| /* |
| * Copyright 2019 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/ops/OpsTask.h" |
| |
| #include "include/gpu/GrRecordingContext.h" |
| #include "src/base/SkScopeExit.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/core/SkTraceEvent.h" |
| #include "src/gpu/ganesh/GrAttachment.h" |
| #include "src/gpu/ganesh/GrAuditTrail.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrGpu.h" |
| #include "src/gpu/ganesh/GrMemoryPool.h" |
| #include "src/gpu/ganesh/GrNativeRect.h" |
| #include "src/gpu/ganesh/GrOpFlushState.h" |
| #include "src/gpu/ganesh/GrOpsRenderPass.h" |
| #include "src/gpu/ganesh/GrRecordingContextPriv.h" |
| #include "src/gpu/ganesh/GrRenderTarget.h" |
| #include "src/gpu/ganesh/GrResourceAllocator.h" |
| #include "src/gpu/ganesh/GrResourceProvider.h" |
| #include "src/gpu/ganesh/GrTexture.h" |
| #include "src/gpu/ganesh/geometry/GrRect.h" |
| |
| using namespace skia_private; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| namespace { |
| |
| // Experimentally we have found that most combining occurs within the first 10 comparisons. |
| static const int kMaxOpMergeDistance = 10; |
| static const int kMaxOpChainDistance = 10; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| inline bool can_reorder(const SkRect& a, const SkRect& b) { return !GrRectsOverlap(a, b); } |
| |
| GrOpsRenderPass* create_render_pass(GrGpu* gpu, |
| GrRenderTarget* rt, |
| bool useMSAASurface, |
| GrAttachment* stencil, |
| GrSurfaceOrigin origin, |
| const SkIRect& bounds, |
| GrLoadOp colorLoadOp, |
| const std::array<float, 4>& loadClearColor, |
| GrLoadOp stencilLoadOp, |
| GrStoreOp stencilStoreOp, |
| const TArray<GrSurfaceProxy*, true>& sampledProxies, |
| GrXferBarrierFlags renderPassXferBarriers) { |
| const GrOpsRenderPass::LoadAndStoreInfo kColorLoadStoreInfo { |
| colorLoadOp, |
| GrStoreOp::kStore, |
| loadClearColor |
| }; |
| |
| // TODO: |
| // We would like to (at this level) only ever clear & discard. We would need |
| // to stop splitting up higher level OpsTasks for copyOps to achieve that. |
| // Note: we would still need SB loads and stores but they would happen at a |
| // lower level (inside the VK command buffer). |
| const GrOpsRenderPass::StencilLoadAndStoreInfo stencilLoadAndStoreInfo { |
| stencilLoadOp, |
| stencilStoreOp, |
| }; |
| |
| return gpu->getOpsRenderPass(rt, useMSAASurface, stencil, origin, bounds, kColorLoadStoreInfo, |
| stencilLoadAndStoreInfo, sampledProxies, renderPassXferBarriers); |
| } |
| |
| } // anonymous namespace |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| namespace skgpu::ganesh { |
| |
| inline OpsTask::OpChain::List::List(GrOp::Owner op) |
| : fHead(std::move(op)), fTail(fHead.get()) { |
| this->validate(); |
| } |
| |
| inline OpsTask::OpChain::List::List(List&& that) { *this = std::move(that); } |
| |
| inline OpsTask::OpChain::List& OpsTask::OpChain::List::operator=(List&& that) { |
| fHead = std::move(that.fHead); |
| fTail = that.fTail; |
| that.fTail = nullptr; |
| this->validate(); |
| return *this; |
| } |
| |
| inline GrOp::Owner OpsTask::OpChain::List::popHead() { |
| SkASSERT(fHead); |
| auto temp = fHead->cutChain(); |
| std::swap(temp, fHead); |
| if (!fHead) { |
| SkASSERT(fTail == temp.get()); |
| fTail = nullptr; |
| } |
| return temp; |
| } |
| |
| inline GrOp::Owner OpsTask::OpChain::List::removeOp(GrOp* op) { |
| #ifdef SK_DEBUG |
| auto head = op; |
| while (head->prevInChain()) { head = head->prevInChain(); } |
| SkASSERT(head == fHead.get()); |
| #endif |
| auto prev = op->prevInChain(); |
| if (!prev) { |
| SkASSERT(op == fHead.get()); |
| return this->popHead(); |
| } |
| auto temp = prev->cutChain(); |
| if (auto next = temp->cutChain()) { |
| prev->chainConcat(std::move(next)); |
| } else { |
| SkASSERT(fTail == op); |
| fTail = prev; |
| } |
| this->validate(); |
| return temp; |
| } |
| |
| inline void OpsTask::OpChain::List::pushHead(GrOp::Owner op) { |
| SkASSERT(op); |
| SkASSERT(op->isChainHead()); |
| SkASSERT(op->isChainTail()); |
| if (fHead) { |
| op->chainConcat(std::move(fHead)); |
| fHead = std::move(op); |
| } else { |
| fHead = std::move(op); |
| fTail = fHead.get(); |
| } |
| } |
| |
| inline void OpsTask::OpChain::List::pushTail(GrOp::Owner op) { |
| SkASSERT(op->isChainTail()); |
| fTail->chainConcat(std::move(op)); |
| fTail = fTail->nextInChain(); |
| } |
| |
| inline void OpsTask::OpChain::List::validate() const { |
| #ifdef SK_DEBUG |
| if (fHead) { |
| SkASSERT(fTail); |
| fHead->validateChain(fTail); |
| } |
| #endif |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| OpsTask::OpChain::OpChain(GrOp::Owner op, GrProcessorSet::Analysis processorAnalysis, |
| GrAppliedClip* appliedClip, const GrDstProxyView* dstProxyView) |
| : fList{std::move(op)} |
| , fProcessorAnalysis(processorAnalysis) |
| , fAppliedClip(appliedClip) { |
