| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/effects/GrTextureEffect.h" |
| |
| #include "include/core/SkSize.h" |
| #include "include/core/SkString.h" |
| #include "include/gpu/GpuTypes.h" |
| #include "include/gpu/GrTypes.h" |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| #include "include/private/base/SkMath.h" |
| #include "include/private/gpu/ganesh/GrTypesPriv.h" |
| #include "src/base/SkRandom.h" |
| #include "src/core/SkSLTypeShared.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ganesh/GrSurfaceProxy.h" |
| #include "src/gpu/ganesh/GrTestUtils.h" |
| #include "src/gpu/ganesh/GrTexture.h" |
| #include "src/gpu/ganesh/effects/GrMatrixEffect.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <utility> |
| |
| enum SkAlphaType : int; |
| struct GrShaderCaps; |
| |
| using Wrap = GrSamplerState::WrapMode; |
| using Filter = GrSamplerState::Filter; |
| using MipmapMode = GrSamplerState::MipmapMode; |
| |
| struct GrTextureEffect::Sampling { |
| GrSamplerState fHWSampler; |
| ShaderMode fShaderModes[2] = {ShaderMode::kNone, ShaderMode::kNone}; |
| SkRect fShaderSubset = {0, 0, 0, 0}; |
| SkRect fShaderClamp = {0, 0, 0, 0}; |
| float fBorder[4] = {0, 0, 0, 0}; |
| Sampling(Filter filter, MipmapMode mm) : fHWSampler(filter, mm) {} |
| Sampling(const GrSurfaceProxy& proxy, |
| GrSamplerState wrap, |
| const SkRect&, |
| const SkRect*, |
| const float border[4], |
| bool alwaysUseShaderTileMode, |
| const GrCaps&, |
| SkVector linearFilterInset = {0.5f, 0.5f}); |
| inline bool hasBorderAlpha() const; |
| }; |
| |
| GrTextureEffect::Sampling::Sampling(const GrSurfaceProxy& proxy, |
| GrSamplerState sampler, |
| const SkRect& subset, |
| const SkRect* domain, |
| const float border[4], |
| bool alwaysUseShaderTileMode, |
| const GrCaps& caps, |
| SkVector linearFilterInset) { |
| struct Span { |
| float fA = 0.f, fB = 0.f; |
| |
| Span makeInset(float o) const { |
| Span r = {fA + o, fB - o}; |
| if (r.fA > r.fB) { |
| r.fA = r.fB = (r.fA + r.fB) / 2; |
| } |
| return r; |
| } |
| |
| bool contains(Span r) const { return fA <= r.fA && fB >= r.fB; } |
| }; |
| struct Result1D { |
| ShaderMode fShaderMode = ShaderMode::kNone; |
| Span fShaderSubset = {}; |
| Span fShaderClamp = {}; |
| Wrap fHWWrap = Wrap::kClamp; |
| }; |
| |
| auto type = proxy.asTextureProxy()->textureType(); |
| auto filter = sampler.filter(); |
| auto mm = sampler.mipmapMode(); |
| |
| auto canDoWrapInHW = [&](int size, Wrap wrap) { |
| if (alwaysUseShaderTileMode) { |
| return false; |
| } |
| // TODO: Use HW border color when available. |
| if (wrap == Wrap::kClampToBorder && |
| (!caps.clampToBorderSupport() || border[0] || border[1] || border[2] || border[3])) { |
| return false; |
| } |
| if (wrap != Wrap::kClamp && !caps.npotTextureTileSupport() && !SkIsPow2(size)) { |
| return false; |
| } |
| if (type != GrTextureType::k2D && |
| !(wrap == Wrap::kClamp || wrap == Wrap::kClampToBorder)) { |
| return false; |
| } |
| return true; |
| }; |
| |
| SkISize dim = proxy.isFullyLazy() ? SkISize{-1, -1} : proxy.backingStoreDimensions(); |
| |
| // TODO: Right now if we use shader based subsetting for any reason we just completely drop |
| // aniso. Longer term allow shader subsetting, reusing the special repeat mode LOD selection |
| // logic for mip maps, and simply don't attempt to restrict ansiso's computed samples to the |
| // subset. That is use "subsetting" but not "clamping"/insetting in terms of the shader gen |
| // logic. |
| bool aniso = sampler.isAniso(); |
| SkASSERT(!aniso || caps.anisoSupport()); |
| if (aniso) { |
| bool anisoSubset = !subset.contains(proxy.backingStoreBoundsRect()) && |
| (!domain || !subset.contains(*domain)); |
| bool needsShaderWrap = !canDoWrapInHW(dim.width(), sampler.wrapModeX()) || |
| !canDoWrapInHW(dim.height(), sampler.wrapModeY()); |
| if (needsShaderWrap || anisoSubset) { |
| MipmapMode newMM = proxy.asTextureProxy()->mipmapped() == skgpu::Mipmapped::kYes |
| ? MipmapMode::kLinear |
| : MipmapMode::kNone; |
