| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkScalerContext.h" |
| |
| #include "include/core/SkColorType.h" |
| #include "include/core/SkDrawable.h" |
| #include "include/core/SkFont.h" |
| #include "include/core/SkFontMetrics.h" |
| #include "include/core/SkImageInfo.h" |
| #include "include/core/SkMaskFilter.h" |
| #include "include/core/SkPaint.h" |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPathEffect.h" |
| #include "include/core/SkPixmap.h" |
| #include "include/core/SkStrokeRec.h" |
| #include "include/private/SkColorData.h" |
| #include "include/private/base/SkAlign.h" |
| #include "include/private/base/SkCPUTypes.h" |
| #include "include/private/base/SkDebug.h" |
| #include "include/private/base/SkFixed.h" |
| #include "include/private/base/SkMalloc.h" |
| #include "include/private/base/SkMutex.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/base/SkArenaAlloc.h" |
| #include "src/base/SkAutoMalloc.h" |
| #include "src/core/SkAutoPixmapStorage.h" |
| #include "src/core/SkBlitter_A8.h" |
| #include "src/core/SkDescriptor.h" |
| #include "src/core/SkDrawBase.h" |
| #include "src/core/SkFontPriv.h" |
| #include "src/core/SkGlyph.h" |
| #include "src/core/SkMaskFilterBase.h" |
| #include "src/core/SkPaintPriv.h" |
| #include "src/core/SkRasterClip.h" |
| #include "src/core/SkTextFormatParams.h" |
| #include "src/core/SkWriteBuffer.h" |
| #include "src/utils/SkMatrix22.h" |
| |
| #include <algorithm> |
| #include <cstring> |
| #include <limits> |
| #include <new> |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| namespace { |
| static inline const constexpr bool kSkShowTextBlitCoverage = false; |
| static inline const constexpr bool kSkScalerContextDumpRec = false; |
| } |
| |
| SkScalerContextRec SkScalerContext::PreprocessRec(const SkTypeface& typeface, |
| const SkScalerContextEffects& effects, |
| const SkDescriptor& desc) { |
| SkScalerContextRec rec = |
| *static_cast<const SkScalerContextRec*>(desc.findEntry(kRec_SkDescriptorTag, nullptr)); |
| |
| // Allow the typeface to adjust the rec. |
| typeface.onFilterRec(&rec); |
| |
| if (effects.fMaskFilter) { |
| // Pre-blend is not currently applied to filtered text. |
| // The primary filter is blur, for which contrast makes no sense, |
| // and for which the destination guess error is more visible. |
| // Also, all existing users of blur have calibrated for linear. |
| rec.ignorePreBlend(); |
| } |
| |
| SkColor lumColor = rec.getLuminanceColor(); |
| |
| if (rec.fMaskFormat == SkMask::kA8_Format) { |
| U8CPU lum = SkComputeLuminance(SkColorGetR(lumColor), |
| SkColorGetG(lumColor), |
| SkColorGetB(lumColor)); |
| lumColor = SkColorSetRGB(lum, lum, lum); |
| } |
| |
| // TODO: remove CanonicalColor when we to fix up Chrome layout tests. |
| rec.setLuminanceColor(lumColor); |
| |
| return rec; |
| } |
| |
| SkScalerContext::SkScalerContext(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects, |
| const SkDescriptor* desc) |
| : fRec(PreprocessRec(*typeface, effects, *desc)) |
| , fTypeface(std::move(typeface)) |
| , fPathEffect(sk_ref_sp(effects.fPathEffect)) |
| , fMaskFilter(sk_ref_sp(effects.fMaskFilter)) |
| // Initialize based on our settings. Subclasses can also force this. |
| , fGenerateImageFromPath(fRec.fFrameWidth >= 0 || fPathEffect != nullptr) |
| |
| , fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec)) |
| { |
| if constexpr (kSkScalerContextDumpRec) { |
| SkDebugf("SkScalerContext checksum %x count %u length %u\n", |
| desc->getChecksum(), desc->getCount(), desc->getLength()); |
| SkDebugf("%s", fRec.dump().c_str()); |
| SkDebugf(" effects %p\n", desc->findEntry(kEffects_SkDescriptorTag, nullptr)); |
| } |
| } |
| |
| SkScalerContext::~SkScalerContext() {} |
| |
| /** |
| * In order to call cachedDeviceLuminance, cachedPaintLuminance, or |
| * cachedMaskGamma the caller must hold the mask_gamma_cache_mutex and continue |
| * to hold it until the returned pointer is refed or forgotten. |
| */ |
| static SkMutex& mask_gamma_cache_mutex() { |
| static SkMutex& mutex = *(new SkMutex); |
| return mutex; |
| } |
| |
| static SkMaskGamma* gLinearMaskGamma = nullptr; |
| static SkMaskGamma* gMaskGamma = nullptr; |
| static SkScalar gContrast = SK_ScalarMin; |
| static SkScalar gPaintGamma = SK_ScalarMin; |
| static SkScalar gDeviceGamma = SK_ScalarMin; |
| |
| /** |
| * The caller must hold the mask_gamma_cache_mutex() and continue to hold it until |
| * the returned SkMaskGamma pointer is refed or forgotten. |
| */ |
| static const SkMaskGamma& cached_mask_gamma(SkScalar contrast, SkScalar paintGamma, |
| SkScalar deviceGamma) { |
| mask_gamma_cache_mutex().assertHeld(); |
| if (0 == contrast && SK_Scalar1 == paintGamma && SK_Scalar1 == deviceGamma) { |
| if (nullptr == gLinearMaskGamma) { |
| gLinearMaskGamma = new SkMaskGamma; |
| } |
| return *gLinearMaskGamma; |
| } |
| if (gContrast != contrast || gPaintGamma != paintGamma || gDeviceGamma != deviceGamma) { |
| SkSafeUnref(gMaskGamma); |
| gMaskGamma = new SkMaskGamma(contrast, paintGamma, deviceGamma); |
| gContrast = contrast; |
| gPaintGamma = paintGamma; |
| gDeviceGamma = deviceGamma; |
| } |
| return *gMaskGamma; |
| } |
| |
| /** |
| * Expands fDeviceGamma, fPaintGamma, fContrast, and fLumBits into a mask pre-blend. |
| */ |
| SkMaskGamma::PreBlend SkScalerContext::GetMaskPreBlend(const SkScalerContextRec& rec) { |
| SkAutoMutexExclusive ama(mask_gamma_cache_mutex()); |
| |
| const SkMaskGamma& maskGamma = cached_mask_gamma(rec.getContrast(), |
| rec.getPaintGamma(), |
| rec.getDeviceGamma()); |
| |