| if (fProcessorAnalysis.requiresDstTexture()) { |
| SkASSERT(dstProxyView && dstProxyView->proxy()); |
| fDstProxyView = *dstProxyView; |
| } |
| fBounds = fList.head()->bounds(); |
| } |
| |
| void OpsTask::OpChain::visitProxies(const GrVisitProxyFunc& func) const { |
| if (fList.empty()) { |
| return; |
| } |
| for (const auto& op : GrOp::ChainRange<>(fList.head())) { |
| op.visitProxies(func); |
| } |
| if (fDstProxyView.proxy()) { |
| func(fDstProxyView.proxy(), skgpu::Mipmapped::kNo); |
| } |
| if (fAppliedClip) { |
| fAppliedClip->visitProxies(func); |
| } |
| } |
| |
| void OpsTask::OpChain::deleteOps() { |
| while (!fList.empty()) { |
| // Since the value goes out of scope immediately, the GrOp::Owner deletes the op. |
| fList.popHead(); |
| } |
| } |
| |
| // Concatenates two op chains and attempts to merge ops across the chains. Assumes that we know that |
| // the two chains are chainable. Returns the new chain. |
| OpsTask::OpChain::List OpsTask::OpChain::DoConcat(List chainA, List chainB, const GrCaps& caps, |
| SkArenaAlloc* opsTaskArena, |
| GrAuditTrail* auditTrail) { |
| // We process ops in chain b from head to tail. We attempt to merge with nodes in a, starting |
| // at chain a's tail and working toward the head. We produce one of the following outcomes: |
| // 1) b's head is merged into an op in a. |
| // 2) An op from chain a is merged into b's head. (In this case b's head gets processed again.) |
| // 3) b's head is popped from chain a and added at the tail of a. |
| // After result 3 we don't want to attempt to merge the next head of b with the new tail of a, |
| // as we assume merges were already attempted when chain b was created. So we keep track of the |
| // original tail of a and start our iteration of a there. We also track the bounds of the nodes |
| // appended to chain a that will be skipped for bounds testing. If the original tail of a is |
| // merged into an op in b (case 2) then we advance the "original tail" towards the head of a. |
| GrOp* origATail = chainA.tail(); |
| SkRect skipBounds = SkRectPriv::MakeLargestInverted(); |
| do { |
| int numMergeChecks = 0; |
| bool merged = false; |
| bool noSkip = (origATail == chainA.tail()); |
| SkASSERT(noSkip == (skipBounds == SkRectPriv::MakeLargestInverted())); |
| bool canBackwardMerge = noSkip || can_reorder(chainB.head()->bounds(), skipBounds); |
| SkRect forwardMergeBounds = skipBounds; |
| GrOp* a = origATail; |
| while (a) { |
| bool canForwardMerge = |
| (a == chainA.tail()) || can_reorder(a->bounds(), forwardMergeBounds); |
| if (canForwardMerge || canBackwardMerge) { |
| auto result = a->combineIfPossible(chainB.head(), opsTaskArena, caps); |
| SkASSERT(result != GrOp::CombineResult::kCannotCombine); |
| merged = (result == GrOp::CombineResult::kMerged); |
| GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n", |
| chainB.head()->name(), chainB.head()->uniqueID(), a->name(), |
| a->uniqueID()); |
| } |
| if (merged) { |
| GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, a, chainB.head()); |
| if (canBackwardMerge) { |
| // The GrOp::Owner releases the op. |
| chainB.popHead(); |
| } else { |
| // We merged the contents of b's head into a. We will replace b's head with a in |
| // chain b. |
| SkASSERT(canForwardMerge); |
| if (a == origATail) { |
| origATail = a->prevInChain(); |
| } |
| GrOp::Owner detachedA = chainA.removeOp(a); |
| // The GrOp::Owner releases the op. |
| chainB.popHead(); |
| chainB.pushHead(std::move(detachedA)); |
| if (chainA.empty()) { |
| // We merged all the nodes in chain a to chain b. |
| return chainB; |
| } |
| } |
| break; |
| } else { |
| if (++numMergeChecks == kMaxOpMergeDistance) { |
| break; |
| } |
| forwardMergeBounds.joinNonEmptyArg(a->bounds()); |
| canBackwardMerge = |
| canBackwardMerge && can_reorder(chainB.head()->bounds(), a->bounds()); |
| a = a->prevInChain(); |
| } |
| } |
| // If we weren't able to merge b's head then pop b's head from chain b and make it the new |
| // tail of a. |
| if (!merged) { |
| chainA.pushTail(chainB.popHead()); |
| skipBounds.joinNonEmptyArg(chainA.tail()->bounds()); |
| } |
| } while (!chainB.empty()); |
| return chainA; |
| } |
| |
| // Attempts to concatenate the given chain onto our own and merge ops across the chains. Returns |
| // whether the operation succeeded. On success, the provided list will be returned empty. |
| bool OpsTask::OpChain::tryConcat( |
| List* list, GrProcessorSet::Analysis processorAnalysis, const GrDstProxyView& dstProxyView, |
| const GrAppliedClip* appliedClip, const SkRect& bounds, const GrCaps& caps, |
| SkArenaAlloc* opsTaskArena, GrAuditTrail* auditTrail) { |
| SkASSERT(!fList.empty()); |
| SkASSERT(!list->empty()); |
| SkASSERT(fProcessorAnalysis.requiresDstTexture() == SkToBool(fDstProxyView.proxy())); |
| SkASSERT(processorAnalysis.requiresDstTexture() == SkToBool(dstProxyView.proxy())); |
