blob: 40b9128406a55ddf4528a6b3b5eed5b028289f3c [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLIRGenerator.h"
#include "limits.h"
#include <unordered_set>
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLParser.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalValueReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLLayout.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLNullLiteral.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVarDeclarationsStatement.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#include "src/sksl/ir/SkSLWhileStatement.h"
namespace SkSL {
class AutoSymbolTable {
public:
AutoSymbolTable(IRGenerator* ir)
: fIR(ir)
, fPrevious(fIR->fSymbolTable) {
fIR->pushSymbolTable();
}
~AutoSymbolTable() {
fIR->popSymbolTable();
SkASSERT(fPrevious == fIR->fSymbolTable);
}
IRGenerator* fIR;
std::shared_ptr<SymbolTable> fPrevious;
};
class AutoLoopLevel {
public:
AutoLoopLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fLoopLevel++;
}
~AutoLoopLevel() {
fIR->fLoopLevel--;
}
IRGenerator* fIR;
};
class AutoSwitchLevel {
public:
AutoSwitchLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fSwitchLevel++;
}
~AutoSwitchLevel() {
fIR->fSwitchLevel--;
}
IRGenerator* fIR;
};
IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable,
ErrorReporter& errorReporter)
: fContext(*context)
, fCurrentFunction(nullptr)
, fRootSymbolTable(symbolTable)
, fSymbolTable(symbolTable)
, fLoopLevel(0)
, fSwitchLevel(0)
, fErrors(errorReporter) {}
void IRGenerator::pushSymbolTable() {
fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable), &fErrors));
}
void IRGenerator::popSymbolTable() {
fSymbolTable = fSymbolTable->fParent;
}
static void fill_caps(const SKSL_CAPS_CLASS& caps,
std::unordered_map<String, Program::Settings::Value>* capsMap) {
#define CAP(name) \
capsMap->insert(std::make_pair(String(#name), Program::Settings::Value(caps.name())))
CAP(fbFetchSupport);
CAP(fbFetchNeedsCustomOutput);
CAP(flatInterpolationSupport);
CAP(noperspectiveInterpolationSupport);
CAP(externalTextureSupport);
CAP(mustEnableAdvBlendEqs);
CAP(mustEnableSpecificAdvBlendEqs);
CAP(mustDeclareFragmentShaderOutput);
CAP(mustDoOpBetweenFloorAndAbs);
CAP(mustGuardDivisionEvenAfterExplicitZeroCheck);
CAP(inBlendModesFailRandomlyForAllZeroVec);
CAP(atan2ImplementedAsAtanYOverX);
CAP(canUseAnyFunctionInShader);
CAP(floatIs32Bits);
CAP(integerSupport);
#undef CAP
}
void IRGenerator::start(const Program::Settings* settings,
std::vector<std::unique_ptr<ProgramElement>>* inherited) {
fSettings = settings;
fCapsMap.clear();
if (settings->fCaps) {
fill_caps(*settings->fCaps, &fCapsMap);
} else {
fCapsMap.insert(std::make_pair(String("integerSupport"),
Program::Settings::Value(true)));
}
this->pushSymbolTable();
fInvocations = -1;
fInputs.reset();
fSkPerVertex = nullptr;
fRTAdjust = nullptr;
fRTAdjustInterfaceBlock = nullptr;
fInlineVarCounter = 0;
if (inherited) {
for (const auto& e : *inherited) {
if (e->fKind == ProgramElement::kInterfaceBlock_Kind) {
InterfaceBlock& intf = (InterfaceBlock&) *e;
if (intf.fVariable.fName == Compiler::PERVERTEX_NAME) {
SkASSERT(!fSkPerVertex);
fSkPerVertex = &intf.fVariable;
}
}
}
}
SkASSERT(fIntrinsics);
for (auto& pair : *fIntrinsics) {
pair.second.second = false;
}
}
std::unique_ptr<Extension> IRGenerator::convertExtension(int offset, StringFragment name) {
return std::unique_ptr<Extension>(new Extension(offset, name));
}
void IRGenerator::finish() {
this->popSymbolTable();
fSettings = nullptr;
}
std::unique_ptr<Statement> IRGenerator::convertSingleStatement(const ASTNode& statement) {
switch (statement.fKind) {
case ASTNode::Kind::kBlock:
return this->convertBlock(statement);
case ASTNode::Kind::kVarDeclarations:
return this->convertVarDeclarationStatement(statement);
case ASTNode::Kind::kIf:
return this->convertIf(statement);
case ASTNode::Kind::kFor:
return this->convertFor(statement);
case ASTNode::Kind::kWhile:
return this->convertWhile(statement);
case ASTNode::Kind::kDo:
return this->convertDo(statement);
case ASTNode::Kind::kSwitch:
return this->convertSwitch(statement);
case ASTNode::Kind::kReturn:
return this->convertReturn(statement);
case ASTNode::Kind::kBreak:
return this->convertBreak(statement);
case ASTNode::Kind::kContinue:
return this->convertContinue(statement);
case ASTNode::Kind::kDiscard:
return this->convertDiscard(statement);
default:
// it's an expression
std::unique_ptr<Statement> result = this->convertExpressionStatement(statement);
if (fRTAdjust && Program::kGeometry_Kind == fKind) {
SkASSERT(result->fKind == Statement::kExpression_Kind);
Expression& expr = *((ExpressionStatement&) *result).fExpression;
if (expr.fKind == Expression::kFunctionCall_Kind) {
FunctionCall& fc = (FunctionCall&) expr;
if (fc.fFunction.fBuiltin && fc.fFunction.fName == "EmitVertex") {
std::vector<std::unique_ptr<Statement>> statements;
statements.push_back(getNormalizeSkPositionCode());
statements.push_back(std::move(result));
return std::unique_ptr<Block>(new Block(statement.fOffset,
std::move(statements),
fSymbolTable));
}
}
}
return result;
}
}
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTNode& statement) {
std::vector<std::unique_ptr<Statement>> oldExtraStatements = std::move(fExtraStatements);
std::unique_ptr<Statement> result = this->convertSingleStatement(statement);
if (!result) {
fExtraStatements = std::move(oldExtraStatements);
return nullptr;
}
if (fExtraStatements.size()) {
fExtraStatements.push_back(std::move(result));
std::unique_ptr<Statement> block(new Block(-1, std::move(fExtraStatements), nullptr,
false));
fExtraStatements = std::move(oldExtraStatements);
return block;
}
fExtraStatements = std::move(oldExtraStatements);
return result;
}
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTNode& block) {
SkASSERT(block.fKind == ASTNode::Kind::kBlock);
AutoSymbolTable table(this);
std::vector<std::unique_ptr<Statement>> statements;
for (const auto& child : block) {
std::unique_ptr<Statement> statement = this->convertStatement(child);
if (!statement) {
return nullptr;
}
statements.push_back(std::move(statement));
}
return std::unique_ptr<Block>(new Block(block.fOffset, std::move(statements), fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kVarDeclarations);
auto decl = this->convertVarDeclarations(s, Variable::kLocal_Storage);
if (!decl) {
return nullptr;
}
return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl)));
}
std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTNode& decls,
Variable::Storage storage) {
SkASSERT(decls.fKind == ASTNode::Kind::kVarDeclarations);
auto iter = decls.begin();
const Modifiers& modifiers = iter++->getModifiers();
const ASTNode& rawType = *(iter++);
std::vector<std::unique_ptr<VarDeclaration>> variables;
const Type* baseType = this->convertType(rawType);
if (!baseType) {
return nullptr;
}
if (fKind != Program::kFragmentProcessor_Kind) {
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
baseType->kind() == Type::Kind::kMatrix_Kind) {
fErrors.error(decls.fOffset, "'in' variables may not have matrix type");
}
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset,
"'in uniform' variables only permitted within fragment processors");
}
if (modifiers.fLayout.fWhen.fLength) {
fErrors.error(decls.fOffset, "'when' is only permitted within fragment processors");
}
if (modifiers.fLayout.fFlags & Layout::kTracked_Flag) {
fErrors.error(decls.fOffset, "'tracked' is only permitted within fragment processors");
}
if (modifiers.fLayout.fCType != Layout::CType::kDefault) {
fErrors.error(decls.fOffset, "'ctype' is only permitted within fragment processors");
}
if (modifiers.fLayout.fKey) {
fErrors.error(decls.fOffset, "'key' is only permitted within fragment processors");
}
}
if (modifiers.fLayout.fKey && (modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset, "'key' is not permitted on 'uniform' variables");
}
if (modifiers.fLayout.fMarker.fLength) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'marker' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset, "'marker' is only permitted on 'uniform' variables");
}
if (*baseType != *fContext.fFloat4x4_Type) {
fErrors.error(decls.fOffset, "'marker' is only permitted on float4x4 variables");
}
}
if (modifiers.fLayout.fFlags & Layout::kSRGBUnpremul_Flag) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'srgb_unpremul' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset,
"'srgb_unpremul' is only permitted on 'uniform' variables");
}
auto validColorXformType = [](const Type& t) {
return t.kind() == Type::kVector_Kind && t.componentType().isFloat() &&
(t.columns() == 3 || t.columns() == 4);
};
if (!validColorXformType(*baseType) && !(baseType->kind() == Type::kArray_Kind &&
validColorXformType(baseType->componentType()))) {
fErrors.error(decls.fOffset,
"'srgb_unpremul' is only permitted on half3, half4, float3, or float4 "
"variables");
}
}
if (modifiers.fFlags & Modifiers::kVarying_Flag) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'varying' is only permitted in runtime effects");
}
if (!baseType->isFloat() &&
!(baseType->kind() == Type::kVector_Kind && baseType->componentType().isFloat())) {