| // TODO: remove CanonicalColor when we to fix up Chrome layout tests. |
| return maskGamma.preBlend(rec.getLuminanceColor()); |
| } |
| |
| size_t SkScalerContext::GetGammaLUTSize(SkScalar contrast, SkScalar paintGamma, |
| SkScalar deviceGamma, int* width, int* height) { |
| SkAutoMutexExclusive ama(mask_gamma_cache_mutex()); |
| const SkMaskGamma& maskGamma = cached_mask_gamma(contrast, |
| paintGamma, |
| deviceGamma); |
| |
| maskGamma.getGammaTableDimensions(width, height); |
| size_t size = (*width)*(*height)*sizeof(uint8_t); |
| |
| return size; |
| } |
| |
| bool SkScalerContext::GetGammaLUTData(SkScalar contrast, SkScalar paintGamma, SkScalar deviceGamma, |
| uint8_t* data) { |
| SkAutoMutexExclusive ama(mask_gamma_cache_mutex()); |
| const SkMaskGamma& maskGamma = cached_mask_gamma(contrast, |
| paintGamma, |
| deviceGamma); |
| const uint8_t* gammaTables = maskGamma.getGammaTables(); |
| if (!gammaTables) { |
| return false; |
| } |
| |
| int width, height; |
| maskGamma.getGammaTableDimensions(&width, &height); |
| size_t size = width*height * sizeof(uint8_t); |
| memcpy(data, gammaTables, size); |
| return true; |
| } |
| |
| SkGlyph SkScalerContext::makeGlyph(SkPackedGlyphID packedID, SkArenaAlloc* alloc) { |
| return internalMakeGlyph(packedID, fRec.fMaskFormat, alloc); |
| } |
| |
| /** Return the closest D for the given S. Returns std::numeric_limits<D>::max() for NaN. */ |
| template <typename D, typename S> static constexpr D sk_saturate_cast(S s) { |
| static_assert(std::is_integral_v<D>); |
| s = s < std::numeric_limits<D>::max() ? s : std::numeric_limits<D>::max(); |
| s = s > std::numeric_limits<D>::min() ? s : std::numeric_limits<D>::min(); |
| return (D)s; |
| } |
| void SkScalerContext::SaturateGlyphBounds(SkGlyph* glyph, SkRect&& r) { |
| r.roundOut(&r); |
| glyph->fLeft = sk_saturate_cast<int16_t>(r.fLeft); |
| glyph->fTop = sk_saturate_cast<int16_t>(r.fTop); |
| glyph->fWidth = sk_saturate_cast<uint16_t>(r.width()); |
| glyph->fHeight = sk_saturate_cast<uint16_t>(r.height()); |
| } |
| void SkScalerContext::SaturateGlyphBounds(SkGlyph* glyph, SkIRect const & r) { |
| glyph->fLeft = sk_saturate_cast<int16_t>(r.fLeft); |
| glyph->fTop = sk_saturate_cast<int16_t>(r.fTop); |
| glyph->fWidth = sk_saturate_cast<uint16_t>(r.width64()); |
| glyph->fHeight = sk_saturate_cast<uint16_t>(r.height64()); |
| } |
| |
| void SkScalerContext::GenerateMetricsFromPath( |
| SkGlyph* glyph, const SkPath& devPath, SkMask::Format format, |
| const bool verticalLCD, const bool a8FromLCD, const bool hairline) |
| { |
| // Only BW, A8, and LCD16 can be produced from paths. |
| if (glyph->fMaskFormat != SkMask::kBW_Format && |
| glyph->fMaskFormat != SkMask::kA8_Format && |
| glyph->fMaskFormat != SkMask::kLCD16_Format) |
| { |
| glyph->fMaskFormat = SkMask::kA8_Format; |
| } |
| |
| SkRect bounds = devPath.getBounds(); |
| if (!bounds.isEmpty()) { |
| const bool fromLCD = (glyph->fMaskFormat == SkMask::kLCD16_Format) || |
| (glyph->fMaskFormat == SkMask::kA8_Format && a8FromLCD); |
| |
| const bool needExtraWidth = (fromLCD && !verticalLCD) || hairline; |
| const bool needExtraHeight = (fromLCD && verticalLCD) || hairline; |
| if (needExtraWidth) { |
| bounds.roundOut(&bounds); |
| bounds.outset(1, 0); |
| } |
| if (needExtraHeight) { |
| bounds.roundOut(&bounds); |
| bounds.outset(0, 1); |
| } |
| } |
| SaturateGlyphBounds(glyph, std::move(bounds)); |
| } |
| |
| SkGlyph SkScalerContext::internalMakeGlyph(SkPackedGlyphID packedID, SkMask::Format format, SkArenaAlloc* alloc) { |
| auto zeroBounds = [](SkGlyph& glyph) { |
| glyph.fLeft = 0; |
| glyph.fTop = 0; |
| glyph.fWidth = 0; |
| glyph.fHeight = 0; |
| }; |
| |
| SkGlyph glyph{packedID}; |
| glyph.fMaskFormat = format; // subclass may return a different value |
| GlyphMetrics mx = this->generateMetrics(glyph, alloc); |
| SkASSERT(!mx.neverRequestPath || !mx.computeFromPath); |
| |
| glyph.fAdvanceX = mx.advance.fX; |
| glyph.fAdvanceY = mx.advance.fY; |
| glyph.fMaskFormat = mx.maskFormat; |
| glyph.fScalerContextBits = mx.extraBits; |
| |
| if (mx.computeFromPath || (fGenerateImageFromPath && !mx.neverRequestPath)) { |
| SkDEBUGCODE(glyph.fAdvancesBoundsFormatAndInitialPathDone = true;) |
| this->internalGetPath(glyph, alloc); |
| const SkPath* devPath = glyph.path(); |
| if (devPath) { |
| const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag); |
| const bool a8LCD = SkToBool(fRec.fFlags & SkScalerContext::kGenA8FromLCD_Flag); |
| const bool hairline = glyph.pathIsHairline(); |
| GenerateMetricsFromPath(&glyph, *devPath, format, doVert, a8LCD, hairline); |
| } |
| } else { |
| SaturateGlyphBounds(&glyph, std::move(mx.bounds)); |
| if (mx.neverRequestPath) { |
| glyph.setPath(alloc, nullptr, false); |
| } |
| } |
| SkDEBUGCODE(glyph.fAdvancesBoundsFormatAndInitialPathDone = true;) |
| |
| // if either dimension is empty, zap the image bounds of the glyph |
| if (0 == glyph.fWidth || 0 == glyph.fHeight) { |
| zeroBounds(glyph); |
| return glyph; |
| } |
| |
| if (fMaskFilter) { |
| // only want the bounds from the filter |
| SkMask src(nullptr, glyph.iRect(), glyph.rowBytes(), glyph.maskFormat()); |
| SkMaskBuilder dst; |
| SkMatrix matrix; |
| |
| fRec.getMatrixFrom2x2(&matrix); |
| |
| if (as_MFB(fMaskFilter)->filterMask(&dst, src, matrix, nullptr)) { |
| if (dst.fBounds.isEmpty()) { |
| zeroBounds(glyph); |
| return glyph; |
| } |
| SkASSERT(dst.fImage == nullptr); |
| SaturateGlyphBounds(&glyph, dst.fBounds); |
| glyph.fMaskFormat = dst.fFormat; |
| } |
| } |
| return glyph; |
| } |
| |