| // All returns use explicit tuple constructor rather than {a, b} to work around old GCC bug. |
| if (fList.head()->classID() != list->head()->classID() || |
| SkToBool(fAppliedClip) != SkToBool(appliedClip) || |
| (fAppliedClip && *fAppliedClip != *appliedClip) || |
| (fProcessorAnalysis.requiresNonOverlappingDraws() != |
| processorAnalysis.requiresNonOverlappingDraws()) || |
| (fProcessorAnalysis.requiresNonOverlappingDraws() && |
| // Non-overlaping draws are only required when Ganesh will either insert a barrier, |
| // or read back a new dst texture between draws. In either case, we can neither |
| // chain nor combine overlapping Ops. |
| GrRectsTouchOrOverlap(fBounds, bounds)) || |
| (fProcessorAnalysis.requiresDstTexture() != processorAnalysis.requiresDstTexture()) || |
| (fProcessorAnalysis.requiresDstTexture() && fDstProxyView != dstProxyView)) { |
| return false; |
| } |
| |
| SkDEBUGCODE(bool first = true;) |
| do { |
| switch (fList.tail()->combineIfPossible(list->head(), opsTaskArena, caps)) |
| { |
| case GrOp::CombineResult::kCannotCombine: |
| // If an op supports chaining then it is required that chaining is transitive and |
| // that if any two ops in two different chains can merge then the two chains |
| // may also be chained together. Thus, we should only hit this on the first |
| // iteration. |
| SkASSERT(first); |
| return false; |
| case GrOp::CombineResult::kMayChain: |
| fList = DoConcat(std::move(fList), std::exchange(*list, List()), caps, opsTaskArena, |
| auditTrail); |
| // The above exchange cleared out 'list'. The list needs to be empty now for the |
| // loop to terminate. |
| SkASSERT(list->empty()); |
| break; |
| case GrOp::CombineResult::kMerged: { |
| GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n", |
| list->tail()->name(), list->tail()->uniqueID(), list->head()->name(), |
| list->head()->uniqueID()); |
| GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, fList.tail(), list->head()); |
| // The GrOp::Owner releases the op. |
| list->popHead(); |
| break; |
| } |
| } |
| SkDEBUGCODE(first = false); |
| } while (!list->empty()); |
| |
| // The new ops were successfully merged and/or chained onto our own. |
| fBounds.joinPossiblyEmptyRect(bounds); |
| return true; |
| } |
| |
| bool OpsTask::OpChain::prependChain(OpChain* that, const GrCaps& caps, SkArenaAlloc* opsTaskArena, |
| GrAuditTrail* auditTrail) { |
| if (!that->tryConcat(&fList, fProcessorAnalysis, fDstProxyView, fAppliedClip, fBounds, caps, |
| opsTaskArena, auditTrail)) { |
| this->validate(); |
| // append failed |
| return false; |
| } |
| |
| // 'that' owns the combined chain. Move it into 'this'. |
| SkASSERT(fList.empty()); |
| fList = std::move(that->fList); |
| fBounds = that->fBounds; |
| |
| that->fDstProxyView.setProxyView({}); |
| if (that->fAppliedClip && that->fAppliedClip->hasCoverageFragmentProcessor()) { |
| // Obliterates the processor. |
| that->fAppliedClip->detachCoverageFragmentProcessor(); |
| } |
| this->validate(); |
| return true; |
| } |
| |
| GrOp::Owner OpsTask::OpChain::appendOp( |
| GrOp::Owner op, GrProcessorSet::Analysis processorAnalysis, |
| const GrDstProxyView* dstProxyView, const GrAppliedClip* appliedClip, const GrCaps& caps, |
| SkArenaAlloc* opsTaskArena, GrAuditTrail* auditTrail) { |
| const GrDstProxyView noDstProxyView; |
| if (!dstProxyView) { |
| dstProxyView = &noDstProxyView; |
| } |
| SkASSERT(op->isChainHead() && op->isChainTail()); |
| SkRect opBounds = op->bounds(); |
| List chain(std::move(op)); |
| if (!this->tryConcat(&chain, processorAnalysis, *dstProxyView, appliedClip, opBounds, caps, |
| opsTaskArena, auditTrail)) { |
| // append failed, give the op back to the caller. |
| this->validate(); |
| return chain.popHead(); |
| } |
| |
| SkASSERT(chain.empty()); |
| this->validate(); |
| return nullptr; |
| } |
| |
| inline void OpsTask::OpChain::validate() const { |
| #ifdef SK_DEBUG |
| fList.validate(); |
| for (const auto& op : GrOp::ChainRange<>(fList.head())) { |
| // Not using SkRect::contains because we allow empty rects. |
| SkASSERT(fBounds.fLeft <= op.bounds().fLeft && fBounds.fTop <= op.bounds().fTop && |
| fBounds.fRight >= op.bounds().fRight && fBounds.fBottom >= op.bounds().fBottom); |
| } |
| #endif |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| OpsTask::OpsTask(GrDrawingManager* drawingMgr, |
| GrSurfaceProxyView view, |
| GrAuditTrail* auditTrail, |
| sk_sp<GrArenas> arenas) |
| : GrRenderTask() |
| , fAuditTrail(auditTrail) |
| , fUsesMSAASurface(view.asRenderTargetProxy()->numSamples() > 1) |
| , fTargetSwizzle(view.swizzle()) |
| , fTargetOrigin(view.origin()) |
| , fArenas{std::move(arenas)} |
| SkDEBUGCODE(, fNumClips(0)) { |
| this->addTarget(drawingMgr, view.detachProxy()); |
| } |
| |
| void OpsTask::deleteOps() { |
| for (auto& chain : fOpChains) { |
| chain.deleteOps(); |
| } |
| fOpChains.clear(); |