fErrors.error(decls.fOffset, "'varying' must be float scalar or vector");
}
}
for (; iter != decls.end(); ++iter) {
const ASTNode& varDecl = *iter;
if (modifiers.fLayout.fLocation == 0 && modifiers.fLayout.fIndex == 0 &&
(modifiers.fFlags & Modifiers::kOut_Flag) && fKind == Program::kFragment_Kind &&
varDecl.getVarData().fName != "sk_FragColor") {
fErrors.error(varDecl.fOffset,
"out location=0, index=0 is reserved for sk_FragColor");
}
const ASTNode::VarData& varData = varDecl.getVarData();
const Type* type = baseType;
std::vector<std::unique_ptr<Expression>> sizes;
auto iter = varDecl.begin();
if (varData.fSizeCount > 0 && (modifiers.fFlags & Modifiers::kIn_Flag)) {
fErrors.error(varDecl.fOffset, "'in' variables may not have array type");
}
for (size_t i = 0; i < varData.fSizeCount; ++i, ++iter) {
const ASTNode& rawSize = *iter;
if (rawSize) {
auto size = this->coerce(this->convertExpression(rawSize), *fContext.fInt_Type);
if (!size) {
return nullptr;
}
String name(type->fName);
int64_t count;
if (size->fKind == Expression::kIntLiteral_Kind) {
count = ((IntLiteral&) *size).fValue;
if (count <= 0) {
fErrors.error(size->fOffset, "array size must be positive");
return nullptr;
}
name += "[" + to_string(count) + "]";
} else {
fErrors.error(size->fOffset, "array size must be specified");
return nullptr;
}
type = (Type*) fSymbolTable->takeOwnership(
std::unique_ptr<Symbol>(new Type(name,
Type::kArray_Kind,
*type,
(int) count)));
sizes.push_back(std::move(size));
} else {
type = (Type*) fSymbolTable->takeOwnership(
std::unique_ptr<Symbol>(new Type(type->name() + "[]",
Type::kArray_Kind,
*type,
-1)));
sizes.push_back(nullptr);
}
}
auto var = std::unique_ptr<Variable>(new Variable(varDecl.fOffset, modifiers,
varData.fName, *type, storage));
if (var->fName == Compiler::RTADJUST_NAME) {
SkASSERT(!fRTAdjust);
SkASSERT(var->fType == *fContext.fFloat4_Type);
fRTAdjust = var.get();
}
std::unique_ptr<Expression> value;
if (iter != varDecl.end()) {
value = this->convertExpression(*iter);
if (!value) {
return nullptr;
}
value = this->coerce(std::move(value), *type);
if (!value) {
return nullptr;
}
var->fWriteCount = 1;
var->fInitialValue = value.get();
}
if (storage == Variable::kGlobal_Storage && var->fName == "sk_FragColor" &&
(*fSymbolTable)[var->fName]) {
// already defined, ignore
} else if (storage == Variable::kGlobal_Storage && (*fSymbolTable)[var->fName] &&
(*fSymbolTable)[var->fName]->fKind == Symbol::kVariable_Kind &&
((Variable*) (*fSymbolTable)[var->fName])->fModifiers.fLayout.fBuiltin >= 0) {
// already defined, just update the modifiers
Variable* old = (Variable*) (*fSymbolTable)[var->fName];
old->fModifiers = var->fModifiers;
} else {
variables.emplace_back(new VarDeclaration(var.get(), std::move(sizes),
std::move(value)));
StringFragment name = var->fName;
fSymbolTable->add(name, std::move(var));
}
}
return std::unique_ptr<VarDeclarations>(new VarDeclarations(decls.fOffset,
baseType,
std::move(variables)));
}
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(const ASTNode& m) {
SkASSERT(m.fKind == ASTNode::Kind::kModifiers);
Modifiers modifiers = m.getModifiers();
if (modifiers.fLayout.fInvocations != -1) {
if (fKind != Program::kGeometry_Kind) {
fErrors.error(m.fOffset, "'invocations' is only legal in geometry shaders");
return nullptr;
}
fInvocations = modifiers.fLayout.fInvocations;
if (fSettings->fCaps && !fSettings->fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fInvocations = -1;
Variable* invocationId = (Variable*) (*fSymbolTable)["sk_InvocationID"];
SkASSERT(invocationId);
invocationId->fModifiers.fFlags = 0;
invocationId->fModifiers.fLayout.fBuiltin = -1;
if (modifiers.fLayout.description() == "") {
return nullptr;
}
}
}
if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && fSettings->fCaps &&
!fSettings->fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fMaxVertices *= fInvocations;
}
return std::unique_ptr<ModifiersDeclaration>(new ModifiersDeclaration(modifiers));
}
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTNode& n) {
SkASSERT(n.fKind == ASTNode::Kind::kIf);
auto iter = n.begin();
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> ifTrue = this->convertStatement(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Statement> ifFalse;
if (iter != n.end()) {
ifFalse = this->convertStatement(*(iter++));
if (!ifFalse) {
return nullptr;
}
}
if (test->fKind == Expression::kBoolLiteral_Kind) {
// static boolean value, fold down to a single branch
if (((BoolLiteral&) *test).fValue) {
return ifTrue;
} else if (ifFalse) {
return ifFalse;
} else {
// False & no else clause. Not an error, so don't return null!
std::vector<std::unique_ptr<Statement>> empty;
return std::unique_ptr<Statement>(new Block(n.fOffset, std::move(empty),
fSymbolTable));
}
}
return std::unique_ptr<Statement>(new IfStatement(n.fOffset, n.getBool(), std::move(test),
std::move(ifTrue), std::move(ifFalse)));
}
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTNode& f) {
SkASSERT(f.fKind == ASTNode::Kind::kFor);
AutoLoopLevel level(this);
AutoSymbolTable table(this);
std::unique_ptr<Statement> initializer;
auto iter = f.begin();
if (*iter) {
initializer = this->convertStatement(*iter);
if (!initializer) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> test;
if (*iter) {
bool oldCanInline = fCanInline;
fCanInline = false;
test = this->coerce(this->convertExpression(*iter), *fContext.fBool_Type);
fCanInline = oldCanInline;
if (!test) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> next;
if (*iter) {
bool oldCanInline = fCanInline;
fCanInline = false;
next = this->convertExpression(*iter);
fCanInline = oldCanInline;
if (!next) {
return nullptr;
}
this->checkValid(*next);
}
++iter;
std::unique_ptr<Statement> statement = this->convertStatement(*iter);
if (!statement) {
return nullptr;
}
return std::unique_ptr<Statement>(new ForStatement(f.fOffset, std::move(initializer),
std::move(test), std::move(next),
std::move(statement), fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTNode& w) {
SkASSERT(w.fKind == ASTNode::Kind::kWhile);
AutoLoopLevel level(this);
auto iter = w.begin();
bool oldCanInline = fCanInline;
fCanInline = false;
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)),
*fContext.fBool_Type);
fCanInline = oldCanInline;
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
return std::unique_ptr<Statement>(new WhileStatement(w.fOffset, std::move(test),
std::move(statement)));
}
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDo);
AutoLoopLevel level(this);
auto iter = d.begin();
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
bool oldCanInline = fCanInline;
fCanInline = false;
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)),
*fContext.fBool_Type);
fCanInline = oldCanInline;
if (!test) {
return nullptr;
}
return std::unique_ptr<Statement>(new DoStatement(d.fOffset, std::move(statement),
std::move(test)));
}
std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kSwitch);
AutoSwitchLevel level(this);
auto iter = s.begin();
std::unique_ptr<Expression> value = this->convertExpression(*(iter++));
if (!value) {
return nullptr;
}
if (value->fType != *fContext.fUInt_Type && value->fType.kind() != Type::kEnum_Kind) {
value = this->coerce(std::move(value), *fContext.fInt_Type);
if (!value) {
return nullptr;
}
}
AutoSymbolTable table(this);
std::unordered_set<int> caseValues;
std::vector<std::unique_ptr<SwitchCase>> cases;
for (; iter != s.end(); ++iter) {
const ASTNode& c = *iter;
SkASSERT(c.fKind == ASTNode::Kind::kSwitchCase);
std::unique_ptr<Expression> caseValue;
auto childIter = c.begin();
if (*childIter) {
caseValue = this->convertExpression(*childIter);
if (!caseValue) {
return nullptr;
}
caseValue = this->coerce(std::move(caseValue), value->fType);
if (!caseValue) {
return nullptr;
}
if (!caseValue->isConstant()) {
fErrors.error(caseValue->fOffset, "case value must be a constant");
return nullptr;
}
int64_t v;
this->getConstantInt(*caseValue, &v);
if (caseValues.find(v) != caseValues.end()) {
fErrors.error(caseValue->fOffset, "duplicate case value");
}
caseValues.insert(v);
}
++childIter;
std::vector<std::unique_ptr<Statement>> statements;
for (; childIter != c.end(); ++childIter) {
std::unique_ptr<Statement> converted = this->convertStatement(*childIter);
if (!converted) {
return nullptr;
}
statements.push_back(std::move(converted));
}
cases.emplace_back(new SwitchCase(c.fOffset, std::move(caseValue),
std::move(statements)));
}
return std::unique_ptr<Statement>(new SwitchStatement(s.fOffset, s.getBool(),
std::move(value), std::move(cases),
fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(const ASTNode& s) {
std::unique_ptr<Expression> e = this->convertExpression(s);
if (!e) {
return nullptr;
}
this->checkValid(*e);
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTNode& r) {
SkASSERT(r.fKind == ASTNode::Kind::kReturn);
SkASSERT(fCurrentFunction);
// early returns from a vertex main function will bypass the sk_Position normalization, so
// SkASSERT that we aren't doing that. It is of course possible to fix this by adding a
// normalization before each return, but it will probably never actually be necessary.