| sampler = GrSamplerState(sampler.wrapModeX(), |
| sampler.wrapModeY(), |
| SkFilterMode::kLinear, |
| newMM); |
| aniso = false; |
| } |
| } |
| |
| auto resolve = [&](int size, Wrap wrap, Span subset, Span domain, float linearFilterInset) { |
| Result1D r; |
| bool canDoModeInHW = canDoWrapInHW(size, wrap); |
| if (canDoModeInHW && size > 0 && subset.fA <= 0 && subset.fB >= size) { |
| r.fShaderMode = ShaderMode::kNone; |
| r.fHWWrap = wrap; |
| r.fShaderSubset = r.fShaderClamp = {0, 0}; |
| return r; |
| } |
| |
| r.fShaderSubset = subset; |
| bool domainIsSafe = false; |
| if (filter == Filter::kNearest) { |
| Span isubset{std::floor(subset.fA), std::ceil(subset.fB)}; |
| if (domain.fA > isubset.fA && domain.fB < isubset.fB) { |
| domainIsSafe = true; |
| } |
| // This inset prevents sampling neighboring texels that could occur when |
| // texture coords fall exactly at texel boundaries (depending on precision |
| // and GPU-specific snapping at the boundary). |
| r.fShaderClamp = isubset.makeInset(0.5f + kInsetEpsilon); |
| } else { |
| r.fShaderClamp = subset.makeInset(linearFilterInset + kInsetEpsilon); |
| if (r.fShaderClamp.contains(domain)) { |
| domainIsSafe = true; |
| } |
| } |
| if (!alwaysUseShaderTileMode && domainIsSafe) { |
| // The domain of coords that will be used won't access texels outside of the subset. |
| // So the wrap mode effectively doesn't matter. We use kClamp since it is always |
| // supported. |
| r.fShaderMode = ShaderMode::kNone; |
| r.fHWWrap = Wrap::kClamp; |
| r.fShaderSubset = r.fShaderClamp = {0, 0}; |
| return r; |
| } |
| r.fShaderMode = GetShaderMode(wrap, filter, mm); |
| r.fHWWrap = Wrap::kClamp; |
| return r; |
| }; |
| |
| Result1D x, y; |
| if (!aniso) { |
| Span subsetX{subset.fLeft, subset.fRight}; |
| auto domainX = domain ? Span{domain->fLeft, domain->fRight} |
| : Span{SK_FloatNegativeInfinity, SK_FloatInfinity}; |
| x = resolve(dim.width(), sampler.wrapModeX(), subsetX, domainX, linearFilterInset.fX); |
| |
| Span subsetY{subset.fTop, subset.fBottom}; |
| auto domainY = domain ? Span{domain->fTop, domain->fBottom} |
| : Span{SK_FloatNegativeInfinity, SK_FloatInfinity}; |
| y = resolve(dim.height(), sampler.wrapModeY(), subsetY, domainY, linearFilterInset.fY); |
| } else { |
| x.fHWWrap = sampler.wrapModeX(); |
| y.fHWWrap = sampler.wrapModeY(); |
| } |
| |
| fHWSampler = aniso ? GrSamplerState::Aniso(x.fHWWrap, |
| y.fHWWrap, |
| sampler.maxAniso(), |
| proxy.asTextureProxy()->mipmapped()) |
| : GrSamplerState{x.fHWWrap, y.fHWWrap, filter, mm}; |
| fShaderModes[0] = x.fShaderMode; |
| fShaderModes[1] = y.fShaderMode; |
| fShaderSubset = {x.fShaderSubset.fA, y.fShaderSubset.fA, |
| x.fShaderSubset.fB, y.fShaderSubset.fB}; |
| fShaderClamp = {x.fShaderClamp.fA, y.fShaderClamp.fA, |
| x.fShaderClamp.fB, y.fShaderClamp.fB}; |
| std::copy_n(border, 4, fBorder); |
| } |
| |
| bool GrTextureEffect::Sampling::hasBorderAlpha() const { |
| if (fHWSampler.wrapModeX() == Wrap::kClampToBorder || |
| fHWSampler.wrapModeY() == Wrap::kClampToBorder) { |
| return true; |
| } |
| if (ShaderModeIsClampToBorder(fShaderModes[0]) || ShaderModeIsClampToBorder(fShaderModes[1])) { |
| return fBorder[3] < 1.f; |
| } |
| return false; |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::Make(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| Filter filter, |
| MipmapMode mm) { |
| Sampling sampling = Sampling(filter, mm); |
| std::unique_ptr<GrFragmentProcessor> te(new GrTextureEffect(std::move(view), |
| alphaType, |
| sampling)); |
| return GrMatrixEffect::Make(matrix, std::move(te)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::Make(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| GrSamplerState sampler, |
| const GrCaps& caps, |
| const float border[4]) { |
| Sampling sampling(*view.proxy(), |
| sampler, |
| SkRect::Make(view.proxy()->dimensions()), |
| nullptr, |
| border, |
| false, |
| caps); |
| std::unique_ptr<GrFragmentProcessor> te(new GrTextureEffect(std::move(view), |
| alphaType, |
| sampling)); |
