| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/SkSLByteCodeGenerator.h" |
| |
| #include <algorithm> |
| |
| namespace SkSL { |
| |
| static TypeCategory type_category(const Type& type) { |
| switch (type.kind()) { |
| case Type::Kind::kVector_Kind: |
| case Type::Kind::kMatrix_Kind: |
| return type_category(type.componentType()); |
| default: |
| if (type.fName == "bool") { |
| return TypeCategory::kBool; |
| } else if (type.fName == "int" || |
| type.fName == "short" || |
| type.fName == "$intLiteral") { |
| return TypeCategory::kSigned; |
| } else if (type.fName == "uint" || |
| type.fName == "ushort") { |
| return TypeCategory::kUnsigned; |
| } else { |
| SkASSERT(type.fName == "float" || |
| type.fName == "half" || |
| type.fName == "$floatLiteral"); |
| return TypeCategory::kFloat; |
| } |
| ABORT("unsupported type: %s\n", type.displayName().c_str()); |
| } |
| } |
| |
| |
| ByteCodeGenerator::ByteCodeGenerator(const Context* context, const Program* program, ErrorReporter* errors, |
| ByteCode* output) |
| : INHERITED(program, errors, nullptr) |
| , fContext(*context) |
| , fOutput(output) |
| // If you're adding new intrinsics here, ensure that they're declared in sksl_interp.inc, so |
| // they're available to "generic" interpreter programs (eg particles). |
| // You can probably copy the declarations from sksl_gpu.inc. |
| , fIntrinsics { |
| { "atan", ByteCodeInstruction::kATan }, |
| { "ceil", ByteCodeInstruction::kCeil }, |
| { "clamp", SpecialIntrinsic::kClamp }, |
| { "cos", ByteCodeInstruction::kCos }, |
| { "dot", SpecialIntrinsic::kDot }, |
| { "floor", ByteCodeInstruction::kFloor }, |
| { "fract", ByteCodeInstruction::kFract }, |
| { "inverse", ByteCodeInstruction::kInverse2x2 }, |
| { "length", SpecialIntrinsic::kLength }, |
| { "max", SpecialIntrinsic::kMax }, |
| { "min", SpecialIntrinsic::kMin }, |
| { "mix", SpecialIntrinsic::kMix }, |
| { "normalize", SpecialIntrinsic::kNormalize }, |
| { "pow", ByteCodeInstruction::kPow }, |
| { "sample", SpecialIntrinsic::kSample }, |
| { "saturate", SpecialIntrinsic::kSaturate }, |
| { "sin", ByteCodeInstruction::kSin }, |
| { "sqrt", ByteCodeInstruction::kSqrt }, |
| { "tan", ByteCodeInstruction::kTan }, |
| |
| { "lessThan", { ByteCodeInstruction::kCompareFLT, |
| ByteCodeInstruction::kCompareSLT, |
| ByteCodeInstruction::kCompareULT } }, |
| { "lessThanEqual", { ByteCodeInstruction::kCompareFLTEQ, |
| ByteCodeInstruction::kCompareSLTEQ, |
| ByteCodeInstruction::kCompareULTEQ } }, |
| { "greaterThan", { ByteCodeInstruction::kCompareFGT, |
| ByteCodeInstruction::kCompareSGT, |
| ByteCodeInstruction::kCompareUGT } }, |
| { "greaterThanEqual", { ByteCodeInstruction::kCompareFGTEQ, |
| ByteCodeInstruction::kCompareSGTEQ, |
| ByteCodeInstruction::kCompareUGTEQ } }, |
| { "equal", { ByteCodeInstruction::kCompareFEQ, |
| ByteCodeInstruction::kCompareIEQ, |
| ByteCodeInstruction::kCompareIEQ } }, |
| { "notEqual", { ByteCodeInstruction::kCompareFNEQ, |
| ByteCodeInstruction::kCompareINEQ, |
| ByteCodeInstruction::kCompareINEQ } }, |
| |
| { "any", SpecialIntrinsic::kAny }, |
| { "all", SpecialIntrinsic::kAll }, |
| { "not", ByteCodeInstruction::kNotB }, |
| } {} |
| |
| |
| int ByteCodeGenerator::SlotCount(const Type& type) { |
| if (type.kind() == Type::kOther_Kind) { |
| return 0; |
| } else if (type.kind() == Type::kStruct_Kind) { |
| int slots = 0; |
| for (const auto& f : type.fields()) { |
| slots += SlotCount(*f.fType); |
| } |
| SkASSERT(slots <= 255); |
| return slots; |
| } else if (type.kind() == Type::kArray_Kind) { |
| int columns = type.columns(); |
| SkASSERT(columns >= 0); |
| int slots = columns * SlotCount(type.componentType()); |
| SkASSERT(slots <= 255); |
| return slots; |
| } else { |
| return type.columns() * type.rows(); |
| } |
| } |
| |
| static inline bool is_uniform(const SkSL::Variable& var) { |
| return var.fModifiers.fFlags & Modifiers::kUniform_Flag; |
| } |
| |
| static inline bool is_in(const SkSL::Variable& var) { |
| return var.fModifiers.fFlags & Modifiers::kIn_Flag; |
| } |
| |
| void ByteCodeGenerator::gatherUniforms(const Type& type, const String& name) { |
| if (type.kind() == Type::kOther_Kind) { |
| return; |
| } else if (type.kind() == Type::kStruct_Kind) { |
| for (const auto& f : type.fields()) { |
| this->gatherUniforms(*f.fType, name + "." + f.fName); |
| } |
| } else if (type.kind() == Type::kArray_Kind) { |
| for (int i = 0; i < type.columns(); ++i) { |
| this->gatherUniforms(type.componentType(), String::printf("%s[%d]", name.c_str(), i)); |
| } |
| } else { |
| fOutput->fUniforms.push_back({ name, type_category(type), type.rows(), type.columns(), |
| fOutput->fUniformSlotCount }); |
| fOutput->fUniformSlotCount += type.columns() * type.rows(); |
| } |
| } |
| |
| bool ByteCodeGenerator::generateCode() { |
| for (const auto& e : fProgram) { |
| switch (e.fKind) { |
| case ProgramElement::kFunction_Kind: { |
| std::unique_ptr<ByteCodeFunction> f = this->writeFunction((FunctionDefinition&) e); |
| if (!f) { |
| return false; |
| } |
| fOutput->fFunctions.push_back(std::move(f)); |
| fFunctions.push_back(&(FunctionDefinition&)e); |
| break; |
| } |
| case ProgramElement::kVar_Kind: { |
| VarDeclarations& decl = (VarDeclarations&) e; |
| for (const auto& v : decl.fVars) { |
| const Variable* declVar = ((VarDeclaration&) *v).fVar; |
| if (declVar->fType == *fContext.fFragmentProcessor_Type) { |
| fOutput->fChildFPCount++; |
| } |
| if (declVar->fModifiers.fLayout.fBuiltin >= 0 || is_in(*declVar)) { |
| continue; |
| } |
| if (is_uniform(*declVar)) { |
| this->gatherUniforms(declVar->fType, declVar->fName); |
| } else { |
| fOutput->fGlobalSlotCount += SlotCount(declVar->fType); |
| } |
| } |
| break; |
| } |
| default: |
| ; // ignore |
| } |
| } |
| return 0 == fErrors.errorCount(); |
| } |
| |
| std::unique_ptr<ByteCodeFunction> ByteCodeGenerator::writeFunction(const FunctionDefinition& f) { |
| fFunction = &f; |
| std::unique_ptr<ByteCodeFunction> result(new ByteCodeFunction(&f.fDeclaration)); |