| static void applyLUTToA8Mask(SkMaskBuilder& mask, const uint8_t* lut) { |
| uint8_t* SK_RESTRICT dst = mask.image(); |
| unsigned rowBytes = mask.fRowBytes; |
| |
| for (int y = mask.fBounds.height() - 1; y >= 0; --y) { |
| for (int x = mask.fBounds.width() - 1; x >= 0; --x) { |
| dst[x] = lut[dst[x]]; |
| } |
| dst += rowBytes; |
| } |
| } |
| |
| static void pack4xHToMask(const SkPixmap& src, SkMaskBuilder& dst, |
| const SkMaskGamma::PreBlend& maskPreBlend, |
| const bool doBGR, const bool doVert) { |
| #define SAMPLES_PER_PIXEL 4 |
| #define LCD_PER_PIXEL 3 |
| SkASSERT(kAlpha_8_SkColorType == src.colorType()); |
| |
| const bool toA8 = SkMask::kA8_Format == dst.fFormat; |
| SkASSERT(SkMask::kLCD16_Format == dst.fFormat || toA8); |
| |
| // doVert in this function means swap x and y when writing to dst. |
| if (doVert) { |
| SkASSERT(src.width() == (dst.fBounds.height() - 2) * 4); |
| SkASSERT(src.height() == dst.fBounds.width()); |
| } else { |
| SkASSERT(src.width() == (dst.fBounds.width() - 2) * 4); |
| SkASSERT(src.height() == dst.fBounds.height()); |
| } |
| |
| const int sample_width = src.width(); |
| const int height = src.height(); |
| |
| uint8_t* dstImage = dst.image(); |
| size_t dstRB = dst.fRowBytes; |
| // An N tap FIR is defined by |
| // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N] |
| // or |
| // out[n] = sum(i, 0, N, coeff[i]*x[n-i]) |
| |
| // The strategy is to use one FIR (different coefficients) for each of r, g, and b. |
| // This means using every 4th FIR output value of each FIR and discarding the rest. |
| // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'. |
| // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.) |
| |
| // These are in some fixed point repesentation. |
| // Adding up to more than one simulates ink spread. |
| // For implementation reasons, these should never add up to more than two. |
| |
| // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast'). |
| // Calculated using tools/generate_fir_coeff.py |
| // With this one almost no fringing is ever seen, but it is imperceptibly blurry. |
| // The lcd smoothed text is almost imperceptibly different from gray, |
| // but is still sharper on small stems and small rounded corners than gray. |
| // This also seems to be about as wide as one can get and only have a three pixel kernel. |
| // TODO: calculate these at runtime so parameters can be adjusted (esp contrast). |
| static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = { |
| //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted. |
| { 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, }, |
| //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric |
| { 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, }, |
| //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted. |
| { 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, }, |
| }; |
| |
| size_t dstPB = toA8 ? sizeof(uint8_t) : sizeof(uint16_t); |
| for (int y = 0; y < height; ++y) { |
| uint8_t* dstP; |
| size_t dstPDelta; |
| if (doVert) { |
| dstP = SkTAddOffset<uint8_t>(dstImage, y * dstPB); |
| dstPDelta = dstRB; |
| } else { |
| dstP = SkTAddOffset<uint8_t>(dstImage, y * dstRB); |
| dstPDelta = dstPB; |
| } |
| |
| const uint8_t* srcP = src.addr8(0, y); |
| |
| // TODO: this fir filter implementation is straight forward, but slow. |
| // It should be possible to make it much faster. |
| for (int sample_x = -4; sample_x < sample_width + 4; sample_x += 4) { |
| int fir[LCD_PER_PIXEL] = { 0 }; |
| for (int sample_index = std::max(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4) |
| ; sample_index < std::min(sample_x + 8, sample_width) |
| ; ++sample_index, ++coeff_index) |
| { |
| int sample_value = srcP[sample_index]; |
| for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) { |
| fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value; |
| } |
| } |
| for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) { |
| fir[subpxl_index] /= 0x100; |
| fir[subpxl_index] = std::min(fir[subpxl_index], 255); |
| } |
| |
| U8CPU r, g, b; |
| if (doBGR) { |
| r = fir[2]; |
| g = fir[1]; |
| b = fir[0]; |
| } else { |
| r = fir[0]; |
| g = fir[1]; |
| b = fir[2]; |
| } |
| if constexpr (kSkShowTextBlitCoverage) { |
| r = std::max(r, 10u); |
| g = std::max(g, 10u); |
| b = std::max(b, 10u); |
| } |
| if (toA8) { |
| U8CPU a = (r + g + b) / 3; |
| if (maskPreBlend.isApplicable()) { |
| a = maskPreBlend.fG[a]; |
| } |
| *dstP = a; |
| } else { |
| if (maskPreBlend.isApplicable()) { |
| r = maskPreBlend.fR[r]; |
| g = maskPreBlend.fG[g]; |
| b = maskPreBlend.fB[b]; |
| } |
| *(uint16_t*)dstP = SkPack888ToRGB16(r, g, b); |
| } |
| dstP = SkTAddOffset<uint8_t>(dstP, dstPDelta); |
| } |
| } |
| } |
| |
| static inline int convert_8_to_1(unsigned byte) { |
| SkASSERT(byte <= 0xFF); |
| return byte >> 7; |
| } |
| |
| static uint8_t pack_8_to_1(const uint8_t alpha[8]) { |
| unsigned bits = 0; |
| for (int i = 0; i < 8; ++i) { |
| bits <<= 1; |
| bits |= convert_8_to_1(alpha[i]); |
| } |
| return SkToU8(bits); |
| } |
| |
| static void packA8ToA1(SkMaskBuilder& dstMask, const uint8_t* src, size_t srcRB) { |
| const int height = dstMask.fBounds.height(); |
| const int width = dstMask.fBounds.width(); |
| const int octs = width >> 3; |
| const int leftOverBits = width & 7; |
| |
| uint8_t* dst = dstMask.image(); |
| const int dstPad = dstMask.fRowBytes - SkAlign8(width)/8; |
| SkASSERT(dstPad >= 0); |
| |
| SkASSERT(width >= 0); |
| SkASSERT(srcRB >= (size_t)width); |
| const size_t srcPad = srcRB - width; |
| |
| for (int y = 0; y < height; ++y) { |