| return GrMatrixEffect::Make(matrix, std::move(te)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::MakeSubset(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| GrSamplerState sampler, |
| const SkRect& subset, |
| const GrCaps& caps, |
| const float border[4], |
| bool alwaysUseShaderTileMode) { |
| Sampling sampling(*view.proxy(), |
| sampler, |
| subset, |
| nullptr, |
| border, |
| alwaysUseShaderTileMode, |
| caps); |
| std::unique_ptr<GrFragmentProcessor> te(new GrTextureEffect(std::move(view), |
| alphaType, |
| sampling)); |
| return GrMatrixEffect::Make(matrix, std::move(te)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::MakeSubset(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| GrSamplerState sampler, |
| const SkRect& subset, |
| const SkRect& domain, |
| const GrCaps& caps, |
| const float border[4]) { |
| Sampling sampling(*view.proxy(), sampler, subset, &domain, border, false, caps); |
| std::unique_ptr<GrFragmentProcessor> te(new GrTextureEffect(std::move(view), |
| alphaType, |
| sampling)); |
| return GrMatrixEffect::Make(matrix, std::move(te)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::MakeCustomLinearFilterInset( |
| GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| Wrap wx, |
| Wrap wy, |
| const SkRect& subset, |
| const SkRect* domain, |
| SkVector inset, |
| const GrCaps& caps, |
| const float border[4]) { |
| GrSamplerState sampler(wx, wy, Filter::kLinear); |
| Sampling sampling(*view.proxy(), sampler, subset, domain, border, false, caps, inset); |
| std::unique_ptr<GrFragmentProcessor> te(new GrTextureEffect(std::move(view), |
| alphaType, |
| sampling)); |
| return GrMatrixEffect::Make(matrix, std::move(te)); |
| } |
| |
| SkMatrix GrTextureEffect::coordAdjustmentMatrix() const { |
| SkMatrix m; |
| GrTexture* texture = this->texture(); |
| SkISize d = texture->dimensions(); |
| if (this->matrixEffectShouldNormalize()) { |
| if (fView.origin() == kBottomLeft_GrSurfaceOrigin) { |
| m.setScaleTranslate(1.f / d.width(), -1.f / d.height(), 0, 1); |
| } else { |
| m.setScale(1.f / d.width(), 1.f / d.height()); |
| } |
| } else { |
| if (fView.origin() == kBottomLeft_GrSurfaceOrigin) { |
| m.setScaleTranslate(1.f, -1.f, 0, d.height()); |
| } |
| } |
| return m; |
| } |
| |
| GrTextureEffect::ShaderMode GrTextureEffect::GetShaderMode(Wrap wrap, |
| Filter filter, |
| MipmapMode mm) { |
| switch (wrap) { |
| case Wrap::kMirrorRepeat: |
| return ShaderMode::kMirrorRepeat; |
| case Wrap::kClamp: |
| return ShaderMode::kClamp; |
| case Wrap::kRepeat: |
| switch (mm) { |
| case MipmapMode::kNone: |
| switch (filter) { |
| case Filter::kNearest: return ShaderMode::kRepeat_Nearest_None; |
| case Filter::kLinear: return ShaderMode::kRepeat_Linear_None; |
| } |
| SkUNREACHABLE; |
| case MipmapMode::kNearest: |
| case MipmapMode::kLinear: |
| switch (filter) { |
| case Filter::kNearest: return ShaderMode::kRepeat_Nearest_Mipmap; |
| case Filter::kLinear: return ShaderMode::kRepeat_Linear_Mipmap; |
| } |
| SkUNREACHABLE; |
| } |
| SkUNREACHABLE; |
| case Wrap::kClampToBorder: |
| return filter == Filter::kNearest ? ShaderMode::kClampToBorder_Nearest |
| : ShaderMode::kClampToBorder_Filter; |
| } |
| SkUNREACHABLE; |
| } |
| |
| inline bool GrTextureEffect::ShaderModeIsClampToBorder(ShaderMode m) { |
| return m == ShaderMode::kClampToBorder_Nearest || m == ShaderMode::kClampToBorder_Filter; |
| } |
| |
| bool GrTextureEffect::ShaderModeRequiresUnormCoord(ShaderMode m) { |
| switch (m) { |
| case ShaderMode::kNone: return false; |
| case ShaderMode::kClamp: return false; |
| case ShaderMode::kRepeat_Nearest_None: return false; |
| case ShaderMode::kRepeat_Linear_None: return true; |
| case ShaderMode::kRepeat_Nearest_Mipmap: return true; |
| case ShaderMode::kRepeat_Linear_Mipmap: return true; |
| case ShaderMode::kMirrorRepeat: return false; |
| case ShaderMode::kClampToBorder_Nearest: return true; |
| case ShaderMode::kClampToBorder_Filter: return true; |
| } |
| SkUNREACHABLE; |
| } |
| |
| void GrTextureEffect::Impl::emitCode(EmitArgs& args) { |