| fParameterCount = result->fParameterCount; |
| fLoopCount = fMaxLoopCount = 0; |
| fConditionCount = fMaxConditionCount = 0; |
| fStackCount = fMaxStackCount = 0; |
| fCode = &result->fCode; |
| |
| this->writeStatement(*f.fBody); |
| if (0 == fErrors.errorCount()) { |
| SkASSERT(fLoopCount == 0); |
| SkASSERT(fConditionCount == 0); |
| SkASSERT(fStackCount == 0); |
| } |
| this->write(ByteCodeInstruction::kReturn, 0); |
| |
| result->fLocalCount = fLocals.size(); |
| result->fConditionCount = fMaxConditionCount; |
| result->fLoopCount = fMaxLoopCount; |
| result->fStackCount = fMaxStackCount; |
| |
| const Type& returnType = f.fDeclaration.fReturnType; |
| if (returnType != *fContext.fVoid_Type) { |
| result->fReturnCount = SlotCount(returnType); |
| } |
| fLocals.clear(); |
| fFunction = nullptr; |
| return result; |
| } |
| |
| // If the expression is a reference to a builtin global variable, return the builtin ID. |
| // Otherwise, return -1. |
| static int expression_as_builtin(const Expression& e) { |
| if (e.fKind == Expression::kVariableReference_Kind) { |
| const Variable& var(((VariableReference&)e).fVariable); |
| if (var.fStorage == Variable::kGlobal_Storage) { |
| return var.fModifiers.fLayout.fBuiltin; |
| } |
| } |
| return -1; |
| } |
| |
| // A "simple" Swizzle is based on a variable (or a compound variable like a struct or array), and |
| // that references consecutive values, such that it can be implemented using normal load/store ops |
| // with an offset. Note that all single-component swizzles (of suitable base types) are simple. |
| static bool swizzle_is_simple(const Swizzle& s) { |
| // Builtin variables use dedicated instructions that don't allow subset loads |
| if (expression_as_builtin(*s.fBase) >= 0) { |
| return false; |
| } |
| |
| switch (s.fBase->fKind) { |
| case Expression::kFieldAccess_Kind: |
| case Expression::kIndex_Kind: |
| case Expression::kVariableReference_Kind: |
| break; |
| default: |
| return false; |
| } |
| |
| for (size_t i = 1; i < s.fComponents.size(); ++i) { |
| if (s.fComponents[i] != s.fComponents[i - 1] + 1) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| int ByteCodeGenerator::StackUsage(ByteCodeInstruction inst, int count_) { |
| // Ensures that we use count iff we're passed a non-default value. Most instructions have an |
| // implicit count, so the caller shouldn't need to worry about it (or count makes no sense). |
| // The asserts avoids callers thinking they're supplying useful information in that scenario, |
| // or failing to supply necessary information for the ops that need a count. |
| struct CountValue { |
| operator int() { |
| SkASSERT(val != ByteCodeGenerator::kUnusedStackCount); |
| SkDEBUGCODE(used = true); |
| return val; |
| } |
| ~CountValue() { |
| SkASSERT(used || val == ByteCodeGenerator::kUnusedStackCount); |
| } |
| int val; |
| SkDEBUGCODE(bool used = false;) |
| } count = { count_ }; |
| |
| switch (inst) { |
| // Unary functions/operators that don't change stack depth at all: |
| |
| #define VEC_UNARY(inst) case ByteCodeInstruction::inst: return count - count; |
| |
| VEC_UNARY(kConvertFtoI) |
| VEC_UNARY(kConvertStoF) |
| VEC_UNARY(kConvertUtoF) |
| |
| VEC_UNARY(kATan) |
| VEC_UNARY(kCeil) |
| VEC_UNARY(kCos) |
| VEC_UNARY(kFloor) |
| VEC_UNARY(kFract) |
| VEC_UNARY(kSin) |
| VEC_UNARY(kSqrt) |
| VEC_UNARY(kTan) |
| |
| VEC_UNARY(kNegateF) |
| VEC_UNARY(kNegateI) |
| VEC_UNARY(kNotB) |
| |
| #undef VEC_UNARY |
| |
| case ByteCodeInstruction::kInverse2x2: |
| case ByteCodeInstruction::kInverse3x3: |
| case ByteCodeInstruction::kInverse4x4: return 0; |
| |
| case ByteCodeInstruction::kClampIndex: return 0; |
| case ByteCodeInstruction::kShiftLeft: return 0; |
| case ByteCodeInstruction::kShiftRightS: return 0; |
| case ByteCodeInstruction::kShiftRightU: return 0; |
| |
| // Binary functions/operators that do a 2 -> 1 reduction, N times |
| case ByteCodeInstruction::kAndB: return -count; |
| case ByteCodeInstruction::kOrB: return -count; |
| case ByteCodeInstruction::kXorB: return -count; |
| |
| case ByteCodeInstruction::kAddI: return -count; |
| case ByteCodeInstruction::kAddF: return -count; |
| |
| case ByteCodeInstruction::kCompareIEQ: return -count; |
| case ByteCodeInstruction::kCompareFEQ: return -count; |
| case ByteCodeInstruction::kCompareINEQ: return -count; |
| case ByteCodeInstruction::kCompareFNEQ: return -count; |
| case ByteCodeInstruction::kCompareSGT: return -count; |
| case ByteCodeInstruction::kCompareUGT: return -count; |
| case ByteCodeInstruction::kCompareFGT: return -count; |
| case ByteCodeInstruction::kCompareSGTEQ: return -count; |
| case ByteCodeInstruction::kCompareUGTEQ: return -count; |
| case ByteCodeInstruction::kCompareFGTEQ: return -count; |
| case ByteCodeInstruction::kCompareSLT: return -count; |
| case ByteCodeInstruction::kCompareULT: return -count; |
| case ByteCodeInstruction::kCompareFLT: return -count; |
| case ByteCodeInstruction::kCompareSLTEQ: return -count; |
| case ByteCodeInstruction::kCompareULTEQ: return -count; |
| case ByteCodeInstruction::kCompareFLTEQ: return -count; |
| |
| case ByteCodeInstruction::kDivideS: return -count; |
| case ByteCodeInstruction::kDivideU: return -count; |
| case ByteCodeInstruction::kDivideF: return -count; |
| case ByteCodeInstruction::kMaxF: return -count; |
| case ByteCodeInstruction::kMaxS: return -count; |
| case ByteCodeInstruction::kMinF: return -count; |
| case ByteCodeInstruction::kMinS: return -count; |
| case ByteCodeInstruction::kMultiplyI: return -count; |
| case ByteCodeInstruction::kMultiplyF: return -count; |
| case ByteCodeInstruction::kPow: return -count; |
| case ByteCodeInstruction::kRemainderF: return -count; |
| case ByteCodeInstruction::kRemainderS: return -count; |
| case ByteCodeInstruction::kRemainderU: return -count; |
| case ByteCodeInstruction::kSubtractI: return -count; |
| case ByteCodeInstruction::kSubtractF: return -count; |
| |
| // Ops that push or load data to grow the stack: |