| for (int i = 0; i < octs; ++i) { |
| *dst++ = pack_8_to_1(src); |
| src += 8; |
| } |
| if (leftOverBits > 0) { |
| unsigned bits = 0; |
| int shift = 7; |
| for (int i = 0; i < leftOverBits; ++i, --shift) { |
| bits |= convert_8_to_1(*src++) << shift; |
| } |
| *dst++ = bits; |
| } |
| src += srcPad; |
| dst += dstPad; |
| } |
| } |
| |
| void SkScalerContext::GenerateImageFromPath( |
| SkMaskBuilder& dstMask, const SkPath& path, const SkMaskGamma::PreBlend& maskPreBlend, |
| const bool doBGR, const bool verticalLCD, const bool a8FromLCD, const bool hairline) |
| { |
| SkASSERT(dstMask.fFormat == SkMask::kBW_Format || |
| dstMask.fFormat == SkMask::kA8_Format || |
| dstMask.fFormat == SkMask::kLCD16_Format); |
| |
| SkPaint paint; |
| SkPath strokePath; |
| const SkPath* pathToUse = &path; |
| |
| int srcW = dstMask.fBounds.width(); |
| int srcH = dstMask.fBounds.height(); |
| int dstW = srcW; |
| int dstH = srcH; |
| |
| SkMatrix matrix; |
| matrix.setTranslate(-SkIntToScalar(dstMask.fBounds.fLeft), |
| -SkIntToScalar(dstMask.fBounds.fTop)); |
| |
| paint.setStroke(hairline); |
| paint.setAntiAlias(SkMask::kBW_Format != dstMask.fFormat); |
| |
| const bool fromLCD = (dstMask.fFormat == SkMask::kLCD16_Format) || |
| (dstMask.fFormat == SkMask::kA8_Format && a8FromLCD); |
| const bool intermediateDst = fromLCD || dstMask.fFormat == SkMask::kBW_Format; |
| if (fromLCD) { |
| if (verticalLCD) { |
| dstW = 4*dstH - 8; |
| dstH = srcW; |
| matrix.setAll(0, 4, -SkIntToScalar(dstMask.fBounds.fTop + 1) * 4, |
| 1, 0, -SkIntToScalar(dstMask.fBounds.fLeft), |
| 0, 0, 1); |
| } else { |
| dstW = 4*dstW - 8; |
| matrix.setAll(4, 0, -SkIntToScalar(dstMask.fBounds.fLeft + 1) * 4, |
| 0, 1, -SkIntToScalar(dstMask.fBounds.fTop), |
| 0, 0, 1); |
| } |
| |
| // LCD hairline doesn't line up with the pixels, so do it the expensive way. |
| SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); |
| if (hairline) { |
| rec.setStrokeStyle(1.0f, false); |
| rec.setStrokeParams(SkPaint::kButt_Cap, SkPaint::kRound_Join, 0.0f); |
| } |
| if (rec.needToApply() && rec.applyToPath(&strokePath, path)) { |
| pathToUse = &strokePath; |
| paint.setStyle(SkPaint::kFill_Style); |
| } |
| } |
| |
| SkRasterClip clip; |
| clip.setRect(SkIRect::MakeWH(dstW, dstH)); |
| |
| const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH); |
| SkAutoPixmapStorage dst; |
| |
| if (intermediateDst) { |
| if (!dst.tryAlloc(info)) { |
| // can't allocate offscreen, so empty the mask and return |
| sk_bzero(dstMask.image(), dstMask.computeImageSize()); |
| return; |
| } |
| } else { |
| dst.reset(info, dstMask.image(), dstMask.fRowBytes); |
| } |
| sk_bzero(dst.writable_addr(), dst.computeByteSize()); |
| |
| SkDrawBase draw; |
| draw.fBlitterChooser = SkA8Blitter_Choose; |
| draw.fDst = dst; |
| draw.fRC = &clip; |
| draw.fCTM = &matrix; |
| draw.drawPath(*pathToUse, paint); |
| |
| switch (dstMask.fFormat) { |
| case SkMask::kBW_Format: |
| packA8ToA1(dstMask, dst.addr8(0, 0), dst.rowBytes()); |
| break; |
| case SkMask::kA8_Format: |
| if (fromLCD) { |
| pack4xHToMask(dst, dstMask, maskPreBlend, doBGR, verticalLCD); |
| } else if (maskPreBlend.isApplicable()) { |
| applyLUTToA8Mask(dstMask, maskPreBlend.fG); |
| } |
| break; |
| case SkMask::kLCD16_Format: |
| pack4xHToMask(dst, dstMask, maskPreBlend, doBGR, verticalLCD); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void SkScalerContext::getImage(const SkGlyph& origGlyph) { |
| SkASSERT(origGlyph.fAdvancesBoundsFormatAndInitialPathDone); |
| |
| const SkGlyph* unfilteredGlyph = &origGlyph; |
| // in case we need to call generateImage on a mask-format that is different |
| // (i.e. larger) than what our caller allocated by looking at origGlyph. |
| SkAutoMalloc tmpGlyphImageStorage; |
| SkGlyph tmpGlyph; |
| SkSTArenaAlloc<sizeof(SkGlyph::PathData)> tmpGlyphPathDataStorage; |
| if (fMaskFilter) { |
| // need the original bounds, sans our maskfilter |
| sk_sp<SkMaskFilter> mf = std::move(fMaskFilter); |
| tmpGlyph = this->makeGlyph(origGlyph.getPackedID(), &tmpGlyphPathDataStorage); |
| fMaskFilter = std::move(mf); |
| |
| // Use the origGlyph storage for the temporary unfiltered mask if it will fit. |
| if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat && |
| tmpGlyph.imageSize() <= origGlyph.imageSize()) |
| { |
| tmpGlyph.fImage = origGlyph.fImage; |
| } else { |
| tmpGlyphImageStorage.reset(tmpGlyph.imageSize()); |
| tmpGlyph.fImage = tmpGlyphImageStorage.get(); |
| } |
| unfilteredGlyph = &tmpGlyph; |
| } |
| |
| if (!fGenerateImageFromPath) { |
| generateImage(*unfilteredGlyph, unfilteredGlyph->fImage); |
| } else { |
| SkASSERT(origGlyph.setPathHasBeenCalled()); |
| const SkPath* devPath = origGlyph.path(); |
| |
| if (!devPath) { |
| generateImage(*unfilteredGlyph, unfilteredGlyph->fImage); |
| } else { |
| SkMaskBuilder mask(static_cast<uint8_t*>(unfilteredGlyph->fImage), |
| unfilteredGlyph->iRect(), unfilteredGlyph->rowBytes(), |
| unfilteredGlyph->maskFormat()); |
| SkASSERT(SkMask::kARGB32_Format != origGlyph.fMaskFormat); |
| SkASSERT(SkMask::kARGB32_Format != mask.fFormat); |
| const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag); |
| const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag); |
| const bool a8LCD = SkToBool(fRec.fFlags & SkScalerContext::kGenA8FromLCD_Flag); |
| const bool hairline = origGlyph.pathIsHairline(); |
| GenerateImageFromPath(mask, *devPath, fPreBlend, doBGR, doVert, a8LCD, hairline); |
| } |
| } |
| |
| if (fMaskFilter) { |
| // k3D_Format should not be mask filtered. |