| using ShaderMode = GrTextureEffect::ShaderMode; |
| |
| auto& te = args.fFp.cast<GrTextureEffect>(); |
| auto* fb = args.fFragBuilder; |
| |
| if (te.fShaderModes[0] == ShaderMode::kNone && |
| te.fShaderModes[1] == ShaderMode::kNone) { |
| fb->codeAppendf("return "); |
| fb->appendTextureLookup(fSamplerHandle, args.fSampleCoord); |
| fb->codeAppendf(";"); |
| } else { |
| // Here is the basic flow of the various ShaderModes are implemented in a series of |
| // steps. Not all the steps apply to all the modes. We try to emit only the steps |
| // that are necessary for the given x/y shader modes. |
| // |
| // 0) Start with interpolated coordinates (unnormalize if doing anything |
| // complicated). |
| // 1) Map the coordinates into the subset range [Repeat and MirrorRepeat], or pass |
| // through output of 0). |
| // 2) Clamp the coordinates to a 0.5 inset of the subset rect [Clamp, Repeat, and |
| // MirrorRepeat always or ClampToBorder only when filtering] or pass through |
| // output of 1). The clamp rect collapses to a line or point it if the subset |
| // rect is less than one pixel wide/tall. |
| // 3) Look up texture with output of 2) [All] |
| // 3) Use the difference between 1) and 2) to apply filtering at edge [Repeat or |
| // ClampToBorder]. In the Repeat case this requires extra texture lookups on the |
| // other side of the subset (up to 3 more reads). Or if ClampToBorder and not |
| // filtering do a hard less than/greater than test with the subset rect. |
| |
| // Convert possible projective texture coordinates into non-homogeneous half2. |
| fb->codeAppendf("float2 inCoord = %s;", args.fSampleCoord); |
| |
| const auto& m = te.fShaderModes; |
| |
| const char* borderName = nullptr; |
| if (te.hasClampToBorderShaderMode()) { |
| fBorderUni = args.fUniformHandler->addUniform( |
| &te, kFragment_GrShaderFlag, SkSLType::kHalf4, "border", &borderName); |
| } |
| auto modeUsesSubset = [](ShaderMode m) { |
| switch (m) { |
| case ShaderMode::kNone: return false; |
| case ShaderMode::kClamp: return false; |
| case ShaderMode::kRepeat_Nearest_None: return true; |
| case ShaderMode::kRepeat_Linear_None: return true; |
| case ShaderMode::kRepeat_Nearest_Mipmap: return true; |
| case ShaderMode::kRepeat_Linear_Mipmap: return true; |
| case ShaderMode::kMirrorRepeat: return true; |
| case ShaderMode::kClampToBorder_Nearest: return true; |
| case ShaderMode::kClampToBorder_Filter: return true; |
| } |
| SkUNREACHABLE; |
| }; |
| |
| auto modeUsesClamp = [](ShaderMode m) { |
| switch (m) { |
| case ShaderMode::kNone: return false; |
| case ShaderMode::kClamp: return true; |
| case ShaderMode::kRepeat_Nearest_None: return true; |
| case ShaderMode::kRepeat_Linear_None: return true; |
| case ShaderMode::kRepeat_Nearest_Mipmap: return true; |
| case ShaderMode::kRepeat_Linear_Mipmap: return true; |
| case ShaderMode::kMirrorRepeat: return true; |
| case ShaderMode::kClampToBorder_Nearest: return false; |
| case ShaderMode::kClampToBorder_Filter: return true; |
| } |
| SkUNREACHABLE; |
| }; |
| |
| bool useSubset[2] = {modeUsesSubset(m[0]), modeUsesSubset(m[1])}; |
| bool useClamp [2] = {modeUsesClamp (m[0]), modeUsesClamp (m[1])}; |
| |
| const char* subsetName = nullptr; |
| if (useSubset[0] || useSubset[1]) { |
| fSubsetUni = args.fUniformHandler->addUniform( |
| &te, kFragment_GrShaderFlag, SkSLType::kFloat4, "subset", &subsetName); |
| } |
| |
| const char* clampName = nullptr; |
| if (useClamp[0] || useClamp[1]) { |
| fClampUni = args.fUniformHandler->addUniform( |
| &te, kFragment_GrShaderFlag, SkSLType::kFloat4, "clamp", &clampName); |
| } |
| |
| bool unormCoordsRequiredForShaderMode = ShaderModeRequiresUnormCoord(m[0]) || |
| ShaderModeRequiresUnormCoord(m[1]); |
| // We should not pre-normalize the input coords with GrMatrixEffect if we're going to |
| // operate on unnormalized coords and then normalize after the shader mode. |
| SkASSERT(!(unormCoordsRequiredForShaderMode && te.matrixEffectShouldNormalize())); |