SkASSERT(Program::kVertex_Kind != fKind || !fRTAdjust || "main" != fCurrentFunction->fName);
if (r.begin() != r.end()) {
std::unique_ptr<Expression> result = this->convertExpression(*r.begin());
if (!result) {
return nullptr;
}
if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) {
fErrors.error(result->fOffset, "may not return a value from a void function");
} else {
result = this->coerce(std::move(result), fCurrentFunction->fReturnType);
if (!result) {
return nullptr;
}
}
return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)));
} else {
if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) {
fErrors.error(r.fOffset, "expected function to return '" +
fCurrentFunction->fReturnType.displayName() + "'");
}
return std::unique_ptr<Statement>(new ReturnStatement(r.fOffset));
}
}
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTNode& b) {
SkASSERT(b.fKind == ASTNode::Kind::kBreak);
if (fLoopLevel > 0 || fSwitchLevel > 0) {
return std::unique_ptr<Statement>(new BreakStatement(b.fOffset));
} else {
fErrors.error(b.fOffset, "break statement must be inside a loop or switch");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTNode& c) {
SkASSERT(c.fKind == ASTNode::Kind::kContinue);
if (fLoopLevel > 0) {
return std::unique_ptr<Statement>(new ContinueStatement(c.fOffset));
} else {
fErrors.error(c.fOffset, "continue statement must be inside a loop");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDiscard);
return std::unique_ptr<Statement>(new DiscardStatement(d.fOffset));
}
std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) {
Layout invokeLayout;
Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag);
FunctionDeclaration* invokeDecl = new FunctionDeclaration(-1,
invokeModifiers,
"_invoke",
std::vector<const Variable*>(),
*fContext.fVoid_Type);
fProgramElements->push_back(std::unique_ptr<ProgramElement>(
new FunctionDefinition(-1, *invokeDecl, std::move(main))));
fSymbolTable->add(invokeDecl->fName, std::unique_ptr<FunctionDeclaration>(invokeDecl));
std::vector<std::unique_ptr<VarDeclaration>> variables;
Variable* loopIdx = (Variable*) (*fSymbolTable)["sk_InvocationID"];
SkASSERT(loopIdx);
std::unique_ptr<Expression> test(new BinaryExpression(-1,
std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
Token::Kind::TK_LT,
std::unique_ptr<IntLiteral>(new IntLiteral(fContext, -1, fInvocations)),
*fContext.fBool_Type));
std::unique_ptr<Expression> next(new PostfixExpression(
std::unique_ptr<Expression>(
new VariableReference(-1,
*loopIdx,
VariableReference::kReadWrite_RefKind)),
Token::Kind::TK_PLUSPLUS));
ASTNode endPrimitiveID(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, "EndPrimitive");
std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID);
SkASSERT(endPrimitive);
std::vector<std::unique_ptr<Statement>> loopBody;
std::vector<std::unique_ptr<Expression>> invokeArgs;
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
this->call(-1,
*invokeDecl,
std::vector<std::unique_ptr<Expression>>()))));
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
this->call(-1,
std::move(endPrimitive),
std::vector<std::unique_ptr<Expression>>()))));
std::unique_ptr<Expression> assignment(new BinaryExpression(-1,
std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
Token::Kind::TK_EQ,
std::unique_ptr<IntLiteral>(new IntLiteral(fContext, -1, 0)),
*fContext.fInt_Type));
std::unique_ptr<Statement> initializer(new ExpressionStatement(std::move(assignment)));
std::unique_ptr<Statement> loop = std::unique_ptr<Statement>(
new ForStatement(-1,
std::move(initializer),
std::move(test),
std::move(next),
std::unique_ptr<Block>(new Block(-1, std::move(loopBody))),
fSymbolTable));
std::vector<std::unique_ptr<Statement>> children;
children.push_back(std::move(loop));
return std::unique_ptr<Block>(new Block(-1, std::move(children)));
}
std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() {
// sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw,
// 0,
// sk_Position.w);
SkASSERT(fSkPerVertex && fRTAdjust);
#define REF(var) std::unique_ptr<Expression>(\
new VariableReference(-1, *var, VariableReference::kRead_RefKind))
#define FIELD(var, idx) std::unique_ptr<Expression>(\
new FieldAccess(REF(var), idx, FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
#define POS std::unique_ptr<Expression>(new FieldAccess(REF(fSkPerVertex), 0, \
FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
#define ADJUST (fRTAdjustInterfaceBlock ? \
FIELD(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex) : \
REF(fRTAdjust))
#define SWIZZLE(expr, ...) std::unique_ptr<Expression>(new Swizzle(fContext, expr, \
{ __VA_ARGS__ }))
#define OP(left, op, right) std::unique_ptr<Expression>( \
new BinaryExpression(-1, left, op, right, \
*fContext.fFloat2_Type))
std::vector<std::unique_ptr<Expression>> children;
children.push_back(OP(OP(SWIZZLE(POS, 0, 1), Token::Kind::TK_STAR, SWIZZLE(ADJUST, 0, 2)),
Token::Kind::TK_PLUS,
OP(SWIZZLE(POS, 3, 3), Token::Kind::TK_STAR, SWIZZLE(ADJUST, 1, 3))));
children.push_back(std::unique_ptr<Expression>(new FloatLiteral(fContext, -1, 0.0)));
children.push_back(SWIZZLE(POS, 3));
std::unique_ptr<Expression> result = OP(POS, Token::Kind::TK_EQ,
std::unique_ptr<Expression>(new Constructor(-1,
*fContext.fFloat4_Type,
std::move(children))));
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(result)));
}
void IRGenerator::convertFunction(const ASTNode& f) {
auto iter = f.begin();
const Type* returnType = this->convertType(*(iter++));
if (!returnType) {
return;
}
const ASTNode::FunctionData& fd = f.getFunctionData();
std::vector<const Variable*> parameters;
for (size_t i = 0; i < fd.fParameterCount; ++i) {
const ASTNode& param = *(iter++);
SkASSERT(param.fKind == ASTNode::Kind::kParameter);
ASTNode::ParameterData pd = param.getParameterData();
auto paramIter = param.begin();
const Type* type = this->convertType(*(paramIter++));
if (!type) {
return;
}
for (int j = (int) pd.fSizeCount; j >= 1; j--) {
int size = (param.begin() + j)->getInt();
String name = type->name() + "[" + to_string(size) + "]";
type = (Type*) fSymbolTable->takeOwnership(
std::unique_ptr<Symbol>(new Type(std::move(name),
Type::kArray_Kind,
*type,
size)));
}
StringFragment name = pd.fName;
Variable* var = (Variable*) fSymbolTable->takeOwnership(
std::unique_ptr<Symbol>(new Variable(param.fOffset,
pd.fModifiers,
name,
*type,
Variable::kParameter_Storage)));
parameters.push_back(var);
}
if (fd.fName == "main") {
switch (fKind) {
case Program::kPipelineStage_Kind: {
bool valid;
switch (parameters.size()) {
case 2:
valid = parameters[0]->fType == *fContext.fFloat2_Type &&
parameters[0]->fModifiers.fFlags == 0 &&
parameters[1]->fType == *fContext.fHalf4_Type &&
parameters[1]->fModifiers.fFlags == (Modifiers::kIn_Flag |
Modifiers::kOut_Flag);
break;
case 1:
valid = parameters[0]->fType == *fContext.fHalf4_Type &&
parameters[0]->fModifiers.fFlags == (Modifiers::kIn_Flag |
Modifiers::kOut_Flag);
break;
default:
valid = false;
}
if (!valid) {
fErrors.error(f.fOffset, "pipeline stage 'main' must be declared main(float2, "
"inout half4) or main(inout half4)");
return;
}
break;
}
case Program::kGeneric_Kind:
break;
default:
if (parameters.size()) {
fErrors.error(f.fOffset, "shader 'main' must have zero parameters");
}
}
}
// find existing declaration
const FunctionDeclaration* decl = nullptr;
auto entry = (*fSymbolTable)[fd.fName];
if (entry) {
std::vector<const FunctionDeclaration*> functions;
switch (entry->fKind) {
case Symbol::kUnresolvedFunction_Kind:
functions = ((UnresolvedFunction*) entry)->fFunctions;
break;
case Symbol::kFunctionDeclaration_Kind:
functions.push_back((FunctionDeclaration*) entry);
break;
default:
fErrors.error(f.fOffset, "symbol '" + fd.fName + "' was already defined");
return;
}
for (const auto& other : functions) {
SkASSERT(other->fName == fd.fName);
if (parameters.size() == other->fParameters.size()) {
bool match = true;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fType != other->fParameters[i]->fType) {
match = false;
break;
}
}
if (match) {
if (*returnType != other->fReturnType) {
FunctionDeclaration newDecl(f.fOffset, fd.fModifiers, fd.fName, parameters,
*returnType);
fErrors.error(f.fOffset, "functions '" + newDecl.declaration() +
"' and '" + other->declaration() +
"' differ only in return type");
return;
}
decl = other;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) {
fErrors.error(f.fOffset, "modifiers on parameter " +
to_string((uint64_t) i + 1) +
" differ between declaration and "
"definition");
return;
}
}
if (other->fDefinition && !other->fBuiltin) {
fErrors.error(f.fOffset, "duplicate definition of " +
other->declaration());
}
break;
}
}
}
}
if (!decl) {
// couldn't find an existing declaration
auto newDecl = std::unique_ptr<FunctionDeclaration>(new FunctionDeclaration(f.fOffset,
fd.fModifiers,
fd.fName,
parameters,
*returnType));
decl = newDecl.get();
fSymbolTable->add(decl->fName, std::move(newDecl));
}
if (iter != f.end()) {
// compile body
SkASSERT(!fCurrentFunction);
fCurrentFunction = decl;
std::shared_ptr<SymbolTable> old = fSymbolTable;
AutoSymbolTable table(this);
if (fd.fName == "main" && fKind == Program::kPipelineStage_Kind) {
if (parameters.size() == 2) {
parameters[0]->fModifiers.fLayout.fBuiltin = SK_MAIN_COORDS_BUILTIN;
parameters[1]->fModifiers.fLayout.fBuiltin = SK_OUTCOLOR_BUILTIN;
} else {
SkASSERT(parameters.size() == 1);
parameters[0]->fModifiers.fLayout.fBuiltin = SK_OUTCOLOR_BUILTIN;