| SkASSERT(SkMask::k3D_Format != unfilteredGlyph->fMaskFormat); |
| |
| SkMaskBuilder srcMask; |
| SkAutoMaskFreeImage srcMaskOwnedImage(nullptr); |
| SkMatrix m; |
| fRec.getMatrixFrom2x2(&m); |
| |
| if (as_MFB(fMaskFilter)->filterMask(&srcMask, unfilteredGlyph->mask(), m, nullptr)) { |
| // Filter succeeded; srcMask.fImage was allocated. |
| srcMaskOwnedImage.reset(srcMask.image()); |
| } else if (unfilteredGlyph->fImage == tmpGlyphImageStorage.get()) { |
| // Filter did nothing; unfiltered mask is independent of origGlyph.fImage. |
| srcMask = SkMaskBuilder(static_cast<uint8_t*>(unfilteredGlyph->fImage), |
| unfilteredGlyph->iRect(), unfilteredGlyph->rowBytes(), |
| unfilteredGlyph->maskFormat()); |
| } else if (origGlyph.iRect() == unfilteredGlyph->iRect()) { |
| // Filter did nothing; the unfiltered mask is in origGlyph.fImage and matches. |
| return; |
| } else { |
| // Filter did nothing; the unfiltered mask is in origGlyph.fImage and conflicts. |
| srcMask = SkMaskBuilder(static_cast<uint8_t*>(unfilteredGlyph->fImage), |
| unfilteredGlyph->iRect(), unfilteredGlyph->rowBytes(), |
| unfilteredGlyph->maskFormat()); |
| size_t imageSize = unfilteredGlyph->imageSize(); |
| tmpGlyphImageStorage.reset(imageSize); |
| srcMask.image() = static_cast<uint8_t*>(tmpGlyphImageStorage.get()); |
| memcpy(srcMask.image(), unfilteredGlyph->fImage, imageSize); |
| } |
| |
| SkASSERT_RELEASE(srcMask.fFormat == origGlyph.fMaskFormat); |
| SkMaskBuilder dstMask = SkMaskBuilder(static_cast<uint8_t*>(origGlyph.fImage), |
| origGlyph.iRect(), origGlyph.rowBytes(), |
| origGlyph.maskFormat()); |
| SkIRect origBounds = dstMask.fBounds; |
| |
| // Find the intersection of src and dst while updating the fImages. |
| if (srcMask.fBounds.fTop < dstMask.fBounds.fTop) { |
| int32_t topDiff = dstMask.fBounds.fTop - srcMask.fBounds.fTop; |
| srcMask.image() += srcMask.fRowBytes * topDiff; |
| srcMask.bounds().fTop = dstMask.fBounds.fTop; |
| } |
| if (dstMask.fBounds.fTop < srcMask.fBounds.fTop) { |
| int32_t topDiff = srcMask.fBounds.fTop - dstMask.fBounds.fTop; |
| dstMask.image() += dstMask.fRowBytes * topDiff; |
| dstMask.bounds().fTop = srcMask.fBounds.fTop; |
| } |
| |
| if (srcMask.fBounds.fLeft < dstMask.fBounds.fLeft) { |
| int32_t leftDiff = dstMask.fBounds.fLeft - srcMask.fBounds.fLeft; |
| srcMask.image() += leftDiff; |
| srcMask.bounds().fLeft = dstMask.fBounds.fLeft; |
| } |
| if (dstMask.fBounds.fLeft < srcMask.fBounds.fLeft) { |
| int32_t leftDiff = srcMask.fBounds.fLeft - dstMask.fBounds.fLeft; |
| dstMask.image() += leftDiff; |
| dstMask.bounds().fLeft = srcMask.fBounds.fLeft; |
| } |
| |
| if (srcMask.fBounds.fBottom < dstMask.fBounds.fBottom) { |
| dstMask.bounds().fBottom = srcMask.fBounds.fBottom; |
| } |
| if (dstMask.fBounds.fBottom < srcMask.fBounds.fBottom) { |
| srcMask.bounds().fBottom = dstMask.fBounds.fBottom; |
| } |
| |
| if (srcMask.fBounds.fRight < dstMask.fBounds.fRight) { |
| dstMask.bounds().fRight = srcMask.fBounds.fRight; |
| } |
| if (dstMask.fBounds.fRight < srcMask.fBounds.fRight) { |
| srcMask.bounds().fRight = dstMask.fBounds.fRight; |
| } |
| |
| SkASSERT(srcMask.fBounds == dstMask.fBounds); |
| int width = srcMask.fBounds.width(); |
| int height = srcMask.fBounds.height(); |
| int dstRB = dstMask.fRowBytes; |
| int srcRB = srcMask.fRowBytes; |
| |
| const uint8_t* src = srcMask.fImage; |
| uint8_t* dst = dstMask.image(); |
| |
| if (SkMask::k3D_Format == srcMask.fFormat) { |
| // we have to copy 3 times as much |
| height *= 3; |
| } |
| |
| // If not filling the full original glyph, clear it out first. |
| if (dstMask.fBounds != origBounds) { |
| sk_bzero(origGlyph.fImage, origGlyph.fHeight * origGlyph.rowBytes()); |
| } |
| |
| while (--height >= 0) { |
| memcpy(dst, src, width); |
| src += srcRB; |
| dst += dstRB; |
| } |
| } |
| } |
| |
| void SkScalerContext::getPath(SkGlyph& glyph, SkArenaAlloc* alloc) { |
| this->internalGetPath(glyph, alloc); |
| } |
| |
| sk_sp<SkDrawable> SkScalerContext::getDrawable(SkGlyph& glyph) { |
| return this->generateDrawable(glyph); |
| } |
| //TODO: make pure virtual |
| sk_sp<SkDrawable> SkScalerContext::generateDrawable(const SkGlyph&) { |
| return nullptr; |
| } |
| |
| void SkScalerContext::getFontMetrics(SkFontMetrics* fm) { |
| SkASSERT(fm); |
| this->generateFontMetrics(fm); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkScalerContext::internalGetPath(SkGlyph& glyph, SkArenaAlloc* alloc) { |
| SkASSERT(glyph.fAdvancesBoundsFormatAndInitialPathDone); |
| |
| if (glyph.setPathHasBeenCalled()) { |
| return; |
| } |
| |
| SkPath path; |
| SkPath devPath; |
| bool hairline = false; |
| |
| SkPackedGlyphID glyphID = glyph.getPackedID(); |
| if (!generatePath(glyph, &path)) { |
| glyph.setPath(alloc, (SkPath*)nullptr, hairline); |
| return; |
| } |
| |
| if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) { |
| SkFixed dx = glyphID.getSubXFixed(); |
| SkFixed dy = glyphID.getSubYFixed(); |
| if (dx | dy) { |
| path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy)); |
| } |
| } |
| |
| if (fRec.fFrameWidth < 0 && fPathEffect == nullptr) { |
| devPath.swap(path); |
| } else { |
| // need the path in user-space, with only the point-size applied |
| // so that our stroking and effects will operate the same way they |
| // would if the user had extracted the path themself, and then |
| // called drawPath |
| SkPath localPath; |
| SkMatrix matrix; |
| SkMatrix inverse; |
| |
| fRec.getMatrixFrom2x2(&matrix); |
| if (!matrix.invert(&inverse)) { |
| glyph.setPath(alloc, &devPath, hairline); |
| } |
| path.transform(inverse, &localPath); |