| bool sampleCoordsMustBeNormalized = |
| te.fView.asTextureProxy()->textureType() != GrTextureType::kRectangle; |
| |
| const char* idims = nullptr; |
| if (unormCoordsRequiredForShaderMode && sampleCoordsMustBeNormalized) { |
| // TODO: Detect support for textureSize() or polyfill textureSize() in SkSL and |
| // always use? |
| fIDimsUni = args.fUniformHandler->addUniform(&te, kFragment_GrShaderFlag, |
| SkSLType::kFloat2, "idims", &idims); |
| } |
| |
| // Generates a string to read at a coordinate, normalizing coords if necessary. |
| auto read = [&](const char* coord) { |
| SkString result; |
| SkString normCoord; |
| if (idims) { |
| normCoord.printf("(%s) * %s", coord, idims); |
| } else { |
| normCoord = coord; |
| } |
| fb->appendTextureLookup(&result, fSamplerHandle, normCoord.c_str()); |
| return result; |
| }; |
| |
| // Implements coord wrapping for kRepeat and kMirrorRepeat |
| auto subsetCoord = [&](ShaderMode mode, |
| const char* coordSwizzle, |
| const char* subsetStartSwizzle, |
| const char* subsetStopSwizzle, |
| const char* extraCoord, |
| const char* coordWeight) { |
| switch (mode) { |
| // These modes either don't use the subset rect or don't need to map the |
| // coords to be within the subset. |
| case ShaderMode::kNone: |
| case ShaderMode::kClampToBorder_Nearest: |
| case ShaderMode::kClampToBorder_Filter: |
| case ShaderMode::kClamp: |
| fb->codeAppendf("subsetCoord.%s = inCoord.%s;", coordSwizzle, coordSwizzle); |
| break; |
| case ShaderMode::kRepeat_Nearest_None: |
| case ShaderMode::kRepeat_Linear_None: |
| fb->codeAppendf( |
| "subsetCoord.%s = mod(inCoord.%s - %s.%s, %s.%s - %s.%s) + %s.%s;", |
| coordSwizzle, coordSwizzle, subsetName, subsetStartSwizzle, subsetName, |
| subsetStopSwizzle, subsetName, subsetStartSwizzle, subsetName, |
| subsetStartSwizzle); |
| break; |
| case ShaderMode::kRepeat_Nearest_Mipmap: |
| case ShaderMode::kRepeat_Linear_Mipmap: |
| // The approach here is to generate two sets of texture coords that |
| // are both "moving" at the same speed (if not direction) as |
| // inCoords. We accomplish that by using two out of phase mirror |
| // repeat coords. We will always sample using both coords but the |
| // read from the upward sloping one is selected using a weight |
| // that transitions from one set to the other near the reflection |
| // point. Like the coords, the weight is a saw-tooth function, |
| // phase-shifted, vertically translated, and then clamped to 0..1. |
| // TODO: Skip this and use textureGrad() when available. |
| SkASSERT(extraCoord); |
| SkASSERT(coordWeight); |
| fb->codeAppend("{"); |
| fb->codeAppendf("float w = %s.%s - %s.%s;", subsetName, subsetStopSwizzle, |
| subsetName, subsetStartSwizzle); |
| fb->codeAppendf("float w2 = 2 * w;"); |
| fb->codeAppendf("float d = inCoord.%s - %s.%s;", coordSwizzle, subsetName, |
| subsetStartSwizzle); |
| fb->codeAppend("float m = mod(d, w2);"); |
| fb->codeAppend("float o = mix(m, w2 - m, step(w, m));"); |
| fb->codeAppendf("subsetCoord.%s = o + %s.%s;", coordSwizzle, subsetName, |
| subsetStartSwizzle); |
| fb->codeAppendf("%s = w - o + %s.%s;", extraCoord, subsetName, |
| subsetStartSwizzle); |
| // coordWeight is used as the third param of mix() to blend between a |
| // sample taken using subsetCoord and a sample at extraCoord. |
| fb->codeAppend("float hw = w/2;"); |
| fb->codeAppend("float n = mod(d - hw, w2);"); |
| fb->codeAppendf("%s = saturate(half(mix(n, w2 - n, step(w, n)) - hw + 0.5));", |
| coordWeight); |
| fb->codeAppend("}"); |
| break; |
| case ShaderMode::kMirrorRepeat: |
| fb->codeAppend("{"); |
| fb->codeAppendf("float w = %s.%s - %s.%s;", subsetName, subsetStopSwizzle, |
| subsetName, subsetStartSwizzle); |
| fb->codeAppendf("float w2 = 2 * w;"); |
| fb->codeAppendf("float m = mod(inCoord.%s - %s.%s, w2);", coordSwizzle, |
| subsetName, subsetStartSwizzle); |
| fb->codeAppendf("subsetCoord.%s = mix(m, w2 - m, step(w, m)) + %s.%s;", |
| coordSwizzle, subsetName, subsetStartSwizzle); |
| fb->codeAppend("}"); |