}
}
for (size_t i = 0; i < parameters.size(); i++) {
fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]);
}
bool needInvocationIDWorkaround = fInvocations != -1 && fd.fName == "main" &&
fSettings->fCaps &&
!fSettings->fCaps->gsInvocationsSupport();
std::unique_ptr<Block> body = this->convertBlock(*iter);
fCurrentFunction = nullptr;
if (!body) {
return;
}
if (needInvocationIDWorkaround) {
body = this->applyInvocationIDWorkaround(std::move(body));
}
// conservatively assume all user-defined functions have side effects
((Modifiers&) decl->fModifiers).fFlags |= Modifiers::kHasSideEffects_Flag;
if (Program::kVertex_Kind == fKind && fd.fName == "main" && fRTAdjust) {
body->fStatements.insert(body->fStatements.end(), this->getNormalizeSkPositionCode());
}
std::unique_ptr<FunctionDefinition> result(new FunctionDefinition(f.fOffset, *decl,
std::move(body)));
decl->fDefinition = result.get();
result->fSource = &f;
fProgramElements->push_back(std::move(result));
}
}
std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTNode& intf) {
SkASSERT(intf.fKind == ASTNode::Kind::kInterfaceBlock);
ASTNode::InterfaceBlockData id = intf.getInterfaceBlockData();
std::shared_ptr<SymbolTable> old = fSymbolTable;
this->pushSymbolTable();
std::shared_ptr<SymbolTable> symbols = fSymbolTable;
std::vector<Type::Field> fields;
bool haveRuntimeArray = false;
bool foundRTAdjust = false;
auto iter = intf.begin();
for (size_t i = 0; i < id.fDeclarationCount; ++i) {
std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations(
*(iter++),
Variable::kInterfaceBlock_Storage);
if (!decl) {
return nullptr;
}
for (const auto& stmt : decl->fVars) {
VarDeclaration& vd = (VarDeclaration&) *stmt;
if (haveRuntimeArray) {
fErrors.error(decl->fOffset,
"only the last entry in an interface block may be a runtime-sized "
"array");
}
if (vd.fVar == fRTAdjust) {
foundRTAdjust = true;
SkASSERT(vd.fVar->fType == *fContext.fFloat4_Type);
fRTAdjustFieldIndex = fields.size();
}
fields.push_back(Type::Field(vd.fVar->fModifiers, vd.fVar->fName,
&vd.fVar->fType));
if (vd.fValue) {
fErrors.error(decl->fOffset,
"initializers are not permitted on interface block fields");
}
if (vd.fVar->fModifiers.fFlags & (Modifiers::kIn_Flag |
Modifiers::kOut_Flag |
Modifiers::kUniform_Flag |
Modifiers::kBuffer_Flag |
Modifiers::kConst_Flag)) {
fErrors.error(decl->fOffset,
"interface block fields may not have storage qualifiers");
}
if (vd.fVar->fType.kind() == Type::kArray_Kind &&
vd.fVar->fType.columns() == -1) {
haveRuntimeArray = true;
}
}
}
this->popSymbolTable();
Type* type = (Type*) old->takeOwnership(std::unique_ptr<Symbol>(new Type(intf.fOffset,
id.fTypeName,
fields)));
std::vector<std::unique_ptr<Expression>> sizes;
for (size_t i = 0; i < id.fSizeCount; ++i) {
const ASTNode& size = *(iter++);
if (size) {
std::unique_ptr<Expression> converted = this->convertExpression(size);
if (!converted) {
return nullptr;
}
String name = type->fName;
int64_t count;
if (converted->fKind == Expression::kIntLiteral_Kind) {
count = ((IntLiteral&) *converted).fValue;
if (count <= 0) {
fErrors.error(converted->fOffset, "array size must be positive");
return nullptr;
}
name += "[" + to_string(count) + "]";
} else {
fErrors.error(intf.fOffset, "array size must be specified");
return nullptr;
}
type = (Type*) symbols->takeOwnership(std::unique_ptr<Symbol>(
new Type(name,
Type::kArray_Kind,
*type,
(int) count)));
sizes.push_back(std::move(converted));
} else {
fErrors.error(intf.fOffset, "array size must be specified");
return nullptr;
}
}
Variable* var = (Variable*) old->takeOwnership(std::unique_ptr<Symbol>(
new Variable(intf.fOffset,
id.fModifiers,
id.fInstanceName.fLength ? id.fInstanceName : id.fTypeName,
*type,
Variable::kGlobal_Storage)));
if (foundRTAdjust) {
fRTAdjustInterfaceBlock = var;
}
if (id.fInstanceName.fLength) {
old->addWithoutOwnership(id.fInstanceName, var);
} else {
for (size_t i = 0; i < fields.size(); i++) {
old->add(fields[i].fName, std::unique_ptr<Field>(new Field(intf.fOffset, *var,
(int) i)));
}
}
return std::unique_ptr<InterfaceBlock>(new InterfaceBlock(intf.fOffset,
var,
id.fTypeName,
id.fInstanceName,
std::move(sizes),
symbols));
}
void IRGenerator::getConstantInt(const Expression& value, int64_t* out) {
switch (value.fKind) {
case Expression::kIntLiteral_Kind:
*out = ((const IntLiteral&) value).fValue;
break;
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference&) value).fVariable;
if ((var.fModifiers.fFlags & Modifiers::kConst_Flag) &&
var.fInitialValue) {
this->getConstantInt(*var.fInitialValue, out);
}
break;
}
default:
fErrors.error(value.fOffset, "expected a constant int");
}
}
void IRGenerator::convertEnum(const ASTNode& e) {
SkASSERT(e.fKind == ASTNode::Kind::kEnum);
std::vector<Variable*> variables;
int64_t currentValue = 0;
Layout layout;
ASTNode enumType(e.fNodes, e.fOffset, ASTNode::Kind::kType,
ASTNode::TypeData(e.getString(), false, false));
const Type* type = this->convertType(enumType);
Modifiers modifiers(layout, Modifiers::kConst_Flag);
std::shared_ptr<SymbolTable> symbols(new SymbolTable(fSymbolTable, &fErrors));
fSymbolTable = symbols;
for (auto iter = e.begin(); iter != e.end(); ++iter) {
const ASTNode& child = *iter;
SkASSERT(child.fKind == ASTNode::Kind::kEnumCase);
std::unique_ptr<Expression> value;
if (child.begin() != child.end()) {
value = this->convertExpression(*child.begin());
if (!value) {
fSymbolTable = symbols->fParent;
return;
}
this->getConstantInt(*value, &currentValue);
}
value = std::unique_ptr<Expression>(new IntLiteral(fContext, e.fOffset, currentValue));
++currentValue;
auto var = std::unique_ptr<Variable>(new Variable(e.fOffset, modifiers, child.getString(),
*type, Variable::kGlobal_Storage,
value.get()));
variables.push_back(var.get());
symbols->add(child.getString(), std::move(var));
symbols->takeOwnership(std::move(value));
}
fProgramElements->push_back(std::unique_ptr<ProgramElement>(new Enum(e.fOffset, e.getString(),
symbols)));
fSymbolTable = symbols->fParent;
}
const Type* IRGenerator::convertType(const ASTNode& type) {
ASTNode::TypeData td = type.getTypeData();
const Symbol* result = (*fSymbolTable)[td.fName];
if (result && result->fKind == Symbol::kType_Kind) {
if (td.fIsNullable) {
if (((Type&) *result) == *fContext.fFragmentProcessor_Type) {
if (type.begin() != type.end()) {
fErrors.error(type.fOffset, "type '" + td.fName + "' may not be used in "
"an array");
}
result = fSymbolTable->takeOwnership(std::unique_ptr<Symbol>(
new Type(String(result->fName) + "?",
Type::kNullable_Kind,
(const Type&) *result)));
} else {
fErrors.error(type.fOffset, "type '" + td.fName + "' may not be nullable");
}
}
for (const auto& size : type) {
String name(result->fName);
name += "[";
if (size) {
name += to_string(size.getInt());
}
name += "]";
result = (Type*) fSymbolTable->takeOwnership(std::unique_ptr<Symbol>(
new Type(name,
Type::kArray_Kind,
(const Type&) *result,
size ? size.getInt()
: 0)));
}
return (const Type*) result;
}
fErrors.error(type.fOffset, "unknown type '" + td.fName + "'");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTNode& expr) {
switch (expr.fKind) {
case ASTNode::Kind::kBinary:
return this->convertBinaryExpression(expr);
case ASTNode::Kind::kBool:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset,
expr.getBool()));
case ASTNode::Kind::kCall:
return this->convertCallExpression(expr);
case ASTNode::Kind::kField:
return this->convertFieldExpression(expr);
case ASTNode::Kind::kFloat:
return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset,
expr.getFloat()));
case ASTNode::Kind::kIdentifier:
return this->convertIdentifier(expr);
case ASTNode::Kind::kIndex:
return this->convertIndexExpression(expr);
case ASTNode::Kind::kInt:
return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset,
expr.getInt()));
case ASTNode::Kind::kNull:
return std::unique_ptr<Expression>(new NullLiteral(fContext, expr.fOffset));
case ASTNode::Kind::kPostfix:
return this->convertPostfixExpression(expr);
case ASTNode::Kind::kPrefix:
return this->convertPrefixExpression(expr);
case ASTNode::Kind::kTernary:
return this->convertTernaryExpression(expr);
default:
#ifdef SK_DEBUG
ABORT("unsupported expression: %s\n", expr.description().c_str());
#endif
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTNode& identifier) {
SkASSERT(identifier.fKind == ASTNode::Kind::kIdentifier);
const Symbol* result = (*fSymbolTable)[identifier.getString()];
if (!result) {
fErrors.error(identifier.fOffset, "unknown identifier '" + identifier.getString() + "'");
return nullptr;
}
switch (result->fKind) {
case Symbol::kFunctionDeclaration_Kind: {
std::vector<const FunctionDeclaration*> f = {
(const FunctionDeclaration*) result
};
return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
identifier.fOffset,
f));
}
case Symbol::kUnresolvedFunction_Kind: {
const UnresolvedFunction* f = (const UnresolvedFunction*) result;
return std::unique_ptr<FunctionReference>(new FunctionReference(fContext,
identifier.fOffset,
f->fFunctions));
}
case Symbol::kVariable_Kind: {
const Variable* var = (const Variable*) result;
switch (var->fModifiers.fLayout.fBuiltin) {
case SK_WIDTH_BUILTIN:
fInputs.fRTWidth = true;
break;
case SK_HEIGHT_BUILTIN:
fInputs.fRTHeight = true;
break;
#ifndef SKSL_STANDALONE
case SK_FRAGCOORD_BUILTIN:
fInputs.fFlipY = true;
if (fSettings->fFlipY &&
(!fSettings->fCaps ||
!fSettings->fCaps->fragCoordConventionsExtensionString())) {