| case ByteCodeInstruction::kPushImmediate: |
| return 1; |
| case ByteCodeInstruction::kLoadFragCoord: |
| return 4; |
| |
| case ByteCodeInstruction::kDup: |
| case ByteCodeInstruction::kLoad: |
| case ByteCodeInstruction::kLoadGlobal: |
| case ByteCodeInstruction::kLoadUniform: |
| case ByteCodeInstruction::kReadExternal: |
| case ByteCodeInstruction::kReserve: |
| return count; |
| |
| // Pushes 'count' values, minus one for the 'address' that's consumed first |
| case ByteCodeInstruction::kLoadExtended: |
| case ByteCodeInstruction::kLoadExtendedGlobal: |
| case ByteCodeInstruction::kLoadExtendedUniform: |
| return count - 1; |
| |
| // Ops that pop or store data to shrink the stack: |
| case ByteCodeInstruction::kPop: |
| case ByteCodeInstruction::kReturn: |
| case ByteCodeInstruction::kStore: |
| case ByteCodeInstruction::kStoreGlobal: |
| case ByteCodeInstruction::kWriteExternal: |
| return -count; |
| |
| // Consumes 'count' values, plus one for the 'address' |
| case ByteCodeInstruction::kStoreExtended: |
| case ByteCodeInstruction::kStoreExtendedGlobal: |
| return -count - 1; |
| |
| // Strange ops where the caller computes the delta for us: |
| case ByteCodeInstruction::kCallExternal: |
| case ByteCodeInstruction::kMatrixToMatrix: |
| case ByteCodeInstruction::kMatrixMultiply: |
| case ByteCodeInstruction::kScalarToMatrix: |
| case ByteCodeInstruction::kSwizzle: |
| return count; |
| |
| // Miscellaneous |
| |
| // (X, Y) -> (R, G, B, A) |
| case ByteCodeInstruction::kSampleExplicit: return 4 - 2; |
| // (float3x3) -> (R, G, B, A) |
| case ByteCodeInstruction::kSampleMatrix: return 4 - 9; |
| |
| // kMix does a 3 -> 1 reduction (A, B, M -> A -or- B) for each component |
| case ByteCodeInstruction::kMix: return -(2 * count); |
| |
| // kLerp works the same way (producing lerp(A, B, T) for each component) |
| case ByteCodeInstruction::kLerp: return -(2 * count); |
| |
| // kCall is net-zero. Max stack depth is adjusted in writeFunctionCall. |
| case ByteCodeInstruction::kCall: return 0; |
| case ByteCodeInstruction::kBranch: return 0; |
| case ByteCodeInstruction::kBranchIfAllFalse: return 0; |
| |
| case ByteCodeInstruction::kMaskPush: return -1; |
| case ByteCodeInstruction::kMaskPop: return 0; |
| case ByteCodeInstruction::kMaskNegate: return 0; |
| case ByteCodeInstruction::kMaskBlend: return -count; |
| |
| case ByteCodeInstruction::kLoopBegin: return 0; |
| case ByteCodeInstruction::kLoopNext: return 0; |
| case ByteCodeInstruction::kLoopMask: return -1; |
| case ByteCodeInstruction::kLoopEnd: return 0; |
| case ByteCodeInstruction::kLoopBreak: return 0; |
| case ByteCodeInstruction::kLoopContinue: return 0; |
| } |
| |
| SkUNREACHABLE; |
| } |
| |
| ByteCodeGenerator::Location ByteCodeGenerator::getLocation(const Variable& var) { |
| // given that we seldom have more than a couple of variables, linear search is probably the most |
| // efficient way to handle lookups |
| switch (var.fStorage) { |
| case Variable::kLocal_Storage: { |
| for (int i = fLocals.size() - 1; i >= 0; --i) { |
| if (fLocals[i] == &var) { |
| SkASSERT(fParameterCount + i <= 255); |
| return { fParameterCount + i, Storage::kLocal }; |
| } |
| } |
| int result = fParameterCount + fLocals.size(); |
| fLocals.push_back(&var); |
| for (int i = 0; i < SlotCount(var.fType) - 1; ++i) { |
| fLocals.push_back(nullptr); |
| } |
| SkASSERT(result <= 255); |
| return { result, Storage::kLocal }; |
| } |
| case Variable::kParameter_Storage: { |
| int offset = 0; |
| for (const auto& p : fFunction->fDeclaration.fParameters) { |
| if (p == &var) { |
| SkASSERT(offset <= 255); |
| return { offset, Storage::kLocal }; |
| } |
| offset += SlotCount(p->fType); |
| } |
| SkASSERT(false); |
| return Location::MakeInvalid(); |
| } |
| case Variable::kGlobal_Storage: { |
| if (var.fType == *fContext.fFragmentProcessor_Type) { |
| int offset = 0; |
| for (const auto& e : fProgram) { |
| if (e.fKind == ProgramElement::kVar_Kind) { |
| VarDeclarations& decl = (VarDeclarations&) e; |
| for (const auto& v : decl.fVars) { |
| const Variable* declVar = ((VarDeclaration&) *v).fVar; |
| if (declVar->fType != *fContext.fFragmentProcessor_Type) { |
| continue; |
| } |
| if (declVar == &var) { |
| SkASSERT(offset <= 255); |
| return { offset, Storage::kChildFP }; |
| } |
| offset++; |
| } |
| } |
| } |
| SkASSERT(false); |
| return Location::MakeInvalid(); |
| } |
| if (is_in(var)) { |
| // If you see this error, it means the program is using raw 'in' variables. You |
| // should either specialize the program (Compiler::specialize) to bake in the final |
| // values of the 'in' variables, or not use 'in' variables (maybe you meant to use |
| // 'uniform' instead?). |
| fErrors.error(var.fOffset, |
| "'in' variable is not specialized or has unsupported type"); |
| return Location::MakeInvalid(); |
| } |
| int offset = 0; |
| bool isUniform = is_uniform(var); |
| for (const auto& e : fProgram) { |
| if (e.fKind == ProgramElement::kVar_Kind) { |
| VarDeclarations& decl = (VarDeclarations&) e; |
| for (const auto& v : decl.fVars) { |
| const Variable* declVar = ((VarDeclaration&) *v).fVar; |
| if (declVar->fModifiers.fLayout.fBuiltin >= 0 || is_in(*declVar)) { |
| continue; |
| } |
| if (isUniform != is_uniform(*declVar)) { |
| continue; |
| } |
| if (declVar == &var) { |
| SkASSERT(offset <= 255); |
| return { offset, isUniform ? Storage::kUniform : Storage::kGlobal }; |
| } |
| offset += SlotCount(declVar->fType); |
| } |
| } |
| } |
| SkASSERT(false); |
| return Location::MakeInvalid(); |
| } |
| default: |
| SkASSERT(false); |
| return Location::MakeInvalid(); |
| } |
| } |
| |
| ByteCodeGenerator::Location ByteCodeGenerator::getLocation(const Expression& expr) { |
| switch (expr.fKind) { |
| case Expression::kFieldAccess_Kind: { |
| const FieldAccess& f = (const FieldAccess&)expr; |
| Location baseLoc = this->getLocation(*f.fBase); |
| int offset = 0; |
| for (int i = 0; i < f.fFieldIndex; ++i) { |
| offset += SlotCount(*f.fBase->fType.fields()[i].fType); |
| } |