| } |
| |
| OpsTask::~OpsTask() { |
| this->deleteOps(); |
| } |
| |
| void OpsTask::addOp(GrDrawingManager* drawingMgr, GrOp::Owner op, |
| GrTextureResolveManager textureResolveManager, const GrCaps& caps) { |
| auto addDependency = [&](GrSurfaceProxy* p, skgpu::Mipmapped mipmapped) { |
| this->addDependency(drawingMgr, p, mipmapped, textureResolveManager, caps); |
| }; |
| |
| op->visitProxies(addDependency); |
| |
| this->recordOp(std::move(op), false/*usesMSAA*/, GrProcessorSet::EmptySetAnalysis(), nullptr, |
| nullptr, caps); |
| } |
| |
| void OpsTask::addDrawOp(GrDrawingManager* drawingMgr, GrOp::Owner op, bool usesMSAA, |
| const GrProcessorSet::Analysis& processorAnalysis, GrAppliedClip&& clip, |
| const GrDstProxyView& dstProxyView, |
| GrTextureResolveManager textureResolveManager, const GrCaps& caps) { |
| auto addDependency = [&](GrSurfaceProxy* p, skgpu::Mipmapped mipmapped) { |
| this->addSampledTexture(p); |
| this->addDependency(drawingMgr, p, mipmapped, textureResolveManager, caps); |
| }; |
| |
| op->visitProxies(addDependency); |
| clip.visitProxies(addDependency); |
| if (dstProxyView.proxy()) { |
| if (!(dstProxyView.dstSampleFlags() & GrDstSampleFlags::kAsInputAttachment)) { |
| this->addSampledTexture(dstProxyView.proxy()); |
| } |
| if (dstProxyView.dstSampleFlags() & GrDstSampleFlags::kRequiresTextureBarrier) { |
| fRenderPassXferBarriers |= GrXferBarrierFlags::kTexture; |
| } |
| addDependency(dstProxyView.proxy(), skgpu::Mipmapped::kNo); |
| SkASSERT(!(dstProxyView.dstSampleFlags() & GrDstSampleFlags::kAsInputAttachment) || |
| dstProxyView.offset().isZero()); |
| } |
| |
| if (processorAnalysis.usesNonCoherentHWBlending()) { |
| fRenderPassXferBarriers |= GrXferBarrierFlags::kBlend; |
| } |
| |
| this->recordOp(std::move(op), usesMSAA, processorAnalysis, clip.doesClip() ? &clip : nullptr, |
| &dstProxyView, caps); |
| } |
| |
| void OpsTask::endFlush(GrDrawingManager* drawingMgr) { |
| fLastClipStackGenID = SK_InvalidUniqueID; |
| this->deleteOps(); |
| |
| fDeferredProxies.clear(); |
| fSampledProxies.clear(); |
| fAuditTrail = nullptr; |
| |
| GrRenderTask::endFlush(drawingMgr); |
| } |
| |
| void OpsTask::onPrePrepare(GrRecordingContext* context) { |
| SkASSERT(this->isClosed()); |
| // TODO: remove the check for discard here once reduced op splitting is turned on. Currently we |
| // can end up with OpsTasks that only have a discard load op and no ops. For vulkan validation |
| // we need to keep that discard and not drop it. Once we have reduce op list splitting enabled |
| // we shouldn't end up with OpsTasks with only discard. |
| if (this->isColorNoOp() || |
| (fClippedContentBounds.isEmpty() && fColorLoadOp != GrLoadOp::kDiscard)) { |
| return; |
| } |
| TRACE_EVENT0("skia.gpu", TRACE_FUNC); |
| |
| GrSurfaceProxyView dstView(sk_ref_sp(this->target(0)), fTargetOrigin, fTargetSwizzle); |
| for (const auto& chain : fOpChains) { |
| if (chain.shouldExecute()) { |
| chain.head()->prePrepare(context, |
| dstView, |
| chain.appliedClip(), |
| chain.dstProxyView(), |
| fRenderPassXferBarriers, |
| fColorLoadOp); |
| } |
| } |
| } |
| |
| void OpsTask::onPrepare(GrOpFlushState* flushState) { |
| SkASSERT(this->target(0)->peekRenderTarget()); |
| SkASSERT(this->isClosed()); |
| // TODO: remove the check for discard here once reduced op splitting is turned on. Currently we |
| // can end up with OpsTasks that only have a discard load op and no ops. For vulkan validation |
| // we need to keep that discard and not drop it. Once we have reduce op list splitting enabled |
| // we shouldn't end up with OpsTasks with only discard. |
| if (this->isColorNoOp() || |
| (fClippedContentBounds.isEmpty() && fColorLoadOp != GrLoadOp::kDiscard)) { |
| return; |
| } |
| TRACE_EVENT0_ALWAYS("skia.gpu", TRACE_FUNC); |
| |
| flushState->setSampledProxyArray(&fSampledProxies); |
| GrSurfaceProxyView dstView(sk_ref_sp(this->target(0)), fTargetOrigin, fTargetSwizzle); |
| // Loop over the ops that haven't yet been prepared. |
| for (const auto& chain : fOpChains) { |
| if (chain.shouldExecute()) { |
| GrOpFlushState::OpArgs opArgs(chain.head(), |
| dstView, |
| fUsesMSAASurface, |
| chain.appliedClip(), |
| chain.dstProxyView(), |
| fRenderPassXferBarriers, |
| fColorLoadOp); |
| |
| flushState->setOpArgs(&opArgs); |
| |
| // Temporary debugging helper: for debugging prePrepare w/o going through DDLs |
| // Delete once most of the GrOps have an onPrePrepare. |
| // chain.head()->prePrepare(flushState->gpu()->getContext(), &this->target(0), |
| // chain.appliedClip()); |
| |
| // GrOp::prePrepare may or may not have been called at this point |
| chain.head()->prepare(flushState); |
| flushState->setOpArgs(nullptr); |
| } |
| } |
| flushState->setSampledProxyArray(nullptr); |
| } |
| |
| // TODO: this is where GrOp::renderTarget is used (which is fine since it |