fInputs.fRTHeight = true;
}
#endif
}
if (fKind == Program::kFragmentProcessor_Kind &&
(var->fModifiers.fFlags & Modifiers::kIn_Flag) &&
!(var->fModifiers.fFlags & Modifiers::kUniform_Flag) &&
!var->fModifiers.fLayout.fKey &&
var->fModifiers.fLayout.fBuiltin == -1 &&
var->fType.nonnullable() != *fContext.fFragmentProcessor_Type &&
var->fType.kind() != Type::kSampler_Kind) {
bool valid = false;
for (const auto& decl : fFile->root()) {
if (decl.fKind == ASTNode::Kind::kSection) {
ASTNode::SectionData section = decl.getSectionData();
if (section.fName == "setData") {
valid = true;
break;
}
}
}
if (!valid) {
fErrors.error(identifier.fOffset, "'in' variable must be either 'uniform' or "
"'layout(key)', or there must be a custom "
"@setData function");
}
}
// default to kRead_RefKind; this will be corrected later if the variable is written to
return std::unique_ptr<VariableReference>(new VariableReference(
identifier.fOffset,
*var,
VariableReference::kRead_RefKind));
}
case Symbol::kField_Kind: {
const Field* field = (const Field*) result;
VariableReference* base = new VariableReference(identifier.fOffset, field->fOwner,
VariableReference::kRead_RefKind);
return std::unique_ptr<Expression>(new FieldAccess(
std::unique_ptr<Expression>(base),
field->fFieldIndex,
FieldAccess::kAnonymousInterfaceBlock_OwnerKind));
}
case Symbol::kType_Kind: {
const Type* t = (const Type*) result;
return std::unique_ptr<TypeReference>(new TypeReference(fContext, identifier.fOffset,
*t));
}
case Symbol::kExternal_Kind: {
ExternalValue* r = (ExternalValue*) result;
return std::unique_ptr<ExternalValueReference>(
new ExternalValueReference(identifier.fOffset, r));
}
default:
ABORT("unsupported symbol type %d\n", result->fKind);
}
}
std::unique_ptr<Section> IRGenerator::convertSection(const ASTNode& s) {
ASTNode::SectionData section = s.getSectionData();
return std::unique_ptr<Section>(new Section(s.fOffset, section.fName, section.fArgument,
section.fText));
}
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
const Type& type) {
if (!expr) {
return nullptr;
}
if (expr->fType == type) {
return expr;
}
this->checkValid(*expr);
if (expr->fType == *fContext.fInvalid_Type) {
return nullptr;
}
if (expr->coercionCost(type) == INT_MAX) {
fErrors.error(expr->fOffset, "expected '" + type.displayName() + "', but found '" +
expr->fType.displayName() + "'");
return nullptr;
}
if (type.kind() == Type::kScalar_Kind) {
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
std::unique_ptr<Expression> ctor;
if (type == *fContext.fFloatLiteral_Type) {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
"float"));
} else if (type == *fContext.fIntLiteral_Type) {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
"int"));
} else {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
type.fName));
}
if (!ctor) {
printf("error, null identifier: %s\n", String(type.fName).c_str());
}
SkASSERT(ctor);
return this->call(-1, std::move(ctor), std::move(args));
}
if (expr->fKind == Expression::kNullLiteral_Kind) {
SkASSERT(type.kind() == Type::kNullable_Kind);
return std::unique_ptr<Expression>(new NullLiteral(expr->fOffset, type));
}
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
return std::unique_ptr<Expression>(new Constructor(-1, type, std::move(args)));
}
static bool is_matrix_multiply(const Type& left, const Type& right) {
if (left.kind() == Type::kMatrix_Kind) {
return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind;
}
return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind;
}
/**
* Determines the operand and result types of a binary expression. Returns true if the expression is
* legal, false otherwise. If false, the values of the out parameters are undefined.
*/
static bool determine_binary_type(const Context& context,
Token::Kind op,
const Type& left,
const Type& right,
const Type** outLeftType,
const Type** outRightType,
const Type** outResultType,
bool tryFlipped) {
bool isLogical;
bool validMatrixOrVectorOp;
switch (op) {
case Token::Kind::TK_EQ:
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
case Token::Kind::TK_EQEQ: // fall through
case Token::Kind::TK_NEQ:
if (right.canCoerceTo(left)) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = context.fBool_Type.get();
return true;
} if (left.canCoerceTo(right)) {
*outLeftType = &right;
*outRightType = &right;
*outResultType = context.fBool_Type.get();
return true;
}
return false;
case Token::Kind::TK_LT: // fall through
case Token::Kind::TK_GT: // fall through
case Token::Kind::TK_LTEQ: // fall through
case Token::Kind::TK_GTEQ:
isLogical = true;
validMatrixOrVectorOp = false;
break;
case Token::Kind::TK_LOGICALOR: // fall through
case Token::Kind::TK_LOGICALAND: // fall through
case Token::Kind::TK_LOGICALXOR: // fall through
case Token::Kind::TK_LOGICALOREQ: // fall through
case Token::Kind::TK_LOGICALANDEQ: // fall through
case Token::Kind::TK_LOGICALXOREQ:
*outLeftType = context.fBool_Type.get();
*outRightType = context.fBool_Type.get();
*outResultType = context.fBool_Type.get();
return left.canCoerceTo(*context.fBool_Type) &&
right.canCoerceTo(*context.fBool_Type);
case Token::Kind::TK_STAREQ:
if (left.kind() == Type::kScalar_Kind) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
}
[[fallthrough]];
case Token::Kind::TK_STAR:
if (is_matrix_multiply(left, right)) {
// determine final component type
if (determine_binary_type(context, Token::Kind::TK_STAR, left.componentType(),
right.componentType(), outLeftType, outRightType,
outResultType, false)) {
*outLeftType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
*outRightType = &(*outResultType)->toCompound(context, right.columns(),
right.rows());
int leftColumns = left.columns();
int leftRows = left.rows();
int rightColumns;
int rightRows;
if (right.kind() == Type::kVector_Kind) {
// matrix * vector treats the vector as a column vector, so we need to
// transpose it
rightColumns = right.rows();
rightRows = right.columns();
SkASSERT(rightColumns == 1);
} else {
rightColumns = right.columns();
rightRows = right.rows();
}
if (rightColumns > 1) {
*outResultType = &(*outResultType)->toCompound(context, rightColumns,
leftRows);
} else {
// result was a column vector, transpose it back to a row
*outResultType = &(*outResultType)->toCompound(context, leftRows,
rightColumns);
}
return leftColumns == rightRows;
} else {
return false;
}
}
isLogical = false;
validMatrixOrVectorOp = true;
break;
case Token::Kind::TK_PLUSEQ:
case Token::Kind::TK_MINUSEQ:
case Token::Kind::TK_SLASHEQ:
case Token::Kind::TK_PERCENTEQ:
case Token::Kind::TK_SHLEQ:
case Token::Kind::TK_SHREQ:
if (left.kind() == Type::kScalar_Kind) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
}
[[fallthrough]];
case Token::Kind::TK_PLUS: // fall through
case Token::Kind::TK_MINUS: // fall through
case Token::Kind::TK_SLASH: // fall through
isLogical = false;
validMatrixOrVectorOp = true;
break;
case Token::Kind::TK_COMMA:
*outLeftType = &left;
*outRightType = &right;
*outResultType = &right;
return true;
default:
isLogical = false;
validMatrixOrVectorOp = false;
}
bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind;
if (left.kind() == Type::kScalar_Kind && right.kind() == Type::kScalar_Kind &&
right.canCoerceTo(left)) {
if (left.priority() > right.priority()) {
*outLeftType = &left;
*outRightType = &left;
} else {
*outLeftType = &right;
*outRightType = &right;
}
if (isLogical) {
*outResultType = context.fBool_Type.get();
} else {
*outResultType = &left;
}
return true;
}
if (right.canCoerceTo(left) && isVectorOrMatrix && validMatrixOrVectorOp) {
*outLeftType = &left;
*outRightType = &left;
if (isLogical) {
*outResultType = context.fBool_Type.get();
} else {
*outResultType = &left;
}
return true;
}
if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) &&
(right.kind() == Type::kScalar_Kind)) {
if (determine_binary_type(context, op, left.componentType(), right, outLeftType,
outRightType, outResultType, false)) {
*outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows());
if (!isLogical) {
*outResultType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
}
return true;
}
return false;
}
if (tryFlipped) {
return determine_binary_type(context, op, right, left, outRightType, outLeftType,
outResultType, false);
}
return false;
}
static std::unique_ptr<Expression> short_circuit_boolean(const Context& context,
const Expression& left,
Token::Kind op,
const Expression& right) {
SkASSERT(left.fKind == Expression::kBoolLiteral_Kind);
bool leftVal = ((BoolLiteral&) left).fValue;
if (op == Token::Kind::TK_LOGICALAND) {
// (true && expr) -> (expr) and (false && expr) -> (false)
return leftVal ? right.clone()
: std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, false));
} else if (op == Token::Kind::TK_LOGICALOR) {
// (true || expr) -> (true) and (false || expr) -> (expr)
return leftVal ? std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, true))
: right.clone();
} else if (op == Token::Kind::TK_LOGICALXOR) {
// (true ^^ expr) -> !(expr) and (false ^^ expr) -> (expr)
return leftVal ? std::unique_ptr<Expression>(new PrefixExpression(
Token::Kind::TK_LOGICALNOT,
right.clone()))
: right.clone();
} else {
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left,
Token::Kind op,
const Expression& right) const {
// If the left side is a constant boolean literal, the right side does not need to be constant
// for short circuit optimizations to allow the constant to be folded.