| if (baseLoc.isOnStack()) { |
| if (offset != 0) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(offset); |
| this->write(ByteCodeInstruction::kAddI, 1); |
| } |
| return baseLoc; |
| } else { |
| return baseLoc + offset; |
| } |
| } |
| case Expression::kIndex_Kind: { |
| const IndexExpression& i = (const IndexExpression&)expr; |
| int stride = SlotCount(i.fType); |
| int length = i.fBase->fType.columns(); |
| SkASSERT(length <= 255); |
| int offset = -1; |
| if (i.fIndex->isConstant()) { |
| int64_t index = i.fIndex->getConstantInt(); |
| if (index < 0 || index >= length) { |
| fErrors.error(i.fIndex->fOffset, "Array index out of bounds."); |
| return Location::MakeInvalid(); |
| } |
| offset = index * stride; |
| } else { |
| if (i.fIndex->hasSideEffects()) { |
| // Having a side-effect in an indexer is technically safe for an rvalue, |
| // but with lvalues we have to evaluate the indexer twice, so make it an error. |
| fErrors.error(i.fIndex->fOffset, |
| "Index expressions with side-effects not supported in byte code."); |
| return Location::MakeInvalid(); |
| } |
| this->writeExpression(*i.fIndex); |
| this->write(ByteCodeInstruction::kClampIndex); |
| this->write8(length); |
| if (stride != 1) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(stride); |
| this->write(ByteCodeInstruction::kMultiplyI, 1); |
| } |
| } |
| Location baseLoc = this->getLocation(*i.fBase); |
| |
| // Are both components known statically? |
| if (!baseLoc.isOnStack() && offset >= 0) { |
| return baseLoc + offset; |
| } |
| |
| // At least one component is dynamic (and on the stack). |
| |
| // If the other component is zero, we're done |
| if (baseLoc.fSlot == 0 || offset == 0) { |
| return baseLoc.makeOnStack(); |
| } |
| |
| // Push the non-dynamic component (if any) to the stack, then add the two |
| if (!baseLoc.isOnStack()) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(baseLoc.fSlot); |
| } |
| if (offset >= 0) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(offset); |
| } |
| this->write(ByteCodeInstruction::kAddI, 1); |
| return baseLoc.makeOnStack(); |
| } |
| case Expression::kSwizzle_Kind: { |
| const Swizzle& s = (const Swizzle&)expr; |
| SkASSERT(swizzle_is_simple(s)); |
| Location baseLoc = this->getLocation(*s.fBase); |
| int offset = s.fComponents[0]; |
| if (baseLoc.isOnStack()) { |
| if (offset != 0) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(offset); |
| this->write(ByteCodeInstruction::kAddI, 1); |
| } |
| return baseLoc; |
| } else { |
| return baseLoc + offset; |
| } |
| } |
| case Expression::kVariableReference_Kind: { |
| const Variable& var = ((const VariableReference&)expr).fVariable; |
| return this->getLocation(var); |
| } |
| default: |
| SkASSERT(false); |
| return Location::MakeInvalid(); |
| } |
| } |
| |
| void ByteCodeGenerator::write8(uint8_t b) { |
| fCode->push_back(b); |
| } |
| |
| void ByteCodeGenerator::write16(uint16_t i) { |
| size_t n = fCode->size(); |
| fCode->resize(n+2); |
| memcpy(fCode->data() + n, &i, 2); |
| } |
| |
| void ByteCodeGenerator::write32(uint32_t i) { |
| size_t n = fCode->size(); |
| fCode->resize(n+4); |
| memcpy(fCode->data() + n, &i, 4); |
| } |
| |
| void ByteCodeGenerator::write(ByteCodeInstruction i, int count) { |
| switch (i) { |
| case ByteCodeInstruction::kLoopBegin: this->enterLoop(); break; |
| case ByteCodeInstruction::kLoopEnd: this->exitLoop(); break; |
| |
| case ByteCodeInstruction::kMaskPush: this->enterCondition(); break; |
| case ByteCodeInstruction::kMaskPop: |
| case ByteCodeInstruction::kMaskBlend: this->exitCondition(); break; |
| default: /* Do nothing */ break; |
| } |
| this->write16((uint16_t)i); |
| fStackCount += StackUsage(i, count); |
| fMaxStackCount = std::max(fMaxStackCount, fStackCount); |
| |
| // Most ops have an explicit count byte after them (passed here as 'count') |
| // Ops that don't have a count byte pass the default (kUnusedStackCount) |
| // There are a handful of strange ops that pass in a computed stack delta as count, but where |
| // that value should *not* be written as a count byte (it may even be negative!) |
| if (count != kUnusedStackCount) { |
| switch (i) { |
| // Odd instructions that have a non-default count, but we shouldn't write it |
| case ByteCodeInstruction::kCallExternal: |
| case ByteCodeInstruction::kMatrixToMatrix: |
| case ByteCodeInstruction::kMatrixMultiply: |
| case ByteCodeInstruction::kScalarToMatrix: |
| case ByteCodeInstruction::kSwizzle: |
| break; |
| default: |
| this->write8(count); |
| break; |
| } |
| } |
| } |
| |
| void ByteCodeGenerator::writeTypedInstruction(const Type& type, |
| ByteCodeInstruction s, |
| ByteCodeInstruction u, |
| ByteCodeInstruction f, |
| int count) { |
| switch (type_category(type)) { |
| case TypeCategory::kBool: |
| case TypeCategory::kSigned: this->write(s, count); break; |
| case TypeCategory::kUnsigned: this->write(u, count); break; |
| case TypeCategory::kFloat: this->write(f, count); break; |
| default: |
| SkASSERT(false); |
| } |
| } |
| |
| bool ByteCodeGenerator::writeBinaryExpression(const BinaryExpression& b, bool discard) { |
| if (b.fOperator == Token::Kind::TK_EQ) { |
| std::unique_ptr<LValue> lvalue = this->getLValue(*b.fLeft); |
| this->writeExpression(*b.fRight); |
| lvalue->store(discard); |
| discard = false; |
| return discard; |
| } |
| const Type& lType = b.fLeft->fType; |
| const Type& rType = b.fRight->fType; |
| bool lVecOrMtx = (lType.kind() == Type::kVector_Kind || lType.kind() == Type::kMatrix_Kind); |
| bool rVecOrMtx = (rType.kind() == Type::kVector_Kind || rType.kind() == Type::kMatrix_Kind); |
| Token::Kind op; |
| std::unique_ptr<LValue> lvalue; |
| if (is_assignment(b.fOperator)) { |
| lvalue = this->getLValue(*b.fLeft); |
| lvalue->load(); |
| op = remove_assignment(b.fOperator); |
| } else { |
| this->writeExpression(*b.fLeft); |
| op = b.fOperator; |
| if (!lVecOrMtx && rVecOrMtx) { |
| for (int i = SlotCount(rType); i > 1; --i) { |
| this->write(ByteCodeInstruction::kDup, 1); |
| } |
| } |