| // now localPath is only affected by the paint settings, and not the canvas matrix |
| |
| SkStrokeRec rec(SkStrokeRec::kFill_InitStyle); |
| |
| if (fRec.fFrameWidth >= 0) { |
| rec.setStrokeStyle(fRec.fFrameWidth, |
| SkToBool(fRec.fFlags & kFrameAndFill_Flag)); |
| // glyphs are always closed contours, so cap type is ignored, |
| // so we just pass something. |
| rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap, |
| (SkPaint::Join)fRec.fStrokeJoin, |
| fRec.fMiterLimit); |
| } |
| |
| if (fPathEffect) { |
| SkPath effectPath; |
| if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr, matrix)) { |
| localPath.swap(effectPath); |
| } |
| } |
| |
| if (rec.needToApply()) { |
| SkPath strokePath; |
| if (rec.applyToPath(&strokePath, localPath)) { |
| localPath.swap(strokePath); |
| } |
| } |
| |
| // The path effect may have modified 'rec', so wait to here to check hairline status. |
| if (rec.isHairlineStyle()) { |
| hairline = true; |
| } |
| |
| localPath.transform(matrix, &devPath); |
| } |
| glyph.setPath(alloc, &devPath, hairline); |
| } |
| |
| |
| void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const { |
| dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0, |
| fPost2x2[1][0], fPost2x2[1][1], 0, |
| 0, 0, 1); |
| } |
| |
| void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const { |
| *m = SkFontPriv::MakeTextMatrix(fTextSize, fPreScaleX, fPreSkewX); |
| } |
| |
| void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const { |
| this->getLocalMatrix(m); |
| |
| // now concat the device matrix |
| SkMatrix deviceMatrix; |
| this->getMatrixFrom2x2(&deviceMatrix); |
| m->postConcat(deviceMatrix); |
| } |
| |
| bool SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA, |
| SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out) |
| { |
| // A is the 'total' matrix. |
| SkMatrix A; |
| this->getSingleMatrix(&A); |
| |
| // The caller may find the 'total' matrix useful when dealing directly with EM sizes. |
| if (A_out) { |
| *A_out = A; |
| } |
| |
| // GA is the matrix A with rotation removed. |
| SkMatrix GA; |
| bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0; |
| if (skewedOrFlipped) { |
| // QR by Givens rotations. G is Q^T and GA is R. G is rotational (no reflections). |
| // h is where A maps the horizontal baseline. |
| SkPoint h = SkPoint::Make(SK_Scalar1, 0); |
| A.mapPoints(&h, 1); |
| |
| // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0). |
| SkMatrix G; |
| SkComputeGivensRotation(h, &G); |
| |
| GA = G; |
| GA.preConcat(A); |
| |
| // The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational. |
| if (G_inv) { |
| G_inv->setAll( |
| G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX), |
| -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY), |
| G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2)); |
| } |
| } else { |
| GA = A; |
| if (G_inv) { |
| G_inv->reset(); |
| } |
| } |
| |
| // If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices. |
| // All underlying ports have issues with zero text size, so use the matricies to zero. |
| // If one of the scale factors is less than 1/256 then an EM filling square will |
| // never affect any pixels. |
| // If there are any nonfinite numbers in the matrix, bail out and set the matrices to zero. |
| if (SkScalarAbs(GA.get(SkMatrix::kMScaleX)) <= SK_ScalarNearlyZero || |
| SkScalarAbs(GA.get(SkMatrix::kMScaleY)) <= SK_ScalarNearlyZero || |
| !GA.isFinite()) |
| { |
| s->fX = SK_Scalar1; |
| s->fY = SK_Scalar1; |
| sA->setScale(0, 0); |
| if (GsA) { |
| GsA->setScale(0, 0); |
| } |
| if (G_inv) { |
| G_inv->reset(); |
| } |
| return false; |
| } |
| |
| // At this point, given GA, create s. |
| switch (preMatrixScale) { |
| case PreMatrixScale::kFull: |
| s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX)); |
| s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); |
| break; |
| case PreMatrixScale::kVertical: { |
| SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); |
| s->fX = yScale; |
| s->fY = yScale; |
| break; |
| } |
| case PreMatrixScale::kVerticalInteger: { |
| SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY)); |
| SkScalar intYScale = SkScalarRoundToScalar(realYScale); |
| if (intYScale == 0) { |
| intYScale = SK_Scalar1; |
| } |
| s->fX = intYScale; |
| s->fY = intYScale; |
| break; |
| } |
| } |
| |
| // The 'remaining' matrix sA is the total matrix A without the scale. |
| if (!skewedOrFlipped && ( |
| (PreMatrixScale::kFull == preMatrixScale) || |
| (PreMatrixScale::kVertical == preMatrixScale && A.getScaleX() == A.getScaleY()))) |
| { |
| // If GA == A and kFull, sA is identity. |
| // If GA == A and kVertical and A.scaleX == A.scaleY, sA is identity. |
| sA->reset(); |
| } else if (!skewedOrFlipped && PreMatrixScale::kVertical == preMatrixScale) { |
| // If GA == A and kVertical, sA.scaleY is SK_Scalar1. |
| sA->reset(); |
| sA->setScaleX(A.getScaleX() / s->fY); |
| } else { |
| // TODO: like kVertical, kVerticalInteger with int scales. |
| *sA = A; |
| sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY)); |
| } |
| |
| // The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale. |
| if (GsA) { |
| *GsA = GA; |
| // G is rotational so reorders with the scale. |
| GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY)); |
| } |
| |
| return true; |
| } |
| |
| SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() const { |
| return fRec.computeAxisAlignmentForHText(); |
| } |
| |
| SkAxisAlignment SkScalerContextRec::computeAxisAlignmentForHText() const { |