| break; |
| } |
| }; |
| |
| auto clampCoord = [&](bool clamp, |
| const char* coordSwizzle, |
| const char* clampStartSwizzle, |
| const char* clampStopSwizzle) { |
| if (clamp) { |
| fb->codeAppendf("clampedCoord%s = clamp(subsetCoord%s, %s%s, %s%s);", |
| coordSwizzle, coordSwizzle, |
| clampName, clampStartSwizzle, |
| clampName, clampStopSwizzle); |
| } else { |
| fb->codeAppendf("clampedCoord%s = subsetCoord%s;", coordSwizzle, coordSwizzle); |
| } |
| }; |
| |
| // Insert vars for extra coords and blending weights for repeat + mip map. |
| const char* extraRepeatCoordX = nullptr; |
| const char* repeatCoordWeightX = nullptr; |
| const char* extraRepeatCoordY = nullptr; |
| const char* repeatCoordWeightY = nullptr; |
| |
| bool mipmapRepeatX = m[0] == ShaderMode::kRepeat_Nearest_Mipmap || |
| m[0] == ShaderMode::kRepeat_Linear_Mipmap; |
| bool mipmapRepeatY = m[1] == ShaderMode::kRepeat_Nearest_Mipmap || |
| m[1] == ShaderMode::kRepeat_Linear_Mipmap; |
| |
| if (mipmapRepeatX || mipmapRepeatY) { |
| fb->codeAppend("float2 extraRepeatCoord;"); |
| } |
| if (mipmapRepeatX) { |
| fb->codeAppend("half repeatCoordWeightX;"); |
| extraRepeatCoordX = "extraRepeatCoord.x"; |
| repeatCoordWeightX = "repeatCoordWeightX"; |
| } |
| if (mipmapRepeatY) { |
| fb->codeAppend("half repeatCoordWeightY;"); |
| extraRepeatCoordY = "extraRepeatCoord.y"; |
| repeatCoordWeightY = "repeatCoordWeightY"; |
| } |
| |
| // Apply subset rect and clamp rect to coords. |
| fb->codeAppend("float2 subsetCoord;"); |
| subsetCoord(te.fShaderModes[0], "x", "x", "z", extraRepeatCoordX, repeatCoordWeightX); |
| subsetCoord(te.fShaderModes[1], "y", "y", "w", extraRepeatCoordY, repeatCoordWeightY); |
| fb->codeAppend("float2 clampedCoord;"); |
| if (useClamp[0] == useClamp[1]) { |
| clampCoord(useClamp[0], "", ".xy", ".zw"); |
| } else { |
| clampCoord(useClamp[0], ".x", ".x", ".z"); |
| clampCoord(useClamp[1], ".y", ".y", ".w"); |
| } |
| // Additional clamping for the extra coords for kRepeat with mip maps. |
| if (mipmapRepeatX && mipmapRepeatY) { |
| fb->codeAppendf("extraRepeatCoord = clamp(extraRepeatCoord, %s.xy, %s.zw);", |
| clampName, clampName); |
| } else if (mipmapRepeatX) { |
| fb->codeAppendf("extraRepeatCoord.x = clamp(extraRepeatCoord.x, %s.x, %s.z);", |
| clampName, clampName); |
| } else if (mipmapRepeatY) { |
| fb->codeAppendf("extraRepeatCoord.y = clamp(extraRepeatCoord.y, %s.y, %s.w);", |
| clampName, clampName); |
| } |
| |
| // Do the 2 or 4 texture reads for kRepeatMipMap and then apply the weight(s) |
| // to blend between them. If neither direction is repeat or not using mip maps do a single |
| // read at clampedCoord. |
| if (mipmapRepeatX && mipmapRepeatY) { |
| fb->codeAppendf( |
| "half4 textureColor =" |
| " mix(mix(%s, %s, repeatCoordWeightX)," |
| " mix(%s, %s, repeatCoordWeightX)," |
| " repeatCoordWeightY);", |
| read("clampedCoord").c_str(), |
| read("float2(extraRepeatCoord.x, clampedCoord.y)").c_str(), |
| read("float2(clampedCoord.x, extraRepeatCoord.y)").c_str(), |
| read("float2(extraRepeatCoord.x, extraRepeatCoord.y)").c_str()); |
| |
| } else if (mipmapRepeatX) { |
| fb->codeAppendf("half4 textureColor = mix(%s, %s, repeatCoordWeightX);", |
| read("clampedCoord").c_str(), |
| read("float2(extraRepeatCoord.x, clampedCoord.y)").c_str()); |
| } else if (mipmapRepeatY) { |
| fb->codeAppendf("half4 textureColor = mix(%s, %s, repeatCoordWeightY);", |
| read("clampedCoord").c_str(), |
| read("float2(clampedCoord.x, extraRepeatCoord.y)").c_str()); |
| } else { |
| fb->codeAppendf("half4 textureColor = %s;", read("clampedCoord").c_str()); |
| } |
| |
| // Strings for extra texture reads used only in kRepeatLinear |
| SkString repeatLinearReadX; |
| SkString repeatLinearReadY; |
| |
| // Calculate the amount the coord moved for clamping. This will be used |
| // to implement shader-based filtering for kClampToBorder and kRepeat. |
| bool repeatLinearFilterX = m[0] == ShaderMode::kRepeat_Linear_None || |
| m[0] == ShaderMode::kRepeat_Linear_Mipmap; |