| // is at flush time). However, we need to store the RenderTargetProxy in the |
| // Ops and instantiate them here. |
| bool OpsTask::onExecute(GrOpFlushState* flushState) { |
| SkASSERT(this->numTargets() == 1); |
| GrRenderTargetProxy* proxy = this->target(0)->asRenderTargetProxy(); |
| SkASSERT(proxy); |
| SK_AT_SCOPE_EXIT(proxy->clearArenas()); |
| |
| if (this->isColorNoOp() || fClippedContentBounds.isEmpty()) { |
| return false; |
| } |
| TRACE_EVENT0_ALWAYS("skia.gpu", TRACE_FUNC); |
| |
| // Make sure load ops are not kClear if the GPU needs to use draws for clears |
| SkASSERT(fColorLoadOp != GrLoadOp::kClear || |
| !flushState->gpu()->caps()->performColorClearsAsDraws()); |
| |
| const GrCaps& caps = *flushState->gpu()->caps(); |
| GrRenderTarget* renderTarget = proxy->peekRenderTarget(); |
| SkASSERT(renderTarget); |
| |
| GrAttachment* stencil = nullptr; |
| if (proxy->needsStencil()) { |
| SkASSERT(proxy->canUseStencil(caps)); |
| if (!flushState->resourceProvider()->attachStencilAttachment(renderTarget, |
| fUsesMSAASurface)) { |
| SkDebugf("WARNING: failed to attach a stencil buffer. Rendering will be skipped.\n"); |
| return false; |
| } |
| stencil = renderTarget->getStencilAttachment(fUsesMSAASurface); |
| } |
| |
| GrLoadOp stencilLoadOp; |
| switch (fInitialStencilContent) { |
| case StencilContent::kDontCare: |
| stencilLoadOp = GrLoadOp::kDiscard; |
| break; |
| case StencilContent::kUserBitsCleared: |
| SkASSERT(!caps.performStencilClearsAsDraws()); |
| SkASSERT(stencil); |
| if (caps.discardStencilValuesAfterRenderPass()) { |
| // Always clear the stencil if it is being discarded after render passes. This is |
| // also an optimization because we are on a tiler and it avoids loading the values |
| // from memory. |
| stencilLoadOp = GrLoadOp::kClear; |
| break; |
| } |
| if (!stencil->hasPerformedInitialClear()) { |
| stencilLoadOp = GrLoadOp::kClear; |
| stencil->markHasPerformedInitialClear(); |
| break; |
| } |
| // SurfaceDrawContexts are required to leave the user stencil bits in a cleared state |
| // once finished, meaning the stencil values will always remain cleared after the |
| // initial clear. Just fall through to reloading the existing (cleared) stencil values |
| // from memory. |
| [[fallthrough]]; |
| case StencilContent::kPreserved: |
| SkASSERT(stencil); |
| stencilLoadOp = GrLoadOp::kLoad; |
| break; |
| } |
| |
| // NOTE: If fMustPreserveStencil is set, then we are executing a surfaceDrawContext that split |
| // its opsTask. |
| // |
| // FIXME: We don't currently flag render passes that don't use stencil at all. In that case |
| // their store op might be "discard", and we currently make the assumption that a discard will |
| // not invalidate what's already in main memory. This is probably ok for now, but certainly |
| // something we want to address soon. |
| GrStoreOp stencilStoreOp = (caps.discardStencilValuesAfterRenderPass() && !fMustPreserveStencil) |
| ? GrStoreOp::kDiscard |
| : GrStoreOp::kStore; |
| |
| GrOpsRenderPass* renderPass = create_render_pass(flushState->gpu(), |
| proxy->peekRenderTarget(), |
| fUsesMSAASurface, |
| stencil, |
| fTargetOrigin, |
| fClippedContentBounds, |
| fColorLoadOp, |
| fLoadClearColor, |
| stencilLoadOp, |
| stencilStoreOp, |
| fSampledProxies, |
| fRenderPassXferBarriers); |
| |
| if (!renderPass) { |
| return false; |
| } |
| flushState->setOpsRenderPass(renderPass); |
| renderPass->begin(); |
| |
| GrSurfaceProxyView dstView(sk_ref_sp(this->target(0)), fTargetOrigin, fTargetSwizzle); |
| |
| // Draw all the generated geometry. |
| for (const auto& chain : fOpChains) { |
| if (!chain.shouldExecute()) { |
| continue; |
| } |
| |
| GrOpFlushState::OpArgs opArgs(chain.head(), |
| dstView, |
| fUsesMSAASurface, |
| chain.appliedClip(), |
| chain.dstProxyView(), |
| fRenderPassXferBarriers, |
| fColorLoadOp); |
| |
| flushState->setOpArgs(&opArgs); |
| chain.head()->execute(flushState, chain.bounds()); |
| flushState->setOpArgs(nullptr); |
| } |
| |
| renderPass->end(); |
| flushState->gpu()->submit(renderPass); |
| flushState->setOpsRenderPass(nullptr); |
| |
| return true; |
| } |
| |
| void OpsTask::setColorLoadOp(GrLoadOp op, std::array<float, 4> color) { |
| fColorLoadOp = op; |
| fLoadClearColor = color; |
| if (GrLoadOp::kClear == fColorLoadOp) { |
| GrSurfaceProxy* proxy = this->target(0); |
| SkASSERT(proxy); |
| fTotalBounds = proxy->backingStoreBoundsRect(); |
| } |
| } |
| |
| void OpsTask::reset() { |
| fDeferredProxies.clear(); |
| fSampledProxies.clear(); |
| fClippedContentBounds = SkIRect::MakeEmpty(); |
| fTotalBounds = SkRect::MakeEmpty(); |
| this->deleteOps(); |
| fRenderPassXferBarriers = GrXferBarrierFlags::kNone; |
| } |
| |
| bool OpsTask::canMerge(const OpsTask* opsTask) const { |
| return this->target(0) == opsTask->target(0) && |
| fArenas == opsTask->fArenas && |