| // Why fPost2x2 can be used here. |
| // getSingleMatrix multiplies in getLocalMatrix, which consists of |
| // * fTextSize (a scale, which has no effect) |
| // * fPreScaleX (a scale in x, which has no effect) |
| // * fPreSkewX (has no effect, but would on vertical text alignment). |
| // In other words, making the text bigger, stretching it along the |
| // horizontal axis, or fake italicizing it does not move the baseline. |
| if (!SkToBool(fFlags & SkScalerContext::kBaselineSnap_Flag)) { |
| return SkAxisAlignment::kNone; |
| } |
| |
| if (0 == fPost2x2[1][0]) { |
| // The x axis is mapped onto the x axis. |
| return SkAxisAlignment::kX; |
| } |
| if (0 == fPost2x2[0][0]) { |
| // The x axis is mapped onto the y axis. |
| return SkAxisAlignment::kY; |
| } |
| return SkAxisAlignment::kNone; |
| } |
| |
| void SkScalerContextRec::setLuminanceColor(SkColor c) { |
| fLumBits = SkMaskGamma::CanonicalColor( |
| SkColorSetRGB(SkColorGetR(c), SkColorGetG(c), SkColorGetB(c))); |
| } |
| |
| /* |
| * Return the scalar with only limited fractional precision. Used to consolidate matrices |
| * that vary only slightly when we create our key into the font cache, since the font scaler |
| * typically returns the same looking resuts for tiny changes in the matrix. |
| */ |
| static SkScalar sk_relax(SkScalar x) { |
| SkScalar n = SkScalarRoundToScalar(x * 1024); |
| return n / 1024.0f; |
| } |
| |
| static SkMask::Format compute_mask_format(const SkFont& font) { |
| switch (font.getEdging()) { |
| case SkFont::Edging::kAlias: |
| return SkMask::kBW_Format; |
| case SkFont::Edging::kAntiAlias: |
| return SkMask::kA8_Format; |
| case SkFont::Edging::kSubpixelAntiAlias: |
| return SkMask::kLCD16_Format; |
| } |
| SkASSERT(false); |
| return SkMask::kA8_Format; |
| } |
| |
| // Beyond this size, LCD doesn't appreciably improve quality, but it always |
| // cost more RAM and draws slower, so we set a cap. |
| #ifndef SK_MAX_SIZE_FOR_LCDTEXT |
| #define SK_MAX_SIZE_FOR_LCDTEXT 48 |
| #endif |
| |
| const SkScalar gMaxSize2ForLCDText = SK_MAX_SIZE_FOR_LCDTEXT * SK_MAX_SIZE_FOR_LCDTEXT; |
| |
| static bool too_big_for_lcd(const SkScalerContextRec& rec, bool checkPost2x2) { |
| if (checkPost2x2) { |
| SkScalar area = rec.fPost2x2[0][0] * rec.fPost2x2[1][1] - |
| rec.fPost2x2[1][0] * rec.fPost2x2[0][1]; |
| area *= rec.fTextSize * rec.fTextSize; |
| return area > gMaxSize2ForLCDText; |
| } else { |
| return rec.fTextSize > SK_MAX_SIZE_FOR_LCDTEXT; |
| } |
| } |
| |
| // The only reason this is not file static is because it needs the context of SkScalerContext to |
| // access SkPaint::computeLuminanceColor. |
| void SkScalerContext::MakeRecAndEffects(const SkFont& font, const SkPaint& paint, |
| const SkSurfaceProps& surfaceProps, |
| SkScalerContextFlags scalerContextFlags, |
| const SkMatrix& deviceMatrix, |
| SkScalerContextRec* rec, |
| SkScalerContextEffects* effects) { |
| SkASSERT(!deviceMatrix.hasPerspective()); |
| |
| sk_bzero(rec, sizeof(SkScalerContextRec)); |
| |
| SkTypeface* typeface = font.getTypeface(); |
| |
| rec->fTypefaceID = typeface->uniqueID(); |
| rec->fTextSize = font.getSize(); |
| rec->fPreScaleX = font.getScaleX(); |
| rec->fPreSkewX = font.getSkewX(); |
| |
| bool checkPost2x2 = false; |
| |
| const SkMatrix::TypeMask mask = deviceMatrix.getType(); |
| if (mask & SkMatrix::kScale_Mask) { |
| rec->fPost2x2[0][0] = sk_relax(deviceMatrix.getScaleX()); |
| rec->fPost2x2[1][1] = sk_relax(deviceMatrix.getScaleY()); |
| checkPost2x2 = true; |
| } else { |
| rec->fPost2x2[0][0] = rec->fPost2x2[1][1] = SK_Scalar1; |
| } |
| if (mask & SkMatrix::kAffine_Mask) { |
| rec->fPost2x2[0][1] = sk_relax(deviceMatrix.getSkewX()); |
| rec->fPost2x2[1][0] = sk_relax(deviceMatrix.getSkewY()); |
| checkPost2x2 = true; |
| } else { |
| rec->fPost2x2[0][1] = rec->fPost2x2[1][0] = 0; |
| } |
| |
| SkPaint::Style style = paint.getStyle(); |
| SkScalar strokeWidth = paint.getStrokeWidth(); |
| |
| unsigned flags = 0; |
| |
| if (font.isEmbolden()) { |
| #ifdef SK_USE_FREETYPE_EMBOLDEN |
| flags |= SkScalerContext::kEmbolden_Flag; |
| #else |
| SkScalar fakeBoldScale = SkScalarInterpFunc(font.getSize(), |
| kStdFakeBoldInterpKeys, |
| kStdFakeBoldInterpValues, |
| kStdFakeBoldInterpLength); |
| SkScalar extra = font.getSize() * fakeBoldScale; |
| |
| if (style == SkPaint::kFill_Style) { |
| style = SkPaint::kStrokeAndFill_Style; |
| strokeWidth = extra; // ignore paint's strokeWidth if it was "fill" |
| } else { |
| strokeWidth += extra; |
| } |
| #endif |
| } |
| |
| if (style != SkPaint::kFill_Style && strokeWidth >= 0) { |
| rec->fFrameWidth = strokeWidth; |
| rec->fMiterLimit = paint.getStrokeMiter(); |
| rec->fStrokeJoin = SkToU8(paint.getStrokeJoin()); |
| rec->fStrokeCap = SkToU8(paint.getStrokeCap()); |
| |
| if (style == SkPaint::kStrokeAndFill_Style) { |
| flags |= SkScalerContext::kFrameAndFill_Flag; |
| } |
| } else { |
| rec->fFrameWidth = -1; |
| rec->fMiterLimit = 0; |
| rec->fStrokeJoin = 0; |
| rec->fStrokeCap = 0; |
| } |
| |
| rec->fMaskFormat = compute_mask_format(font); |
| |
| if (SkMask::kLCD16_Format == rec->fMaskFormat) { |
| if (too_big_for_lcd(*rec, checkPost2x2)) { |
| rec->fMaskFormat = SkMask::kA8_Format; |
| flags |= SkScalerContext::kGenA8FromLCD_Flag; |
| } else { |
| SkPixelGeometry geometry = surfaceProps.pixelGeometry(); |
| |
| switch (geometry) { |
| case kUnknown_SkPixelGeometry: |
| // eeek, can't support LCD |
| rec->fMaskFormat = SkMask::kA8_Format; |
| flags |= SkScalerContext::kGenA8FromLCD_Flag; |
| break; |
| case kRGB_H_SkPixelGeometry: |
| // our default, do nothing. |