if (left.fKind == Expression::kBoolLiteral_Kind && !right.isConstant()) {
return short_circuit_boolean(fContext, left, op, right);
} else if (right.fKind == Expression::kBoolLiteral_Kind && !left.isConstant()) {
// There aren't side effects in SKSL within expressions, so (left OP right) is equivalent to
// (right OP left) for short-circuit optimizations
return short_circuit_boolean(fContext, right, op, left);
}
// Other than the short-circuit cases above, constant folding requires both sides to be constant
if (!left.isConstant() || !right.isConstant()) {
return nullptr;
}
// Note that we expressly do not worry about precision and overflow here -- we use the maximum
// precision to calculate the results and hope the result makes sense. The plan is to move the
// Skia caps into SkSL, so we have access to all of them including the precisions of the various
// types, which will let us be more intelligent about this.
if (left.fKind == Expression::kBoolLiteral_Kind &&
right.fKind == Expression::kBoolLiteral_Kind) {
bool leftVal = ((BoolLiteral&) left).fValue;
bool rightVal = ((BoolLiteral&) right).fValue;
bool result;
switch (op) {
case Token::Kind::TK_LOGICALAND: result = leftVal && rightVal; break;
case Token::Kind::TK_LOGICALOR: result = leftVal || rightVal; break;
case Token::Kind::TK_LOGICALXOR: result = leftVal ^ rightVal; break;
default: return nullptr;
}
return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fOffset, result));
}
#define RESULT(t, op) std::unique_ptr<Expression>(new t ## Literal(fContext, left.fOffset, \
leftVal op rightVal))
#define URESULT(t, op) std::unique_ptr<Expression>(new t ## Literal(fContext, left.fOffset, \
(uint32_t) leftVal op \
(uint32_t) rightVal))
if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) {
int64_t leftVal = ((IntLiteral&) left).fValue;
int64_t rightVal = ((IntLiteral&) right).fValue;
switch (op) {
case Token::Kind::TK_PLUS: return URESULT(Int, +);
case Token::Kind::TK_MINUS: return URESULT(Int, -);
case Token::Kind::TK_STAR: return URESULT(Int, *);
case Token::Kind::TK_SLASH:
if (leftVal == std::numeric_limits<int64_t>::min() && rightVal == -1) {
fErrors.error(right.fOffset, "arithmetic overflow");
return nullptr;
}
if (!rightVal) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
return RESULT(Int, /);
case Token::Kind::TK_PERCENT:
if (leftVal == std::numeric_limits<int64_t>::min() && rightVal == -1) {
fErrors.error(right.fOffset, "arithmetic overflow");
return nullptr;
}
if (!rightVal) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
return RESULT(Int, %);
case Token::Kind::TK_BITWISEAND: return RESULT(Int, &);
case Token::Kind::TK_BITWISEOR: return RESULT(Int, |);
case Token::Kind::TK_BITWISEXOR: return RESULT(Int, ^);
case Token::Kind::TK_EQEQ: return RESULT(Bool, ==);
case Token::Kind::TK_NEQ: return RESULT(Bool, !=);
case Token::Kind::TK_GT: return RESULT(Bool, >);
case Token::Kind::TK_GTEQ: return RESULT(Bool, >=);
case Token::Kind::TK_LT: return RESULT(Bool, <);
case Token::Kind::TK_LTEQ: return RESULT(Bool, <=);
case Token::Kind::TK_SHL:
if (rightVal >= 0 && rightVal <= 31) {
return URESULT(Int, <<);
}
fErrors.error(right.fOffset, "shift value out of range");
return nullptr;
case Token::Kind::TK_SHR:
if (rightVal >= 0 && rightVal <= 31) {
return URESULT(Int, >>);
}
fErrors.error(right.fOffset, "shift value out of range");
return nullptr;
default:
return nullptr;
}
}
if (left.fKind == Expression::kFloatLiteral_Kind &&
right.fKind == Expression::kFloatLiteral_Kind) {
double leftVal = ((FloatLiteral&) left).fValue;
double rightVal = ((FloatLiteral&) right).fValue;
switch (op) {
case Token::Kind::TK_PLUS: return RESULT(Float, +);
case Token::Kind::TK_MINUS: return RESULT(Float, -);
case Token::Kind::TK_STAR: return RESULT(Float, *);
case Token::Kind::TK_SLASH:
if (rightVal) {
return RESULT(Float, /);
}
fErrors.error(right.fOffset, "division by zero");
return nullptr;
case Token::Kind::TK_EQEQ: return RESULT(Bool, ==);
case Token::Kind::TK_NEQ: return RESULT(Bool, !=);
case Token::Kind::TK_GT: return RESULT(Bool, >);
case Token::Kind::TK_GTEQ: return RESULT(Bool, >=);
case Token::Kind::TK_LT: return RESULT(Bool, <);
case Token::Kind::TK_LTEQ: return RESULT(Bool, <=);
default: return nullptr;
}
}
if (left.fType.kind() == Type::kVector_Kind && left.fType.componentType().isFloat() &&
left.fType == right.fType) {
std::vector<std::unique_ptr<Expression>> args;
#define RETURN_VEC_COMPONENTWISE_RESULT(op) \
for (int i = 0; i < left.fType.columns(); i++) { \
float value = left.getFVecComponent(i) op \
right.getFVecComponent(i); \
args.emplace_back(new FloatLiteral(fContext, -1, value)); \
} \
return std::unique_ptr<Expression>(new Constructor(-1, left.fType, \
std::move(args)))
switch (op) {
case Token::Kind::TK_EQEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
left.compareConstant(fContext, right)));
case Token::Kind::TK_NEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
!left.compareConstant(fContext, right)));
case Token::Kind::TK_PLUS: RETURN_VEC_COMPONENTWISE_RESULT(+);
case Token::Kind::TK_MINUS: RETURN_VEC_COMPONENTWISE_RESULT(-);
case Token::Kind::TK_STAR: RETURN_VEC_COMPONENTWISE_RESULT(*);
case Token::Kind::TK_SLASH:
for (int i = 0; i < left.fType.columns(); i++) {
SKSL_FLOAT rvalue = right.getFVecComponent(i);
if (rvalue == 0.0) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
float value = left.getFVecComponent(i) / rvalue;
args.emplace_back(new FloatLiteral(fContext, -1, value));
}
return std::unique_ptr<Expression>(new Constructor(-1, left.fType,
std::move(args)));
default: return nullptr;
}
}
if (left.fType.kind() == Type::kMatrix_Kind &&
right.fType.kind() == Type::kMatrix_Kind &&
left.fKind == right.fKind) {
switch (op) {
case Token::Kind::TK_EQEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
left.compareConstant(fContext, right)));
case Token::Kind::TK_NEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
!left.compareConstant(fContext, right)));
default:
return nullptr;
}
}
#undef RESULT
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kBinary);
auto iter = expression.begin();
std::unique_ptr<Expression> left = this->convertExpression(*(iter++));
if (!left) {
return nullptr;
}
Token::Kind op = expression.getToken().fKind;
bool oldCanInline = fCanInline;
if (op == Token::Kind::TK_LOGICALAND || op == Token::Kind::TK_LOGICALOR) {
// can't inline the right side of a short-circuiting boolean, because our inlining
// approach runs things out of order
fCanInline = false;
}
std::unique_ptr<Expression> right = this->convertExpression(*(iter++));
fCanInline = oldCanInline;
if (!right) {
return nullptr;
}
const Type* leftType;
const Type* rightType;
const Type* resultType;
const Type* rawLeftType;
if (left->fKind == Expression::kIntLiteral_Kind && right->fType.isInteger()) {
rawLeftType = &right->fType;
} else {
rawLeftType = &left->fType;
}
const Type* rawRightType;
if (right->fKind == Expression::kIntLiteral_Kind && left->fType.isInteger()) {
rawRightType = &left->fType;
} else {
rawRightType = &right->fType;
}
if (!determine_binary_type(fContext, op, *rawLeftType, *rawRightType, &leftType, &rightType,
&resultType, !Compiler::IsAssignment(op))) {
fErrors.error(expression.fOffset, String("type mismatch: '") +
Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + left->fType.displayName() +
"', '" + right->fType.displayName() + "'");
return nullptr;
}
if (Compiler::IsAssignment(op)) {
this->setRefKind(*left, op != Token::Kind::TK_EQ ? VariableReference::kReadWrite_RefKind :
VariableReference::kWrite_RefKind);
}
left = this->coerce(std::move(left), *leftType);
right = this->coerce(std::move(right), *rightType);
if (!left || !right) {
return nullptr;
}
std::unique_ptr<Expression> result = this->constantFold(*left.get(), op, *right.get());
if (!result) {
result = std::unique_ptr<Expression>(new BinaryExpression(expression.fOffset,
std::move(left),
op,
std::move(right),
*resultType));
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kTernary);
auto iter = node.begin();
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Expression> ifTrue = this->convertExpression(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Expression> ifFalse = this->convertExpression(*(iter++));
if (!ifFalse) {
return nullptr;
}
const Type* trueType;
const Type* falseType;
const Type* resultType;
if (!determine_binary_type(fContext, Token::Kind::TK_EQEQ, ifTrue->fType, ifFalse->fType,
&trueType, &falseType, &resultType, true) || trueType != falseType) {
fErrors.error(node.fOffset, "ternary operator result mismatch: '" +
ifTrue->fType.displayName() + "', '" +
ifFalse->fType.displayName() + "'");
return nullptr;
}
ifTrue = this->coerce(std::move(ifTrue), *trueType);
if (!ifTrue) {