| bool repeatLinearFilterY = m[1] == ShaderMode::kRepeat_Linear_None || |
| m[1] == ShaderMode::kRepeat_Linear_Mipmap; |
| if (repeatLinearFilterX || m[0] == ShaderMode::kClampToBorder_Filter) { |
| fb->codeAppend("half errX = half(subsetCoord.x - clampedCoord.x);"); |
| if (repeatLinearFilterX) { |
| fb->codeAppendf("float repeatCoordX = errX > 0 ? %s.x : %s.z;", |
| clampName, clampName); |
| repeatLinearReadX = read("float2(repeatCoordX, clampedCoord.y)"); |
| } |
| } |
| if (repeatLinearFilterY || m[1] == ShaderMode::kClampToBorder_Filter) { |
| fb->codeAppend("half errY = half(subsetCoord.y - clampedCoord.y);"); |
| if (repeatLinearFilterY) { |
| fb->codeAppendf("float repeatCoordY = errY > 0 ? %s.y : %s.w;", |
| clampName, clampName); |
| repeatLinearReadY = read("float2(clampedCoord.x, repeatCoordY)"); |
| } |
| } |
| |
| // Add logic for kRepeat + linear filter. Do 1 or 3 more texture reads depending |
| // on whether both modes are kRepeat and whether we're near a single subset edge |
| // or a corner. Then blend the multiple reads using the err values calculated |
| // above. |
| const char* ifStr = "if"; |
| if (repeatLinearFilterX && repeatLinearFilterY) { |
| auto repeatLinearReadXY = read("float2(repeatCoordX, repeatCoordY)"); |
| fb->codeAppendf( |
| "if (errX != 0 && errY != 0) {" |
| " errX = abs(errX);" |
| " textureColor = mix(mix(textureColor, %s, errX)," |
| " mix(%s, %s, errX)," |
| " abs(errY));" |
| "}", |
| repeatLinearReadX.c_str(), repeatLinearReadY.c_str(), |
| repeatLinearReadXY.c_str()); |
| ifStr = "else if"; |
| } |
| if (repeatLinearFilterX) { |
| fb->codeAppendf( |
| "%s (errX != 0) {" |
| " textureColor = mix(textureColor, %s, abs(errX));" |
| "}", |
| ifStr, repeatLinearReadX.c_str()); |
| } |
| if (repeatLinearFilterY) { |
| fb->codeAppendf( |
| "%s (errY != 0) {" |
| " textureColor = mix(textureColor, %s, abs(errY));" |
| "}", |
| ifStr, repeatLinearReadY.c_str()); |
| } |
| |
| // Do soft edge shader filtering against border color for kClampToBorderFilter using |
| // the err values calculated above. |
| if (m[0] == ShaderMode::kClampToBorder_Filter) { |
| fb->codeAppendf("textureColor = mix(textureColor, %s, min(abs(errX), 1));", borderName); |
| } |
| if (m[1] == ShaderMode::kClampToBorder_Filter) { |
| fb->codeAppendf("textureColor = mix(textureColor, %s, min(abs(errY), 1));", borderName); |
| } |
| |
| // Do hard-edge shader transition to border color for kClampToBorderNearest at the |
| // subset boundaries. Snap the input coordinates to nearest neighbor (with an |
| // epsilon) before comparing to the subset rect to avoid GPU interpolation errors |
| if (m[0] == ShaderMode::kClampToBorder_Nearest) { |
| fb->codeAppendf( |
| "float snappedX = floor(inCoord.x + 0.001) + 0.5;" |
| "if (snappedX < %s.x || snappedX > %s.z) {" |
| " textureColor = %s;" |
| "}", |
| subsetName, subsetName, borderName); |
| } |
| if (m[1] == ShaderMode::kClampToBorder_Nearest) { |
| fb->codeAppendf( |
| "float snappedY = floor(inCoord.y + 0.001) + 0.5;" |
| "if (snappedY < %s.y || snappedY > %s.w) {" |
| " textureColor = %s;" |
| "}", |
| subsetName, subsetName, borderName); |
| } |
| fb->codeAppendf("return textureColor;"); |
| } |
| } |
| |
| void GrTextureEffect::Impl::onSetData(const GrGLSLProgramDataManager& pdm, |
| const GrFragmentProcessor& fp) { |
| const auto& te = fp.cast<GrTextureEffect>(); |
| |
| const float w = te.texture()->width(); |
| const float h = te.texture()->height(); |
| const auto& s = te.fSubset; |
| const auto& c = te.fClamp; |
| |
| auto type = te.texture()->textureType(); |
| |
| float idims[2] = {1.f/w, 1.f/h}; |
| |
| if (fIDimsUni.isValid()) { |
| pdm.set2fv(fIDimsUni, 1, idims); |
| SkASSERT(type != GrTextureType::kRectangle); |
| } |
| |
| auto pushRect = [&](float rect[4], UniformHandle uni) { |
| if (te.view().origin() == kBottomLeft_GrSurfaceOrigin) { |
| rect[1] = h - rect[1]; |
| rect[3] = h - rect[3]; |
| std::swap(rect[1], rect[3]); |
| } |
| if (!fIDimsUni.isValid() && type != GrTextureType::kRectangle) { |