| break; |
| case kBGR_H_SkPixelGeometry: |
| flags |= SkScalerContext::kLCD_BGROrder_Flag; |
| break; |
| case kRGB_V_SkPixelGeometry: |
| flags |= SkScalerContext::kLCD_Vertical_Flag; |
| break; |
| case kBGR_V_SkPixelGeometry: |
| flags |= SkScalerContext::kLCD_Vertical_Flag; |
| flags |= SkScalerContext::kLCD_BGROrder_Flag; |
| break; |
| } |
| } |
| } |
| |
| if (font.isEmbeddedBitmaps()) { |
| flags |= SkScalerContext::kEmbeddedBitmapText_Flag; |
| } |
| if (font.isSubpixel()) { |
| flags |= SkScalerContext::kSubpixelPositioning_Flag; |
| } |
| if (font.isForceAutoHinting()) { |
| flags |= SkScalerContext::kForceAutohinting_Flag; |
| } |
| if (font.isLinearMetrics()) { |
| flags |= SkScalerContext::kLinearMetrics_Flag; |
| } |
| if (font.isBaselineSnap()) { |
| flags |= SkScalerContext::kBaselineSnap_Flag; |
| } |
| if (typeface->glyphMaskNeedsCurrentColor()) { |
| flags |= SkScalerContext::kNeedsForegroundColor_Flag; |
| rec->fForegroundColor = paint.getColor(); |
| } |
| rec->fFlags = SkToU16(flags); |
| |
| // these modify fFlags, so do them after assigning fFlags |
| rec->setHinting(font.getHinting()); |
| rec->setLuminanceColor(SkPaintPriv::ComputeLuminanceColor(paint)); |
| |
| // For now always set the paint gamma equal to the device gamma. |
| // The math in SkMaskGamma can handle them being different, |
| // but it requires superluminous masks when |
| // Ex : deviceGamma(x) < paintGamma(x) and x is sufficiently large. |
| rec->setDeviceGamma(surfaceProps.textGamma()); |
| rec->setPaintGamma(surfaceProps.textGamma()); |
| rec->setContrast(surfaceProps.textContrast()); |
| |
| if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kFakeGamma)) { |
| rec->ignoreGamma(); |
| } |
| if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kBoostContrast)) { |
| rec->setContrast(0); |
| } |
| |
| new (effects) SkScalerContextEffects{paint}; |
| } |
| |
| SkDescriptor* SkScalerContext::CreateDescriptorAndEffectsUsingPaint( |
| const SkFont& font, const SkPaint& paint, const SkSurfaceProps& surfaceProps, |
| SkScalerContextFlags scalerContextFlags, const SkMatrix& deviceMatrix, SkAutoDescriptor* ad, |
| SkScalerContextEffects* effects) |
| { |
| SkScalerContextRec rec; |
| MakeRecAndEffects(font, paint, surfaceProps, scalerContextFlags, deviceMatrix, &rec, effects); |
| return AutoDescriptorGivenRecAndEffects(rec, *effects, ad); |
| } |
| |
| static size_t calculate_size_and_flatten(const SkScalerContextRec& rec, |
| const SkScalerContextEffects& effects, |
| SkBinaryWriteBuffer* effectBuffer) { |
| size_t descSize = sizeof(rec); |
| int entryCount = 1; |
| |
| if (effects.fPathEffect || effects.fMaskFilter) { |
| if (effects.fPathEffect) { effectBuffer->writeFlattenable(effects.fPathEffect); } |
| if (effects.fMaskFilter) { effectBuffer->writeFlattenable(effects.fMaskFilter); } |
| entryCount += 1; |
| descSize += effectBuffer->bytesWritten(); |
| } |
| |
| descSize += SkDescriptor::ComputeOverhead(entryCount); |
| return descSize; |
| } |
| |
| static void generate_descriptor(const SkScalerContextRec& rec, |
| const SkBinaryWriteBuffer& effectBuffer, |
| SkDescriptor* desc) { |
| desc->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec); |
| |
| if (effectBuffer.bytesWritten() > 0) { |
| effectBuffer.writeToMemory(desc->addEntry(kEffects_SkDescriptorTag, |
| effectBuffer.bytesWritten(), |
| nullptr)); |
| } |
| |
| desc->computeChecksum(); |
| } |
| |
| SkDescriptor* SkScalerContext::AutoDescriptorGivenRecAndEffects( |
| const SkScalerContextRec& rec, |
| const SkScalerContextEffects& effects, |
| SkAutoDescriptor* ad) |
| { |
| SkBinaryWriteBuffer buf({}); |
| |
| ad->reset(calculate_size_and_flatten(rec, effects, &buf)); |
| generate_descriptor(rec, buf, ad->getDesc()); |
| |
| return ad->getDesc(); |
| } |
| |
| std::unique_ptr<SkDescriptor> SkScalerContext::DescriptorGivenRecAndEffects( |
| const SkScalerContextRec& rec, |
| const SkScalerContextEffects& effects) |
| { |
| SkBinaryWriteBuffer buf({}); |
| |
| auto desc = SkDescriptor::Alloc(calculate_size_and_flatten(rec, effects, &buf)); |
| generate_descriptor(rec, buf, desc.get()); |
| |
| return desc; |
| } |
| |
| void SkScalerContext::DescriptorBufferGiveRec(const SkScalerContextRec& rec, void* buffer) { |
| generate_descriptor(rec, SkBinaryWriteBuffer({}), (SkDescriptor*)buffer); |
| } |
| |
| bool SkScalerContext::CheckBufferSizeForRec(const SkScalerContextRec& rec, |
| const SkScalerContextEffects& effects, |
| size_t size) { |
| SkBinaryWriteBuffer buf({}); |
| return size >= calculate_size_and_flatten(rec, effects, &buf); |
| } |
| |
| std::unique_ptr<SkScalerContext> SkScalerContext::MakeEmpty( |
| sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects, |
| const SkDescriptor* desc) { |
| class SkScalerContext_Empty : public SkScalerContext { |
| public: |
| SkScalerContext_Empty(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects, |
| const SkDescriptor* desc) |
| : SkScalerContext(std::move(typeface), effects, desc) {} |
| |
| protected: |
| GlyphMetrics generateMetrics(const SkGlyph& glyph, SkArenaAlloc*) override { |
| return {glyph.maskFormat()}; |
| } |
| void generateImage(const SkGlyph&, void*) override {} |
| bool generatePath(const SkGlyph& glyph, SkPath* path) override { |
| path->reset(); |
| return false; |
| } |
| void generateFontMetrics(SkFontMetrics* metrics) override { |
| if (metrics) { |
| sk_bzero(metrics, sizeof(*metrics)); |
| } |
| } |
| }; |
| |
| return std::make_unique<SkScalerContext_Empty>(std::move(typeface), effects, desc); |
| } |
| |
| |
| |
| |