| } |
| int count = std::max(SlotCount(lType), SlotCount(rType)); |
| SkDEBUGCODE(TypeCategory tc = type_category(lType)); |
| switch (op) { |
| case Token::Kind::TK_LOGICALAND: { |
| SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1); |
| this->write(ByteCodeInstruction::kDup, 1); |
| this->write(ByteCodeInstruction::kMaskPush); |
| this->write(ByteCodeInstruction::kBranchIfAllFalse); |
| DeferredLocation falseLocation(this); |
| this->writeExpression(*b.fRight); |
| this->write(ByteCodeInstruction::kAndB, 1); |
| falseLocation.set(); |
| this->write(ByteCodeInstruction::kMaskPop); |
| return false; |
| } |
| case Token::Kind::TK_LOGICALOR: { |
| SkASSERT(tc == SkSL::TypeCategory::kBool && count == 1); |
| this->write(ByteCodeInstruction::kDup, 1); |
| this->write(ByteCodeInstruction::kNotB, 1); |
| this->write(ByteCodeInstruction::kMaskPush); |
| this->write(ByteCodeInstruction::kBranchIfAllFalse); |
| DeferredLocation falseLocation(this); |
| this->writeExpression(*b.fRight); |
| this->write(ByteCodeInstruction::kOrB, 1); |
| falseLocation.set(); |
| this->write(ByteCodeInstruction::kMaskPop); |
| return false; |
| } |
| case Token::Kind::TK_SHL: |
| case Token::Kind::TK_SHR: { |
| SkASSERT(count == 1 && (tc == SkSL::TypeCategory::kSigned || |
| tc == SkSL::TypeCategory::kUnsigned)); |
| if (!b.fRight->isConstant()) { |
| fErrors.error(b.fRight->fOffset, "Shift amounts must be constant"); |
| return false; |
| } |
| int64_t shift = b.fRight->getConstantInt(); |
| if (shift < 0 || shift > 31) { |
| fErrors.error(b.fRight->fOffset, "Shift amount out of range"); |
| return false; |
| } |
| |
| if (op == Token::Kind::TK_SHL) { |
| this->write(ByteCodeInstruction::kShiftLeft); |
| } else { |
| this->write(type_category(lType) == TypeCategory::kSigned |
| ? ByteCodeInstruction::kShiftRightS |
| : ByteCodeInstruction::kShiftRightU); |
| } |
| this->write8(shift); |
| return false; |
| } |
| |
| default: |
| break; |
| } |
| this->writeExpression(*b.fRight); |
| if (lVecOrMtx && !rVecOrMtx) { |
| for (int i = SlotCount(lType); i > 1; --i) { |
| this->write(ByteCodeInstruction::kDup, 1); |
| } |
| } |
| // Special case for M*V, V*M, M*M (but not V*V!) |
| if (op == Token::Kind::TK_STAR && lVecOrMtx && rVecOrMtx && |
| !(lType.kind() == Type::kVector_Kind && rType.kind() == Type::kVector_Kind)) { |
| this->write(ByteCodeInstruction::kMatrixMultiply, |
| SlotCount(b.fType) - (SlotCount(lType) + SlotCount(rType))); |
| int rCols = rType.columns(), |
| rRows = rType.rows(), |
| lCols = lType.columns(), |
| lRows = lType.rows(); |
| // M*V treats the vector as a column |
| if (rType.kind() == Type::kVector_Kind) { |
| std::swap(rCols, rRows); |
| } |
| SkASSERT(lCols == rRows); |
| SkASSERT(SlotCount(b.fType) == lRows * rCols); |
| this->write8(lCols); |
| this->write8(lRows); |
| this->write8(rCols); |
| } else { |
| switch (op) { |
| case Token::Kind::TK_EQEQ: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareIEQ, |
| ByteCodeInstruction::kCompareIEQ, |
| ByteCodeInstruction::kCompareFEQ, |
| count); |
| // Collapse to a single bool |
| for (int i = count; i > 1; --i) { |
| this->write(ByteCodeInstruction::kAndB, 1); |
| } |
| break; |
| case Token::Kind::TK_GT: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGT, |
| ByteCodeInstruction::kCompareUGT, |
| ByteCodeInstruction::kCompareFGT, |
| count); |
| break; |
| case Token::Kind::TK_GTEQ: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGTEQ, |
| ByteCodeInstruction::kCompareUGTEQ, |
| ByteCodeInstruction::kCompareFGTEQ, |
| count); |
| break; |
| case Token::Kind::TK_LT: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLT, |
| ByteCodeInstruction::kCompareULT, |
| ByteCodeInstruction::kCompareFLT, |
| count); |
| break; |
| case Token::Kind::TK_LTEQ: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLTEQ, |
| ByteCodeInstruction::kCompareULTEQ, |
| ByteCodeInstruction::kCompareFLTEQ, |
| count); |
| break; |
| case Token::Kind::TK_MINUS: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kSubtractI, |
| ByteCodeInstruction::kSubtractI, |
| ByteCodeInstruction::kSubtractF, |
| count); |
| break; |
| case Token::Kind::TK_NEQ: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareINEQ, |
| ByteCodeInstruction::kCompareINEQ, |
| ByteCodeInstruction::kCompareFNEQ, |
| count); |
| // Collapse to a single bool |
| for (int i = count; i > 1; --i) { |
| this->write(ByteCodeInstruction::kOrB, 1); |
| } |
| break; |
| case Token::Kind::TK_PERCENT: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kRemainderS, |
| ByteCodeInstruction::kRemainderU, |
| ByteCodeInstruction::kRemainderF, |
| count); |
| break; |
| case Token::Kind::TK_PLUS: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kAddI, |
| ByteCodeInstruction::kAddI, |
| ByteCodeInstruction::kAddF, |
| count); |
| break; |
| case Token::Kind::TK_SLASH: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kDivideS, |
| ByteCodeInstruction::kDivideU, |
| ByteCodeInstruction::kDivideF, |
| count); |
| break; |
| case Token::Kind::TK_STAR: |
| this->writeTypedInstruction(lType, ByteCodeInstruction::kMultiplyI, |
| ByteCodeInstruction::kMultiplyI, |
| ByteCodeInstruction::kMultiplyF, |
| count); |
| break; |
| |
| case Token::Kind::TK_LOGICALXOR: |
| SkASSERT(tc == SkSL::TypeCategory::kBool); |
| this->write(ByteCodeInstruction::kXorB, count); |
| break; |
| |
| case Token::Kind::TK_BITWISEAND: |
| SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned); |
| this->write(ByteCodeInstruction::kAndB, count); |
| break; |
| case Token::Kind::TK_BITWISEOR: |
| SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned); |
| this->write(ByteCodeInstruction::kOrB, count); |
| break; |
| case Token::Kind::TK_BITWISEXOR: |
| SkASSERT(tc == SkSL::TypeCategory::kSigned || tc == SkSL::TypeCategory::kUnsigned); |
| this->write(ByteCodeInstruction::kXorB, count); |
| break; |
| |
| default: |
| fErrors.error(b.fOffset, SkSL::String::printf("Unsupported binary operator '%s'", |
| Compiler::OperatorName(op))); |