return nullptr;
}
ifFalse = this->coerce(std::move(ifFalse), *falseType);
if (!ifFalse) {
return nullptr;
}
if (test->fKind == Expression::kBoolLiteral_Kind) {
// static boolean test, just return one of the branches
if (((BoolLiteral&) *test).fValue) {
return ifTrue;
} else {
return ifFalse;
}
}
return std::unique_ptr<Expression>(new TernaryExpression(node.fOffset,
std::move(test),
std::move(ifTrue),
std::move(ifFalse)));
}
std::unique_ptr<Expression> IRGenerator::inlineExpression(int offset,
std::map<const Variable*,
const Variable*>* varMap,
const Expression& expression) {
auto expr = [&](const std::unique_ptr<Expression>& e) {
if (e) {
return this->inlineExpression(offset, varMap, *e);
}
return std::unique_ptr<Expression>(nullptr);
};
switch (expression.fKind) {
case Expression::kBinary_Kind: {
const BinaryExpression& b = (const BinaryExpression&) expression;
return std::unique_ptr<Expression>(new BinaryExpression(offset,
expr(b.fLeft),
b.fOperator,
expr(b.fRight),
b.fType));
}
case Expression::kBoolLiteral_Kind:
case Expression::kIntLiteral_Kind:
case Expression::kFloatLiteral_Kind:
case Expression::kNullLiteral_Kind:
return expression.clone();
case Expression::kConstructor_Kind: {
const Constructor& c = (const Constructor&) expression;
std::vector<std::unique_ptr<Expression>> args;
for (const auto& arg : c.fArguments) {
args.push_back(expr(arg));
}
return std::unique_ptr<Expression>(new Constructor(offset, c.fType, std::move(args)));
}
case Expression::kExternalFunctionCall_Kind: {
const ExternalFunctionCall& e = (const ExternalFunctionCall&) expression;
std::vector<std::unique_ptr<Expression>> args;
for (const auto& arg : e.fArguments) {
args.push_back(expr(arg));
}
return std::unique_ptr<Expression>(new ExternalFunctionCall(offset, e.fType,
e.fFunction,
std::move(args)));
}
case Expression::kExternalValue_Kind:
return expression.clone();
case Expression::kFieldAccess_Kind: {
const FieldAccess& f = (const FieldAccess&) expression;
return std::unique_ptr<Expression>(new FieldAccess(expr(f.fBase), f.fFieldIndex,
f.fOwnerKind));
}
case Expression::kFunctionCall_Kind: {
const FunctionCall& c = (const FunctionCall&) expression;
std::vector<std::unique_ptr<Expression>> args;
for (const auto& arg : c.fArguments) {
args.push_back(expr(arg));
}
return std::unique_ptr<Expression>(new FunctionCall(offset, c.fType, c.fFunction,
std::move(args)));
}
case Expression::kIndex_Kind: {
const IndexExpression& idx = (const IndexExpression&) expression;
return std::unique_ptr<Expression>(new IndexExpression(fContext, expr(idx.fBase),
expr(idx.fIndex)));
}
case Expression::kPrefix_Kind: {
const PrefixExpression& p = (const PrefixExpression&) expression;
return std::unique_ptr<Expression>(new PrefixExpression(p.fOperator, expr(p.fOperand)));
}
case Expression::kPostfix_Kind: {
const PostfixExpression& p = (const PostfixExpression&) expression;
return std::unique_ptr<Expression>(new PostfixExpression(expr(p.fOperand),
p.fOperator));
}
case Expression::kSetting_Kind:
return expression.clone();
case Expression::kSwizzle_Kind: {
const Swizzle& s = (const Swizzle&) expression;
return std::unique_ptr<Expression>(new Swizzle(fContext, expr(s.fBase), s.fComponents));
}
case Expression::kTernary_Kind: {
const TernaryExpression& t = (const TernaryExpression&) expression;
return std::unique_ptr<Expression>(new TernaryExpression(offset, expr(t.fTest),
expr(t.fIfTrue),
expr(t.fIfFalse)));
}
case Expression::kVariableReference_Kind: {
const VariableReference& v = (const VariableReference&) expression;
auto found = varMap->find(&v.fVariable);
if (found != varMap->end()) {
return std::unique_ptr<Expression>(new VariableReference(offset,
*found->second,
v.fRefKind));
}
return v.clone();
}
default:
SkASSERT(false);
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::inlineStatement(int offset,
std::map<const Variable*,
const Variable*>* varMap,
const Variable* returnVar,
bool haveEarlyReturns,
const Statement& statement) {
auto stmt = [&](const std::unique_ptr<Statement>& s) {
if (s) {
return this->inlineStatement(offset, varMap, returnVar, haveEarlyReturns, *s);
}
return std::unique_ptr<Statement>(nullptr);
};
auto stmts = [&](const std::vector<std::unique_ptr<Statement>>& ss) {
std::vector<std::unique_ptr<Statement>> result;
for (const auto& s : ss) {
result.push_back(stmt(s));
}
return result;
};
auto expr = [&](const std::unique_ptr<Expression>& e) {
if (e) {
return this->inlineExpression(offset, varMap, *e);
}
return std::unique_ptr<Expression>(nullptr);
};
switch (statement.fKind) {
case Statement::kBlock_Kind: {
const Block& b = (const Block&) statement;
return std::unique_ptr<Statement>(new Block(offset, stmts(b.fStatements), b.fSymbols,
b.fIsScope));
}
case Statement::kBreak_Kind:
case Statement::kContinue_Kind:
case Statement::kDiscard_Kind:
return statement.clone();
case Statement::kDo_Kind: {
const DoStatement& d = (const DoStatement&) statement;
return std::unique_ptr<Statement>(new DoStatement(offset,
stmt(d.fStatement),
expr(d.fTest)));
}
case Statement::kExpression_Kind: {
const ExpressionStatement& e = (const ExpressionStatement&) statement;
return std::unique_ptr<Statement>(new ExpressionStatement(expr(e.fExpression)));
}
case Statement::kFor_Kind: {
const ForStatement& f = (const ForStatement&) statement;
// need to ensure initializer is evaluated first so that we've already remapped its
// declarations by the time we evaluate test & next
std::unique_ptr<Statement> initializer = stmt(f.fInitializer);
return std::unique_ptr<Statement>(new ForStatement(offset, std::move(initializer),
expr(f.fTest), expr(f.fNext),
stmt(f.fStatement), f.fSymbols));
}
case Statement::kIf_Kind: {
const IfStatement& i = (const IfStatement&) statement;
return std::unique_ptr<Statement>(new IfStatement(offset, i.fIsStatic, expr(i.fTest),
stmt(i.fIfTrue), stmt(i.fIfFalse)));
}
case Statement::kNop_Kind:
return statement.clone();
case Statement::kReturn_Kind: {
const ReturnStatement& r = (const ReturnStatement&) statement;
if (r.fExpression) {
std::unique_ptr<Statement> assignment(new ExpressionStatement(
std::unique_ptr<Expression>(new BinaryExpression(offset,
std::unique_ptr<Expression>(new VariableReference(
offset,
*returnVar,
VariableReference::kWrite_RefKind)),
Token::Kind::TK_EQ,
expr(r.fExpression),
returnVar->fType))));
if (haveEarlyReturns) {
std::vector<std::unique_ptr<Statement>> block;
block.push_back(std::move(assignment));
block.emplace_back(new BreakStatement(offset));
return std::unique_ptr<Statement>(new Block(offset, std::move(block), nullptr,
false));
} else {
return assignment;
}
} else {
if (haveEarlyReturns) {
return std::unique_ptr<Statement>(new BreakStatement(offset));
} else {
return std::unique_ptr<Statement>(new Nop());
}
}
}
case Statement::kSwitch_Kind: {
const SwitchStatement& ss = (const SwitchStatement&) statement;
std::vector<std::unique_ptr<SwitchCase>> cases;
for (const auto& sc : ss.fCases) {
cases.emplace_back(new SwitchCase(offset, expr(sc->fValue),
stmts(sc->fStatements)));
}
return std::unique_ptr<Statement>(new SwitchStatement(offset, ss.fIsStatic,
expr(ss.fValue),
std::move(cases),
ss.fSymbols));
}
case Statement::kVarDeclaration_Kind: {
const VarDeclaration& decl = (const VarDeclaration&) statement;
std::vector<std::unique_ptr<Expression>> sizes;
for (const auto& size : decl.fSizes) {
sizes.push_back(expr(size));
}
std::unique_ptr<Expression> initialValue = expr(decl.fValue);
const Variable* old = decl.fVar;
// need to copy the var name in case the originating function is discarded and we lose
// its symbols
std::unique_ptr<String> name(new String(old->fName));
String* namePtr = (String*) fSymbolTable->takeOwnership(std::move(name));
std::unique_ptr<Symbol> type(new Type(old->fType));
Type* typePtr = (Type*) fSymbolTable->takeOwnership(std::move(type));
Variable* clone = (Variable*) fSymbolTable->takeOwnership(std::unique_ptr<Symbol>(
new Variable(offset, old->fModifiers,
namePtr->c_str(), *typePtr,
old->fStorage,
initialValue.get())));
(*varMap)[old] = clone;
return std::unique_ptr<Statement>(new VarDeclaration(clone, std::move(sizes),
std::move(initialValue)));
}
case Statement::kVarDeclarations_Kind: {
const VarDeclarations& decls = *((VarDeclarationsStatement&) statement).fDeclaration;
std::vector<std::unique_ptr<VarDeclaration>> vars;
for (const auto& var : decls.fVars) {
vars.emplace_back((VarDeclaration*) stmt(var).release());
}
std::unique_ptr<Symbol> type(new Type(decls.fBaseType));
Type* typePtr = (Type*) fSymbolTable->takeOwnership(std::move(type));
return std::unique_ptr<Statement>(new VarDeclarationsStatement(
std::unique_ptr<VarDeclarations>(new VarDeclarations(offset, typePtr,
std::move(vars)))));
}
case Statement::kWhile_Kind: {
