_t i = 0; i < std::size(kFormats); ++i) { |
| if (format == kFormats[i]) { |
| return i; |
| } |
| if (kFormats[i] == wgpu::TextureFormat::Undefined) { |
| SkDEBUGFAILF("Unsupported wgpu::TextureFormat: %d\n", static_cast<int>(format)); |
| return i; |
| } |
| } |
| SkUNREACHABLE; |
| return 0; |
| } |
| |
| void DawnCaps::setColorType(SkColorType colorType, |
| std::initializer_list<wgpu::TextureFormat> formats) { |
| static_assert(std::size(kFormats) == kFormatCnt, |
| "Size is not same for DawnCaps::fFormatTable and kFormats"); |
| int idx = static_cast<int>(colorType); |
| for (auto it = formats.begin(); it != formats.end(); ++it) { |
| const auto& info = this->getFormatInfo(*it); |
| for (int i = 0; i < info.fColorTypeInfoCount; ++i) { |
| if (info.fColorTypeInfos[i].fColorType == colorType) { |
| fColorTypeToFormatTable[idx] = *it; |
| return; |
| } |
| } |
| } |
| } |
| |
| uint64_t DawnCaps::getRenderPassDescKeyForPipeline(const RenderPassDesc& renderPassDesc) const { |
| DawnTextureInfo colorInfo, depthStencilInfo; |
| renderPassDesc.fColorAttachment.fTextureInfo.getDawnTextureInfo(&colorInfo); |
| renderPassDesc.fDepthStencilAttachment.fTextureInfo.getDawnTextureInfo(&depthStencilInfo); |
| SkASSERT(static_cast<uint32_t>(colorInfo.getViewFormat()) <= 0xffff && |
| static_cast<uint32_t>(depthStencilInfo.getViewFormat()) <= 0xffff && |
| colorInfo.fSampleCount < 0x7fff); |
| |
| // Note: if Dawn supports ExpandResolveTexture load op and the render pass uses it to load |
| // the resolve texture, a render pipeline will need to be created with |
| // wgpu::ColorTargetStateExpandResolveTextureDawn chained struct in order to be compatible. |
| // Hence a render pipeline created for a render pass using ExpandResolveTexture load op will |
| // be different from the one created for a render pass not using that load op. |
| // So we need to include a bit flag to differentiate the two kinds of pipelines. |
| // Also avoid returning a cached pipeline that is not compatible with the render pass using |
| // ExpandResolveTexture load op and vice versa. |
| const bool shouldIncludeLoadResolveAttachmentBit = this->resolveTextureLoadOp().has_value(); |
| uint32_t loadResolveAttachmentKey = 0; |
| if (shouldIncludeLoadResolveAttachmentBit && |
| renderPassDesc.fColorResolveAttachment.fTextureInfo.isValid() && |
| renderPassDesc.fColorResolveAttachment.fLoadOp == LoadOp::kLoad) { |
| loadResolveAttachmentKey = 1; |
| } |
| |
| uint32_t colorAttachmentKey = static_cast<uint32_t>(colorInfo.getViewFormat()) << 16 | |
| colorInfo.fSampleCount << 1 | loadResolveAttachmentKey; |
| |
| uint32_t dsAttachmentKey = static_cast<uint32_t>(depthStencilInfo.getViewFormat()) << 16 | |
| depthStencilInfo.fSampleCount; |
| return (((uint64_t)colorAttachmentKey) << 32) | dsAttachmentKey; |
| } |
| |
| UniqueKey DawnCaps::makeGraphicsPipelineKey(const GraphicsPipelineDesc& pipelineDesc, |
| const RenderPassDesc& renderPassDesc) const { |
| UniqueKey pipelineKey; |
| { |
| static const skgpu::UniqueKey::Domain kGraphicsPipelineDomain = UniqueKey::GenerateDomain(); |
| // 5 uint32_t's (render step id, paint id, uint64 RenderPass desc, uint16 write swizzle) |
| UniqueKey::Builder builder(&pipelineKey, kGraphicsPipelineDomain, 5, "GraphicsPipeline"); |
| // add GraphicsPipelineDesc key |
| builder[0] = pipelineDesc.renderStepID(); |
| builder[1] = pipelineDesc.paintParamsID().asUInt(); |
| |
| // Add RenderPassDesc key. |
| uint64_t renderPassKey = this->getRenderPassDescKeyForPipeline(renderPassDesc); |
| builder[2] = renderPassKey & 0xFFFFFFFF; |
| builder[3] = (renderPassKey >> 32) & 0xFFFFFFFF; |
| builder[4] = renderPassDesc.fWriteSwizzle.asKey(); |
| builder.finish(); |
| } |
| |
| return pipelineKey; |
| } |
| |
| UniqueKey DawnCaps::makeComputePipelineKey(const ComputePipelineDesc& pipelineDesc) const { |
| UniqueKey pipelineKey; |
| { |
| static const skgpu::UniqueKey::Domain kComputePipelineDomain = UniqueKey::GenerateDomain(); |
| // The key is made up of a single uint32_t corresponding to the compute step ID. |
| UniqueKey::Builder builder(&pipelineKey, kComputePipelineDomain, 1, "ComputePipeline"); |
| builder[0] = pipelineDesc.computeStep()->uniqueID(); |
| |
| // TODO(b/240615224): The local work group size should factor into the key here since it is |
| // specified in the shader text on Dawn/SPIR-V. This is not a problem right now since |
| // ComputeSteps don't vary their workgroup size dynamically. |
| |
| builder.finish(); |
| } |
| return pipelineKey; |
| } |
| |
| void DawnCaps::buildKeyForTexture(SkISize dimensions, |
| const TextureInfo& info, |
| ResourceType type, |
| Shareable shareable, |
| GraphiteResourceKey* key) const { |
| const DawnTextureSpec& dawnSpec = info.dawnTextureSpec(); |
| |
| SkASSERT(!dimensions.isEmpty()); |
| |
| SkASSERT(dawnSpec.getViewFormat() != wgpu::TextureFormat::Undefined); |
| uint32_t formatKey = static_cast<uint32_t>(dawnSpec.getViewFormat()); |
| |
| uint32_t samplesKey = SamplesToKey(info.numSamples()); |
| // We don't have to key the number of mip levels because it is inherit in the combination of |
| // isMipped and dimensions. |
| bool isMipped = info.mipmapped() == Mipmapped::kYes; |
| |
| // Confirm all the below parts of the key can fit in a single uint32_t. The sum of the shift |
| // amounts in the asserts must be less than or equal to 32. |
| SkASSERT(samplesKey < (1u << 3)); // sample key is first 3 bits |
| SkASSERT(static_cast<uint32_t>(isMipped) < (1u << 1)); // isMapped is 4th bit |
| SkASSERT(static_cast<uint32_t>(dawnSpec.fUsage) < (1u << 28)); // usage is remaining 28 bits |
| |
| // We need two uint32_ts for dimensions, 1 for format, and 1 for the rest of the key; |
| static int kNum32DataCnt = 2 + 1 + 1; |
| |
| GraphiteResourceKey::Builder builder(key, type, kNum32DataCnt, shareable); |
| |
| builder[0] = dimensions.width(); |
| builder[1] = dimensions.height(); |
| builder[2] = formatKey; |
| builder[3] = (samplesKey << 0) | |
| (static_cast<uint32_t>(isMipped) << 3) | |
| (static_cast<uint32_t>(dawnSpec.fUsage) << 4); |
| } |
| |
| } // namespace skgpu::graphite |