| break; |
| } |
| } |
| if (lvalue) { |
| lvalue->store(discard); |
| discard = false; |
| } |
| return discard; |
| } |
| |
| void ByteCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(b.fValue ? ~0 : 0); |
| } |
| |
| void ByteCodeGenerator::writeConstructor(const Constructor& c) { |
| for (const auto& arg : c.fArguments) { |
| this->writeExpression(*arg); |
| } |
| if (c.fArguments.size() == 1) { |
| const Type& inType = c.fArguments[0]->fType; |
| const Type& outType = c.fType; |
| TypeCategory inCategory = type_category(inType); |
| TypeCategory outCategory = type_category(outType); |
| int inCount = SlotCount(inType); |
| int outCount = SlotCount(outType); |
| if (inCategory != outCategory) { |
| SkASSERT(inCount == outCount); |
| if (inCategory == TypeCategory::kFloat) { |
| SkASSERT(outCategory == TypeCategory::kSigned || |
| outCategory == TypeCategory::kUnsigned); |
| this->write(ByteCodeInstruction::kConvertFtoI, outCount); |
| } else if (outCategory == TypeCategory::kFloat) { |
| if (inCategory == TypeCategory::kSigned) { |
| this->write(ByteCodeInstruction::kConvertStoF, outCount); |
| } else { |
| SkASSERT(inCategory == TypeCategory::kUnsigned); |
| this->write(ByteCodeInstruction::kConvertUtoF, outCount); |
| } |
| } else { |
| SkASSERT(false); |
| } |
| } |
| if (inType.kind() == Type::kMatrix_Kind && outType.kind() == Type::kMatrix_Kind) { |
| this->write(ByteCodeInstruction::kMatrixToMatrix, |
| SlotCount(outType) - SlotCount(inType)); |
| this->write8(inType.columns()); |
| this->write8(inType.rows()); |
| this->write8(outType.columns()); |
| this->write8(outType.rows()); |
| } else if (inCount != outCount) { |
| SkASSERT(inCount == 1); |
| if (outType.kind() == Type::kMatrix_Kind) { |
| this->write(ByteCodeInstruction::kScalarToMatrix, SlotCount(outType) - 1); |
| this->write8(outType.columns()); |
| this->write8(outType.rows()); |
| } else { |
| SkASSERT(outType.kind() == Type::kVector_Kind); |
| for (; inCount != outCount; ++inCount) { |
| this->write(ByteCodeInstruction::kDup, 1); |
| } |
| } |
| } |
| } |
| } |
| |
| void ByteCodeGenerator::writeExternalFunctionCall(const ExternalFunctionCall& f) { |
| int argumentCount = 0; |
| for (const auto& arg : f.fArguments) { |
| this->writeExpression(*arg); |
| argumentCount += SlotCount(arg->fType); |
| } |
| this->write(ByteCodeInstruction::kCallExternal, SlotCount(f.fType) - argumentCount); |
| SkASSERT(argumentCount <= 255); |
| this->write8(argumentCount); |
| this->write8(SlotCount(f.fType)); |
| int index = fOutput->fExternalValues.size(); |
| fOutput->fExternalValues.push_back(f.fFunction); |
| SkASSERT(index <= 255); |
| this->write8(index); |
| } |
| |
| void ByteCodeGenerator::writeExternalValue(const ExternalValueReference& e) { |
| int count = SlotCount(e.fValue->type()); |
| this->write(ByteCodeInstruction::kReadExternal, count); |
| int index = fOutput->fExternalValues.size(); |
| fOutput->fExternalValues.push_back(e.fValue); |
| SkASSERT(index <= 255); |
| this->write8(index); |
| } |
| |
| void ByteCodeGenerator::writeVariableExpression(const Expression& expr) { |
| if (int builtin = expression_as_builtin(expr); builtin >= 0) { |
| switch (builtin) { |
| case SK_FRAGCOORD_BUILTIN: |
| this->write(ByteCodeInstruction::kLoadFragCoord); |
| fOutput->fUsesFragCoord = true; |
| break; |
| default: |
| fErrors.error(expr.fOffset, "Unsupported builtin"); |
| break; |
| } |
| return; |
| } |
| |
| Location location = this->getLocation(expr); |
| int count = SlotCount(expr.fType); |
| if (count == 0) { |
| return; |
| } |
| if (location.isOnStack()) { |
| this->write(location.selectLoad(ByteCodeInstruction::kLoadExtended, |
| ByteCodeInstruction::kLoadExtendedGlobal, |
| ByteCodeInstruction::kLoadExtendedUniform), |
| count); |
| } else { |
| this->write(location.selectLoad(ByteCodeInstruction::kLoad, |
| ByteCodeInstruction::kLoadGlobal, |
| ByteCodeInstruction::kLoadUniform), |
| count); |
| this->write8(location.fSlot); |
| } |
| } |
| |
| static inline uint32_t float_to_bits(float x) { |
| uint32_t u; |
| memcpy(&u, &x, sizeof(uint32_t)); |
| return u; |
| } |
| |
| void ByteCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(float_to_bits(f.fValue)); |
| } |
| |
| static bool is_generic_type(const Type* type, const Type* generic) { |
| const std::vector<const Type*>& concrete(generic->coercibleTypes()); |
| return std::find(concrete.begin(), concrete.end(), type) != concrete.end(); |
| } |
| |
| void ByteCodeGenerator::writeIntrinsicCall(const FunctionCall& c) { |
| auto found = fIntrinsics.find(c.fFunction.fName); |
| if (found == fIntrinsics.end()) { |
| fErrors.error(c.fOffset, String::printf("Unsupported intrinsic: '%s'", |
| String(c.fFunction.fName).c_str())); |
| return; |
| } |
| Intrinsic intrin = found->second; |
| int count = SlotCount(c.fArguments[0]->fType); |
| |
| // Several intrinsics have variants where one argument is either scalar, or the same size as |
| // the first argument. Call dupSmallerType(SlotCount(argType)) to ensure equal component count. |
| auto dupSmallerType = [count, this](int smallCount) { |
| SkASSERT(smallCount == 1 || smallCount == count); |
| for (int i = smallCount; i < count; ++i) { |
| this->write(ByteCodeInstruction::kDup, 1); |
| } |
| }; |
| |
| if (intrin.is_special && intrin.special == SpecialIntrinsic::kSample) { |
| // Sample is very special, the first argument is an FP, which can't be pushed to the stack |
| if (c.fArguments.size() != 2 || |
| c.fArguments[0]->fType != *fContext.fFragmentProcessor_Type || |
| (c.fArguments[1]->fType != *fContext.fFloat2_Type && |
| c.fArguments[1]->fType != *fContext.fFloat3x3_Type)) { |
| fErrors.error(c.fOffset, "Unsupported form of sample"); |
| return; |
| } |
| |
| // Write our coords or matrix |
| this->writeExpression(*c.fArguments[1]); |
| |
| this->write(c.fArguments[1]->fType == *fContext.fFloat3x3_Type |
| ? ByteCodeInstruction::kSampleMatrix |
| : ByteCodeInstruction::kSampleExplicit); |
| |