const WhileStatement& w = (const WhileStatement&) statement;
return std::unique_ptr<Statement>(new WhileStatement(offset,
expr(w.fTest),
stmt(w.fStatement)));
}
default:
SkASSERT(false);
return nullptr;
}
}
int return_count(const Statement& statement) {
switch (statement.fKind) {
case Statement::kBlock_Kind: {
const Block& b = (const Block&) statement;
int result = 0;
for (const auto& s : b.fStatements) {
result += return_count(*s);
}
return result;
}
case Statement::kDo_Kind: {
const DoStatement& d = (const DoStatement&) statement;
return return_count(*d.fStatement);
}
case Statement::kFor_Kind: {
const ForStatement& f = (const ForStatement&) statement;
return return_count(*f.fStatement);
}
case Statement::kIf_Kind: {
const IfStatement& i = (const IfStatement&) statement;
int result = return_count(*i.fIfTrue);
if (i.fIfFalse) {
result += return_count(*i.fIfFalse);
}
return result;
}
case Statement::kReturn_Kind:
return 1;
case Statement::kSwitch_Kind: {
const SwitchStatement& ss = (const SwitchStatement&) statement;
int result = 0;
for (const auto& sc : ss.fCases) {
for (const auto& s : ((SwitchCase&) *sc).fStatements) {
result += return_count(*s);
}
}
return result;
}
case Statement::kWhile_Kind: {
const WhileStatement& w = (const WhileStatement&) statement;
return return_count(*w.fStatement);
}
case Statement::kBreak_Kind:
case Statement::kContinue_Kind:
case Statement::kDiscard_Kind:
case Statement::kExpression_Kind:
case Statement::kNop_Kind:
case Statement::kVarDeclaration_Kind:
case Statement::kVarDeclarations_Kind:
return 0;
default:
SkASSERT(false);
return 0;
}
}
bool has_early_return(const FunctionDefinition& f) {
int returnCount = return_count(*f.fBody);
if (returnCount == 0) {
return false;
}
if (returnCount > 1) {
return true;
}
SkASSERT(f.fBody->fKind == Statement::kBlock_Kind);
return ((Block&) *f.fBody).fStatements.back()->fKind != Statement::kReturn_Kind;
}
std::unique_ptr<Expression> IRGenerator::inlineCall(
int offset,
const FunctionDefinition& function,
std::vector<std::unique_ptr<Expression>> arguments) {
// Inlining is more complicated here than in a typical compiler, because we have to have a
// high-level IR and can't just drop statements into the middle of an expression or even use
// gotos.
//
// Since we can't insert statements into an expression, we run the inline function as extra
// statements before the statement we're currently processing, relying on a lack of execution
// order guarantees. Since we can't use gotos (which are normally used to replace return
// statements), we wrap the whole function in a loop and use break statements to jump to the
// end.
Variable* resultVar;
if (function.fDeclaration.fReturnType != *fContext.fVoid_Type) {
std::unique_ptr<String> name(new String());
int varIndex = fInlineVarCounter++;
name->appendf("inlineResult%d", varIndex);
String* namePtr = (String*) fSymbolTable->takeOwnership(std::move(name));
resultVar = (Variable*) fSymbolTable->takeOwnership(std::unique_ptr<Symbol>(
new Variable(-1, Modifiers(), namePtr->c_str(),
function.fDeclaration.fReturnType,
Variable::kLocal_Storage,
nullptr)));
std::vector<std::unique_ptr<VarDeclaration>> variables;
variables.emplace_back(new VarDeclaration(resultVar, {}, nullptr));
fExtraStatements.emplace_back(new VarDeclarationsStatement(
std::unique_ptr<VarDeclarations>(new VarDeclarations(offset,
&resultVar->fType,
std::move(variables)))));
} else {
resultVar = nullptr;
}
std::map<const Variable*, const Variable*> varMap;
// create variables to hold the arguments and assign the arguments to them
int argIndex = fInlineVarCounter++;
for (int i = 0; i < (int) arguments.size(); ++i) {
std::unique_ptr<String> argName(new String());
argName->appendf("inlineArg%d_%d", argIndex, i);
String* argNamePtr = (String*) fSymbolTable->takeOwnership(std::move(argName));
Variable* argVar = (Variable*) fSymbolTable->takeOwnership(std::unique_ptr<Symbol>(
new Variable(-1, Modifiers(),
argNamePtr->c_str(),
arguments[i]->fType,
Variable::kLocal_Storage,
arguments[i].get())));
varMap[function.fDeclaration.fParameters[i]] = argVar;
std::vector<std::unique_ptr<VarDeclaration>> vars;
if (function.fDeclaration.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
vars.emplace_back(new VarDeclaration(argVar, {}, arguments[i]->clone()));
} else {
vars.emplace_back(new VarDeclaration(argVar, {}, std::move(arguments[i])));
}
fExtraStatements.emplace_back(new VarDeclarationsStatement(
std::unique_ptr<VarDeclarations>(new VarDeclarations(offset,
&argVar->fType,
std::move(vars)))));
}
SkASSERT(function.fBody->fKind == Statement::kBlock_Kind);
const Block& body = (Block&) *function.fBody;
bool hasEarlyReturn = has_early_return(function);
std::vector<std::unique_ptr<Statement>> inlined;
for (const auto& s : body.fStatements) {
inlined.push_back(this->inlineStatement(offset, &varMap, resultVar, hasEarlyReturn, *s));
}
if (hasEarlyReturn) {
// Since we output to backends that don't have a goto statement (which would normally be
// used to perform an early return), we fake it by wrapping the function in a
// do { } while (false); and then use break statements to jump to the end in order to
// emulate a goto.
fExtraStatements.emplace_back(new DoStatement(-1,
std::unique_ptr<Statement>(new Block(-1, std::move(inlined))),
std::unique_ptr<Expression>(new BoolLiteral(fContext, -1, false))));
} else {
// No early returns, so we can just dump the code in. We need to use a block so we don't get
// name conflicts with locals.
fExtraStatements.emplace_back(std::unique_ptr<Statement>(new Block(-1,
std::move(inlined))));
}
// copy the values of out parameters into their destinations
for (size_t i = 0; i < arguments.size(); ++i) {
const Variable* p = function.fDeclaration.fParameters[i];
if (p->fModifiers.fFlags & Modifiers::kOut_Flag) {
std::unique_ptr<Expression> varRef(new VariableReference(offset, *varMap[p]));
fExtraStatements.emplace_back(new ExpressionStatement(
std::unique_ptr<Expression>(new BinaryExpression(offset,
arguments[i]->clone(),
Token::Kind::TK_EQ,
std::move(varRef),
arguments[i]->fType))));
}
}
if (function.fDeclaration.fReturnType != *fContext.fVoid_Type) {
return std::unique_ptr<Expression>(new VariableReference(-1, *resultVar));
} else {
// it's a void function, so it doesn't actually result in anything, but we have to return
// something non-null as a standin
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1, false));
}
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
const FunctionDeclaration& function,
std::vector<std::unique_ptr<Expression>> arguments) {
if (function.fBuiltin) {
auto found = fIntrinsics->find(function.declaration());
if (found != fIntrinsics->end() && !found->second.second) {
found->second.second = true;
const FunctionDeclaration* old = fCurrentFunction;
fCurrentFunction = nullptr;
this->convertFunction(*((FunctionDefinition&) *found->second.first).fSource);
fCurrentFunction = old;
}
}
if (function.fParameters.size() != arguments.size()) {
String msg = "call to '" + function.fName + "' expected " +
to_string((uint64_t) function.fParameters.size()) +
" argument";
if (function.fParameters.size() != 1) {
msg += "s";
}
msg += ", but found " + to_string((uint64_t) arguments.size());
fErrors.error(offset, msg);
return nullptr;
}
if (fKind == Program::kPipelineStage_Kind && !function.fDefinition && !function.fBuiltin) {
String msg = "call to undefined function '" + function.fName + "'";
fErrors.error(offset, msg);
return nullptr;
}
std::vector<const Type*> types;
const Type* returnType;
if (!function.determineFinalTypes(arguments, &types, &returnType)) {
String msg = "no match for " + function.fName + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->fType.displayName();
}
msg += ")";
fErrors.error(offset, msg);
return nullptr;
}
for (size_t i = 0; i < arguments.size(); i++) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) {
this->setRefKind(*arguments[i],
function.fParameters[i]->fModifiers.fFlags & Modifiers::kIn_Flag ?
VariableReference::kReadWrite_RefKind :
VariableReference::kPointer_RefKind);
}
}
if (fCanInline && function.fDefinition && function.fDefinition->canBeInlined() &&
((fSettings->fCaps && fSettings->fCaps->canUseDoLoops()) ||
!has_early_return(*function.fDefinition))) {
return this->inlineCall(offset, *function.fDefinition, std::move(arguments));
}
return std::unique_ptr<FunctionCall>(new FunctionCall(offset, *returnType, function,
std::move(arguments)));
}
/**
* Determines the cost of coercing the arguments of a function to the required types. Cost has no
* particular meaning other than "lower costs are preferred". Returns INT_MAX if the call is not
* valid.
*/
int IRGenerator::callCost(const FunctionDeclaration& function,