| !opsTask->fCannotMergeBackward; |
| } |
| |
| int OpsTask::mergeFrom(SkSpan<const sk_sp<GrRenderTask>> tasks) { |
| int mergedCount = 0; |
| for (const sk_sp<GrRenderTask>& task : tasks) { |
| auto opsTask = task->asOpsTask(); |
| if (!opsTask || !this->canMerge(opsTask)) { |
| break; |
| } |
| SkASSERT(fTargetSwizzle == opsTask->fTargetSwizzle); |
| SkASSERT(fTargetOrigin == opsTask->fTargetOrigin); |
| if (GrLoadOp::kClear == opsTask->fColorLoadOp) { |
| // TODO(11903): Go back to actually dropping ops tasks when we are merged with |
| // color clear. |
| return 0; |
| } |
| mergedCount += 1; |
| } |
| if (0 == mergedCount) { |
| return 0; |
| } |
| |
| SkSpan<const sk_sp<OpsTask>> mergingNodes( |
| reinterpret_cast<const sk_sp<OpsTask>*>(tasks.data()), SkToSizeT(mergedCount)); |
| int addlDeferredProxyCount = 0; |
| int addlProxyCount = 0; |
| int addlOpChainCount = 0; |
| for (const auto& toMerge : mergingNodes) { |
| addlDeferredProxyCount += toMerge->fDeferredProxies.size(); |
| addlProxyCount += toMerge->fSampledProxies.size(); |
| addlOpChainCount += toMerge->fOpChains.size(); |
| fClippedContentBounds.join(toMerge->fClippedContentBounds); |
| fTotalBounds.join(toMerge->fTotalBounds); |
| fRenderPassXferBarriers |= toMerge->fRenderPassXferBarriers; |
| if (fInitialStencilContent == StencilContent::kDontCare) { |
| // Propogate the first stencil content that isn't kDontCare. |
| // |
| // Once the stencil has any kind of initial content that isn't kDontCare, then the |
| // inital contents of subsequent opsTasks that get merged in don't matter. |
| // |
| // (This works because the opsTask all target the same render target and are in |
| // painter's order. kPreserved obviously happens automatically with a merge, and kClear |
| // is also automatic because the contract is for ops to leave the stencil buffer in a |
| // cleared state when finished.) |
| fInitialStencilContent = toMerge->fInitialStencilContent; |
| } |
| fUsesMSAASurface |= toMerge->fUsesMSAASurface; |
| SkDEBUGCODE(fNumClips += toMerge->fNumClips); |
| } |
| |
| fLastClipStackGenID = SK_InvalidUniqueID; |
| fDeferredProxies.reserve_exact(fDeferredProxies.size() + addlDeferredProxyCount); |
| fSampledProxies.reserve_exact(fSampledProxies.size() + addlProxyCount); |
| fOpChains.reserve_exact(fOpChains.size() + addlOpChainCount); |
| for (const auto& toMerge : mergingNodes) { |
| for (GrRenderTask* renderTask : toMerge->dependents()) { |
| renderTask->replaceDependency(toMerge.get(), this); |
| } |
| for (GrRenderTask* renderTask : toMerge->dependencies()) { |
| renderTask->replaceDependent(toMerge.get(), this); |
| } |
| fDeferredProxies.move_back_n(toMerge->fDeferredProxies.size(), |
| toMerge->fDeferredProxies.data()); |
| fSampledProxies.move_back_n(toMerge->fSampledProxies.size(), |
| toMerge->fSampledProxies.data()); |
| fOpChains.move_back_n(toMerge->fOpChains.size(), |
| toMerge->fOpChains.data()); |
| toMerge->fDeferredProxies.clear(); |
| toMerge->fSampledProxies.clear(); |
| toMerge->fOpChains.clear(); |
| } |
| fMustPreserveStencil = mergingNodes.back()->fMustPreserveStencil; |
| return mergedCount; |
| } |
| |
| bool OpsTask::resetForFullscreenClear(CanDiscardPreviousOps canDiscardPreviousOps) { |
| if (CanDiscardPreviousOps::kYes == canDiscardPreviousOps || this->isEmpty()) { |
| this->deleteOps(); |
| fDeferredProxies.clear(); |
| fSampledProxies.clear(); |
| |
| // If the opsTask is using a render target which wraps a vulkan command buffer, we can't do |
| // a clear load since we cannot change the render pass that we are using. Thus we fall back |
| // to making a clear op in this case. |
| return !this->target(0)->asRenderTargetProxy()->wrapsVkSecondaryCB(); |
| } |
| |
| // Could not empty the task, so an op must be added to handle the clear |
| return false; |
| } |
| |
| void OpsTask::discard() { |
| // Discard calls to in-progress opsTasks are ignored. Calls at the start update the |
| // opsTasks' color & stencil load ops. |
| if (this->isEmpty()) { |
| fColorLoadOp = GrLoadOp::kDiscard; |
| fInitialStencilContent = StencilContent::kDontCare; |
| fTotalBounds.setEmpty(); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #if defined(GR_TEST_UTILS) |
| void OpsTask::dump(const SkString& label, |
| SkString indent, |
| bool printDependencies, |
| bool close) const { |
| GrRenderTask::dump(label, indent, printDependencies, false); |
| |
| SkDebugf("%sfColorLoadOp: ", indent.c_str()); |
| switch (fColorLoadOp) { |
| case GrLoadOp::kLoad: |
| SkDebugf("kLoad\n"); |
| break; |
| case GrLoadOp::kClear: |
| SkDebugf("kClear {%g, %g, %g, %g}\n", |
| fLoadClearColor[0], |
| fLoadClearColor[1], |
| fLoadClearColor[2], |
| fLoadClearColor[3]); |
| break; |
| case GrLoadOp::kDiscard: |
| SkDebugf("kDiscard\n"); |
| break; |
| } |
| |
| SkDebugf("%sfInitialStencilContent: ", indent.c_str()); |
| switch (fInitialStencilContent) { |