| Location childLoc = this->getLocation(*c.fArguments[0]); |
| SkASSERT(childLoc.fStorage == Storage::kChildFP); |
| this->write8(childLoc.fSlot); |
| return; |
| } |
| |
| if (intrin.is_special && (intrin.special == SpecialIntrinsic::kClamp || |
| intrin.special == SpecialIntrinsic::kSaturate)) { |
| // These intrinsics are extra-special, we need instructions interleaved with arguments |
| bool saturate = (intrin.special == SpecialIntrinsic::kSaturate); |
| SkASSERT(c.fArguments.size() == (saturate ? 1 : 3)); |
| int limitCount = saturate ? 1 : SlotCount(c.fArguments[1]->fType); |
| |
| // 'x' |
| this->writeExpression(*c.fArguments[0]); |
| |
| // 'minVal' |
| if (saturate) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(float_to_bits(0.0f)); |
| } else { |
| this->writeExpression(*c.fArguments[1]); |
| } |
| dupSmallerType(limitCount); |
| this->writeTypedInstruction(c.fArguments[0]->fType, |
| ByteCodeInstruction::kMaxS, |
| ByteCodeInstruction::kMaxS, |
| ByteCodeInstruction::kMaxF, |
| count); |
| |
| // 'maxVal' |
| if (saturate) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(float_to_bits(1.0f)); |
| } else { |
| SkASSERT(limitCount == SlotCount(c.fArguments[2]->fType)); |
| this->writeExpression(*c.fArguments[2]); |
| } |
| dupSmallerType(limitCount); |
| this->writeTypedInstruction(c.fArguments[0]->fType, |
| ByteCodeInstruction::kMinS, |
| ByteCodeInstruction::kMinS, |
| ByteCodeInstruction::kMinF, |
| count); |
| return; |
| } |
| |
| // All other intrinsics can handle their arguments being on the stack in order |
| for (const auto& arg : c.fArguments) { |
| this->writeExpression(*arg); |
| } |
| |
| if (intrin.is_special) { |
| switch (intrin.special) { |
| case SpecialIntrinsic::kAll: { |
| for (int i = count-1; i --> 0;) { |
| this->write(ByteCodeInstruction::kAndB, 1); |
| } |
| } break; |
| |
| case SpecialIntrinsic::kAny: { |
| for (int i = count-1; i --> 0;) { |
| this->write(ByteCodeInstruction::kOrB, 1); |
| } |
| } break; |
| |
| case SpecialIntrinsic::kDot: { |
| SkASSERT(c.fArguments.size() == 2); |
| SkASSERT(count == SlotCount(c.fArguments[1]->fType)); |
| this->write(ByteCodeInstruction::kMultiplyF, count); |
| for (int i = count-1; i --> 0;) { |
| this->write(ByteCodeInstruction::kAddF, 1); |
| } |
| } break; |
| |
| case SpecialIntrinsic::kLength: { |
| SkASSERT(c.fArguments.size() == 1); |
| this->write(ByteCodeInstruction::kDup, count); |
| this->write(ByteCodeInstruction::kMultiplyF, count); |
| for (int i = count-1; i --> 0;) { |
| this->write(ByteCodeInstruction::kAddF, 1); |
| } |
| this->write(ByteCodeInstruction::kSqrt, 1); |
| } break; |
| |
| case SpecialIntrinsic::kMax: |
| case SpecialIntrinsic::kMin: { |
| SkASSERT(c.fArguments.size() == 2); |
| // There are variants where the second argument is scalar |
| dupSmallerType(SlotCount(c.fArguments[1]->fType)); |
| if (intrin.special == SpecialIntrinsic::kMax) { |
| this->writeTypedInstruction(c.fArguments[0]->fType, |
| ByteCodeInstruction::kMaxS, |
| ByteCodeInstruction::kMaxS, |
| ByteCodeInstruction::kMaxF, |
| count); |
| } else { |
| this->writeTypedInstruction(c.fArguments[0]->fType, |
| ByteCodeInstruction::kMinS, |
| ByteCodeInstruction::kMinS, |
| ByteCodeInstruction::kMinF, |
| count); |
| } |
| } break; |
| |
| case SpecialIntrinsic::kMix: { |
| // Two main variants of mix to handle |
| SkASSERT(c.fArguments.size() == 3); |
| SkASSERT(count == SlotCount(c.fArguments[1]->fType)); |
| int selectorCount = SlotCount(c.fArguments[2]->fType); |
| |
| if (is_generic_type(&c.fArguments[2]->fType, fContext.fGenBType_Type.get())) { |
| // mix(genType, genType, genBoolType) |
| SkASSERT(selectorCount == count); |
| this->write(ByteCodeInstruction::kMix, count); |
| } else { |
| // mix(genType, genType, genType) or mix(genType, genType, float) |
| dupSmallerType(selectorCount); |
| this->write(ByteCodeInstruction::kLerp, count); |
| } |
| } break; |
| |
| case SpecialIntrinsic::kNormalize: { |
| SkASSERT(c.fArguments.size() == 1); |
| this->write(ByteCodeInstruction::kDup, count); |
| this->write(ByteCodeInstruction::kDup, count); |
| this->write(ByteCodeInstruction::kMultiplyF, count); |
| for (int i = count-1; i --> 0;) { |
| this->write(ByteCodeInstruction::kAddF, 1); |
| } |
| this->write(ByteCodeInstruction::kSqrt, 1); |
| dupSmallerType(1); |
| this->write(ByteCodeInstruction::kDivideF, count); |
| } break; |
| |
| default: |
| SkASSERT(false); |
| } |
| } else { |
| switch (intrin.inst_f) { |
| case ByteCodeInstruction::kInverse2x2: { |
| SkASSERT(c.fArguments.size() > 0); |
| auto op = ByteCodeInstruction::kInverse2x2; |
| switch (count) { |
| case 4: break; // float2x2 |
| case 9: op = ByteCodeInstruction::kInverse3x3; break; |
| case 16: op = ByteCodeInstruction::kInverse4x4; break; |
| default: SkASSERT(false); |
| } |
| this->write(op); |
| break; |
| } |
| |
| default: |
| this->writeTypedInstruction(c.fArguments[0]->fType, |
| intrin.inst_s, |
| intrin.inst_u, |
| intrin.inst_f, |
| count); |
| break; |
| } |
| } |
| } |
| |
| void ByteCodeGenerator::writeFunctionCall(const FunctionCall& f) { |
| // Find the index of the function we're calling. We explicitly do not allow calls to functions |
| // before they're defined. This is an easy-to-understand rule that prevents recursion. |
| int idx = -1; |
| for (size_t i = 0; i < fFunctions.size(); ++i) { |
| if (f.fFunction.matches(fFunctions[i]->fDeclaration)) { |
| idx = i; |
| break; |
| } |
| } |
| if (idx == -1) { |
| this->writeIntrinsicCall(f); |
| return; |
| } |
| |
| |
| if (idx > 255) { |
| fErrors.error(f.fOffset, "Function count limit exceeded"); |
| return; |
| } else if (idx >= (int) fFunctions.size()) { |
| fErrors.error(f.fOffset, "Call to undefined function"); |
| return; |
| } |
| |
| // We may need to deal with out parameters, so the sequence is tricky |
| if (int returnCount = SlotCount(f.fType)) { |
| this->write(ByteCodeInstruction::kReserve, returnCount); |
| } |
| |
| int argCount = f.fArguments.size(); |
| std::vector<std::unique_ptr<LValue>> lvalues; |