| rect[0] *= idims[0]; |
| rect[2] *= idims[0]; |
| rect[1] *= idims[1]; |
| rect[3] *= idims[1]; |
| } |
| pdm.set4fv(uni, 1, rect); |
| }; |
| |
| if (fSubsetUni.isValid()) { |
| float subset[] = {s.fLeft, s.fTop, s.fRight, s.fBottom}; |
| pushRect(subset, fSubsetUni); |
| } |
| if (fClampUni.isValid()) { |
| float subset[] = {c.fLeft, c.fTop, c.fRight, c.fBottom}; |
| pushRect(subset, fClampUni); |
| } |
| if (fBorderUni.isValid()) { |
| pdm.set4fv(fBorderUni, 1, te.fBorder); |
| } |
| } |
| |
| std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrTextureEffect::onMakeProgramImpl() const { |
| return std::make_unique<Impl>(); |
| } |
| |
| void GrTextureEffect::onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const { |
| auto m0 = static_cast<uint32_t>(fShaderModes[0]); |
| b->addBits(8, m0, "shaderMode0"); |
| |
| auto m1 = static_cast<uint32_t>(fShaderModes[1]); |
| b->addBits(8, m1, "shaderMode1"); |
| } |
| |
| bool GrTextureEffect::onIsEqual(const GrFragmentProcessor& other) const { |
| auto& that = other.cast<GrTextureEffect>(); |
| if (fView != that.fView) { |
| return false; |
| } |
| if (fSamplerState != that.fSamplerState) { |
| return false; |
| } |
| if (fShaderModes[0] != that.fShaderModes[0] || fShaderModes[1] != that.fShaderModes[1]) { |
| return false; |
| } |
| if (fSubset != that.fSubset) { |
| return false; |
| } |
| if (this->hasClampToBorderShaderMode() && !std::equal(fBorder, fBorder + 4, that.fBorder)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool GrTextureEffect::matrixEffectShouldNormalize() const { |
| return fView.asTextureProxy()->textureType() != GrTextureType::kRectangle && |
| !ShaderModeRequiresUnormCoord(fShaderModes[0]) && |
| !ShaderModeRequiresUnormCoord(fShaderModes[1]); |
| } |
| |
| GrTextureEffect::GrTextureEffect(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const Sampling& sampling) |
| : GrFragmentProcessor(kGrTextureEffect_ClassID, |
| ModulateForSamplerOptFlags(alphaType, sampling.hasBorderAlpha())) |
| , fView(std::move(view)) |
| , fSamplerState(sampling.fHWSampler) |
| , fSubset(sampling.fShaderSubset) |
| , fClamp(sampling.fShaderClamp) |
| , fShaderModes{sampling.fShaderModes[0], sampling.fShaderModes[1]} { |
| // We always compare the range even when it isn't used so assert we have canonical don't care |
| // values. |
| SkASSERT(fShaderModes[0] != ShaderMode::kNone || (fSubset.fLeft == 0 && fSubset.fRight == 0)); |
| SkASSERT(fShaderModes[1] != ShaderMode::kNone || (fSubset.fTop == 0 && fSubset.fBottom == 0)); |
| this->setUsesSampleCoordsDirectly(); |
| std::copy_n(sampling.fBorder, 4, fBorder); |
| } |
| |
| GrTextureEffect::GrTextureEffect(const GrTextureEffect& src) |
| : INHERITED(kGrTextureEffect_ClassID, src.optimizationFlags()) |
| , fView(src.fView) |
| , fSamplerState(src.fSamplerState) |
| , fSubset(src.fSubset) |
| , fClamp(src.fClamp) |
| , fShaderModes{src.fShaderModes[0], src.fShaderModes[1]} { |
| std::copy_n(src.fBorder, 4, fBorder); |
| this->setUsesSampleCoordsDirectly(); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::clone() const { |
| return std::unique_ptr<GrFragmentProcessor>(new GrTextureEffect(*this)); |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrTextureEffect) |
| #if defined(GR_TEST_UTILS) |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::TestCreate(GrProcessorTestData* testData) { |
| auto [view, ct, at] = testData->randomView(); |
| Wrap wrapModes[2]; |
| GrTest::TestWrapModes(testData->fRandom, wrapModes); |
| |
| Filter filter = testData->fRandom->nextBool() ? Filter::kLinear : Filter::kNearest; |
| MipmapMode mm = MipmapMode::kNone; |
| if (view.asTextureProxy()->mipmapped() == skgpu::Mipmapped::kYes) { |
| mm = testData->fRandom->nextBool() ? MipmapMode::kLinear : MipmapMode::kNone; |
| } |
| GrSamplerState params(wrapModes, filter, mm); |
| |
| const SkMatrix& matrix = GrTest::TestMatrix(testData->fRandom); |
| return GrTextureEffect::Make(std::move(view), at, matrix, params, *testData->caps()); |
| } |
| #endif |