| case StencilContent::kDontCare: |
| SkDebugf("kDontCare\n"); |
| break; |
| case StencilContent::kUserBitsCleared: |
| SkDebugf("kUserBitsCleared\n"); |
| break; |
| case StencilContent::kPreserved: |
| SkDebugf("kPreserved\n"); |
| break; |
| } |
| |
| SkDebugf("%s%d ops:\n", indent.c_str(), fOpChains.size()); |
| for (int i = 0; i < fOpChains.size(); ++i) { |
| SkDebugf("%s*******************************\n", indent.c_str()); |
| if (!fOpChains[i].head()) { |
| SkDebugf("%s%d: <combined forward or failed instantiation>\n", indent.c_str(), i); |
| } else { |
| SkDebugf("%s%d: %s\n", indent.c_str(), i, fOpChains[i].head()->name()); |
| SkRect bounds = fOpChains[i].bounds(); |
| SkDebugf("%sClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", |
| indent.c_str(), |
| bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom); |
| for (const auto& op : GrOp::ChainRange<>(fOpChains[i].head())) { |
| SkString info = SkTabString(op.dumpInfo(), 1); |
| SkDebugf("%s%s\n", indent.c_str(), info.c_str()); |
| bounds = op.bounds(); |
| SkDebugf("%s\tClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", |
| indent.c_str(), |
| bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom); |
| } |
| } |
| } |
| |
| if (close) { |
| SkDebugf("%s--------------------------------------------------------------\n\n", |
| indent.c_str()); |
| } |
| } |
| #endif |
| |
| #ifdef SK_DEBUG |
| void OpsTask::visitProxies_debugOnly(const GrVisitProxyFunc& func) const { |
| auto textureFunc = [func](GrSurfaceProxy* tex, skgpu::Mipmapped mipmapped) { |
| func(tex, mipmapped); |
| }; |
| |
| for (const OpChain& chain : fOpChains) { |
| chain.visitProxies(textureFunc); |
| } |
| } |
| |
| #endif |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void OpsTask::onMakeSkippable() { |
| this->deleteOps(); |
| fDeferredProxies.clear(); |
| fColorLoadOp = GrLoadOp::kLoad; |
| SkASSERT(this->isColorNoOp()); |
| } |
| |
| bool OpsTask::onIsUsed(GrSurfaceProxy* proxyToCheck) const { |
| bool used = false; |
| for (GrSurfaceProxy* proxy : fSampledProxies) { |
| if (proxy == proxyToCheck) { |
| used = true; |
| break; |
| } |
| } |
| #ifdef SK_DEBUG |
| bool usedSlow = false; |
| auto visit = [proxyToCheck, &usedSlow](GrSurfaceProxy* p, skgpu::Mipmapped) { |
| if (p == proxyToCheck) { |
| usedSlow = true; |
| } |
| }; |
| this->visitProxies_debugOnly(visit); |
| SkASSERT(used == usedSlow); |
| #endif |
| |
| return used; |
| } |
| |
| void OpsTask::gatherProxyIntervals(GrResourceAllocator* alloc) const { |
| SkASSERT(this->isClosed()); |
| if (this->isColorNoOp()) { |
| return; |
| } |
| |
| for (int i = 0; i < fDeferredProxies.size(); ++i) { |
| SkASSERT(!fDeferredProxies[i]->isInstantiated()); |
| // We give all the deferred proxies a write usage at the very start of flushing. This |
| // locks them out of being reused for the entire flush until they are read - and then |
| // they can be recycled. This is a bit unfortunate because a flush can proceed in waves |
| // with sub-flushes. The deferred proxies only need to be pinned from the start of |
| // the sub-flush in which they appear. |
| alloc->addInterval(fDeferredProxies[i], 0, 0, GrResourceAllocator::ActualUse::kNo, |
| GrResourceAllocator::AllowRecycling::kYes); |
| } |
| |
| GrSurfaceProxy* targetSurface = this->target(0); |
| SkASSERT(targetSurface); |
| GrRenderTargetProxy* targetProxy = targetSurface->asRenderTargetProxy(); |
| |
| // Add the interval for all the writes to this OpsTasks's target |
| if (!fOpChains.empty()) { |
| unsigned int cur = alloc->curOp(); |
| |
| alloc->addInterval(targetProxy, cur, cur + fOpChains.size() - 1, |
| GrResourceAllocator::ActualUse::kYes, |
| GrResourceAllocator::AllowRecycling::kYes); |
| } else { |
| // This can happen if there is a loadOp (e.g., a clear) but no other draws. In this case we |
| // still need to add an interval for the destination so we create a fake op# for |
| // the missing clear op. |
| alloc->addInterval(targetProxy, alloc->curOp(), alloc->curOp(), |
| GrResourceAllocator::ActualUse::kYes, |
| GrResourceAllocator::AllowRecycling::kYes); |
| alloc->incOps(); |
| } |
| |
| GrResourceAllocator::AllowRecycling allowRecycling = |
| targetProxy->wrapsVkSecondaryCB() ? GrResourceAllocator::AllowRecycling::kNo |
| : GrResourceAllocator::AllowRecycling::kYes; |
| |
| auto gather = [alloc, allowRecycling SkDEBUGCODE(, this)](GrSurfaceProxy* p, skgpu::Mipmapped) { |
| alloc->addInterval(p, |
| alloc->curOp(), |
| alloc->curOp(), |
| GrResourceAllocator::ActualUse::kYes, |
| allowRecycling |
| SkDEBUGCODE(, this->target(0) == p)); |
| }; |
| // TODO: visitProxies is expensive. Can we do this with fSampledProxies instead? |
| for (const OpChain& recordedOp : fOpChains) { |
| recordedOp.visitProxies(gather); |
| |
| // Even though the op may have been (re)moved we still need to increment the op count to |
| // keep all the math consistent. |
| alloc->incOps(); |
| } |
| } |
| |
| void OpsTask::recordOp( |
| GrOp::Owner op, bool usesMSAA, GrProcessorSet::Analysis processorAnalysis, |
| GrAppliedClip* clip, const GrDstProxyView* dstProxyView, const GrCaps& caps) { |
| GrSurfaceProxy* proxy = this->target(0); |
| #ifdef SK_DEBUG |
| op->validate(); |
| SkASSERT(processorAnalysis.requiresDstTexture() == (dstProxyView && dstProxyView->proxy())); |
| SkASSERT(proxy); |
| // A closed OpsTask should never receive new/more ops |
| SkASSERT(!this->isClosed()); |
| // Ensure we can support dynamic msaa if the caller is trying to trigger it. |
| if (proxy->asRenderTargetProxy()->numSamples() == 1 && usesMSAA) { |
| SkASSERT(caps.supportsDynamicMSAA(proxy->asRenderTargetProxy())); |
| } |
| #endif |
| |
| if (!op->bounds().isFinite()) { |
| return; |
| } |
| |
| fUsesMSAASurface |= usesMSAA; |
| |
| // Account for this op's bounds before we attempt to combine. |
| // NOTE: The caller should have already called "op->setClippedBounds()" by now, if applicable. |
| fTotalBounds.join(op->bounds()); |
| |
| // Check if there is an op we can combine with by linearly searching back until we either |
| // 1) check every op |
| // 2) intersect with something |
| // 3) find a 'blocker' |
| GR_AUDIT_TRAIL_ADD_OP(fAuditTrail, op.get(), proxy->uniqueID()); |
| GrOP_INFO("opsTask: %d Recording (%s, opID: %u)\n" |
| "\tBounds [L: %.2f, T: %.2f R: %.2f B: %.2f]\n", |
| this->uniqueID(), |
| op->name(), |
| op->uniqueID(), |
| op->bounds().fLeft, op->bounds().fTop, |
| op->bounds().fRight, op->bounds().fBottom); |
| GrOP_INFO(SkTabString(op->dumpInfo(), 1).c_str()); |
| GrOP_INFO("\tOutcome:\n"); |
| int maxCandidates = std::min(kMaxOpChainDistance, fOpChains.size()); |
| if (maxCandidates) { |
| int i = 0; |
| while (true) { |
| OpChain& candidate = fOpChains.fromBack(i); |
| op = candidate.appendOp(std::move(op), processorAnalysis, dstProxyView, clip, caps, |
| fArenas->arenaAlloc(), fAuditTrail); |
| if (!op) { |
| return; |
| } |
| // Stop going backwards if we would cause a painter's order violation. |
| if (!can_reorder(candidate.bounds(), op->bounds())) { |
| GrOP_INFO("\t\tBackward: Intersects with chain (%s, head opID: %u)\n", |
| candidate.head()->name(), candidate.head()->uniqueID()); |
| break; |
| } |
| if (++i == maxCandidates) { |
| GrOP_INFO("\t\tBackward: Reached max lookback or beginning of op array %d\n", i); |
| break; |
| } |
| } |
| } else { |
| GrOP_INFO("\t\tBackward: FirstOp\n"); |
| } |
| if (clip) { |
| clip = fArenas->arenaAlloc()->make<GrAppliedClip>(std::move(*clip)); |
| SkDEBUGCODE(fNumClips++;) |
| } |
| fOpChains.emplace_back(std::move(op), processorAnalysis, clip, dstProxyView); |
| } |
| |
| void OpsTask::forwardCombine(const GrCaps& caps) { |
| SkASSERT(!this->isClosed()); |
| GrOP_INFO("opsTask: %d ForwardCombine %d ops:\n", this->uniqueID(), fOpChains.size()); |
| |
| for (int i = 0; i < fOpChains.size() - 1; ++i) { |
| OpChain& chain = fOpChains[i]; |
| int maxCandidateIdx = std::min(i + kMaxOpChainDistance, fOpChains.size() - 1); |
| int j = i + 1; |
| while (true) { |
| OpChain& candidate = fOpChains[j]; |
| if (candidate.prependChain(&chain, caps, fArenas->arenaAlloc(), fAuditTrail)) { |
| break; |
| } |
| // Stop traversing if we would cause a painter's order violation. |
| if (!can_reorder(chain.bounds(), candidate.bounds())) { |
| GrOP_INFO( |
| "\t\t%d: chain (%s head opID: %u) -> " |
| "Intersects with chain (%s, head opID: %u)\n", |
| i, chain.head()->name(), chain.head()->uniqueID(), candidate.head()->name(), |
| candidate.head()->uniqueID()); |
| break; |
| } |
| if (++j > maxCandidateIdx) { |
| GrOP_INFO("\t\t%d: chain (%s opID: %u) -> Reached max lookahead or end of array\n", |
| i, chain.head()->name(), chain.head()->uniqueID()); |
| break; |
| } |
| } |
| } |
| } |
| |
| GrRenderTask::ExpectedOutcome OpsTask::onMakeClosed(GrRecordingContext* rContext, |
| SkIRect* targetUpdateBounds) { |
| this->forwardCombine(*rContext->priv().caps()); |
| if (!this->isColorNoOp()) { |
| GrSurfaceProxy* proxy = this->target(0); |
| // Use the entire backing store bounds since the GPU doesn't clip automatically to the |
| // logical dimensions. |
| SkRect clippedContentBounds = proxy->backingStoreBoundsRect(); |
| // TODO: If we can fix up GLPrograms test to always intersect the target proxy bounds |
| // then we can simply assert here that the bounds intersect. |
| if (clippedContentBounds.intersect(fTotalBounds)) { |
| clippedContentBounds.roundOut(&fClippedContentBounds); |
| *targetUpdateBounds = GrNativeRect::MakeIRectRelativeTo( |
| fTargetOrigin, |
| this->target(0)->backingStoreDimensions().height(), |
| fClippedContentBounds); |
| return ExpectedOutcome::kTargetDirty; |
| } |
| } |
| return ExpectedOutcome::kTargetUnchanged; |
| } |
| |
| } // namespace skgpu::ganesh |