| for (int i = 0; i < argCount; ++i) { |
| const auto& param = f.fFunction.fParameters[i]; |
| const auto& arg = f.fArguments[i]; |
| if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { |
| lvalues.emplace_back(this->getLValue(*arg)); |
| lvalues.back()->load(); |
| } else { |
| this->writeExpression(*arg); |
| } |
| } |
| |
| // The space used by the call is based on the callee, but it also unwinds all of that before |
| // we continue execution. We adjust our max stack depths below. |
| this->write(ByteCodeInstruction::kCall); |
| this->write8(idx); |
| |
| const ByteCodeFunction* callee = fOutput->fFunctions[idx].get(); |
| fMaxLoopCount = std::max(fMaxLoopCount, fLoopCount + callee->fLoopCount); |
| fMaxConditionCount = std::max(fMaxConditionCount, fConditionCount + callee->fConditionCount); |
| fMaxStackCount = std::max(fMaxStackCount, fStackCount + callee->fLocalCount |
| + callee->fStackCount); |
| |
| // After the called function returns, the stack will still contain our arguments. We have to |
| // pop them (storing any out parameters back to their lvalues as we go). We glob together slot |
| // counts for all parameters that aren't out-params, so we can pop them in one big chunk. |
| int popCount = 0; |
| auto pop = [&]() { |
| if (popCount > 0) { |
| this->write(ByteCodeInstruction::kPop, popCount); |
| } |
| popCount = 0; |
| }; |
| |
| for (int i = argCount - 1; i >= 0; --i) { |
| const auto& param = f.fFunction.fParameters[i]; |
| const auto& arg = f.fArguments[i]; |
| if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { |
| pop(); |
| lvalues.back()->store(true); |
| lvalues.pop_back(); |
| } else { |
| popCount += SlotCount(arg->fType); |
| } |
| } |
| pop(); |
| } |
| |
| void ByteCodeGenerator::writeIntLiteral(const IntLiteral& i) { |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(i.fValue); |
| } |
| |
| void ByteCodeGenerator::writeNullLiteral(const NullLiteral& n) { |
| // not yet implemented |
| abort(); |
| } |
| |
| bool ByteCodeGenerator::writePrefixExpression(const PrefixExpression& p, bool discard) { |
| switch (p.fOperator) { |
| case Token::Kind::TK_PLUSPLUS: // fall through |
| case Token::Kind::TK_MINUSMINUS: { |
| SkASSERT(SlotCount(p.fOperand->fType) == 1); |
| std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand); |
| lvalue->load(); |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(type_category(p.fType) == TypeCategory::kFloat ? float_to_bits(1.0f) : 1); |
| if (p.fOperator == Token::Kind::TK_PLUSPLUS) { |
| this->writeTypedInstruction(p.fType, |
| ByteCodeInstruction::kAddI, |
| ByteCodeInstruction::kAddI, |
| ByteCodeInstruction::kAddF, |
| 1); |
| } else { |
| this->writeTypedInstruction(p.fType, |
| ByteCodeInstruction::kSubtractI, |
| ByteCodeInstruction::kSubtractI, |
| ByteCodeInstruction::kSubtractF, |
| 1); |
| } |
| lvalue->store(discard); |
| discard = false; |
| break; |
| } |
| case Token::Kind::TK_MINUS: { |
| this->writeExpression(*p.fOperand); |
| this->writeTypedInstruction(p.fType, |
| ByteCodeInstruction::kNegateI, |
| ByteCodeInstruction::kNegateI, |
| ByteCodeInstruction::kNegateF, |
| SlotCount(p.fOperand->fType)); |
| break; |
| } |
| case Token::Kind::TK_LOGICALNOT: |
| case Token::Kind::TK_BITWISENOT: { |
| SkASSERT(SlotCount(p.fOperand->fType) == 1); |
| SkDEBUGCODE(TypeCategory tc = type_category(p.fOperand->fType)); |
| SkASSERT((p.fOperator == Token::Kind::TK_LOGICALNOT && tc == TypeCategory::kBool) || |
| (p.fOperator == Token::Kind::TK_BITWISENOT && (tc == TypeCategory::kSigned || |
| tc == TypeCategory::kUnsigned))); |
| this->writeExpression(*p.fOperand); |
| this->write(ByteCodeInstruction::kNotB, 1); |
| break; |
| } |
| default: |
| SkASSERT(false); |
| } |
| return discard; |
| } |
| |
| bool ByteCodeGenerator::writePostfixExpression(const PostfixExpression& p, bool discard) { |
| switch (p.fOperator) { |
| case Token::Kind::TK_PLUSPLUS: // fall through |
| case Token::Kind::TK_MINUSMINUS: { |
| SkASSERT(SlotCount(p.fOperand->fType) == 1); |
| std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand); |
| lvalue->load(); |
| // If we're not supposed to discard the result, then make a copy *before* the +/- |
| if (!discard) { |
| this->write(ByteCodeInstruction::kDup, 1); |
| } |
| this->write(ByteCodeInstruction::kPushImmediate); |
| this->write32(type_category(p.fType) == TypeCategory::kFloat ? float_to_bits(1.0f) : 1); |
| if (p.fOperator == Token::Kind::TK_PLUSPLUS) { |
| this->writeTypedInstruction(p.fType, |
| ByteCodeInstruction::kAddI, |
| ByteCodeInstruction::kAddI, |
| ByteCodeInstruction::kAddF, |
| 1); |
| } else { |
| this->writeTypedInstruction(p.fType, |
| ByteCodeInstruction::kSubtractI, |
| ByteCodeInstruction::kSubtractI, |
| ByteCodeInstruction::kSubtractF, |
| 1); |
| } |
| // Always consume the result as part of the store |
| lvalue->store(true); |
| discard = false; |
| break; |
| } |
| default: |
| SkASSERT(false); |
| } |
| return discard; |
| } |
| |
| void ByteCodeGenerator::writeSwizzle(const Swizzle& s) { |
| if (swizzle_is_simple(s)) { |
| this->writeVariableExpression(s); |
| return; |
| } |
| |
| this->writeExpression(*s.fBase); |
| this->write(ByteCodeInstruction::kSwizzle, s.fComponents.size() - s.fBase->fType.columns()); |
| this->write8(s.fBase->fType.columns()); |
| this->write8(s.fComponents.size()); |
| for (int c : s.fComponents) { |
| this->write8(c); |
| } |
| } |
| |
| void ByteCodeGenerator::writeTernaryExpression(const TernaryExpression& t) { |
| int count = SlotCount(t.fType); |
| SkASSERT(count == SlotCount(t.fIfTrue->fType)); |
| SkASSERT(count == SlotCount(t.fIfFalse->fType)); |
| |
| this->writeExpression(*t.fTest); |
| this->write(ByteCodeInstruction::kMaskPush); |
| this->writeExpression(*t.fIfTrue); |
| this->write(ByteCodeInstruction::kMaskNegate); |
| this->writeExpression(*t.fIfFalse); |
| this->write(ByteCodeInstruction::kMaskBlend, count); |
| } |
| |
| void ByteCodeGenerator::writeExpression(const Expression& e, bool discard) { |
| switch (e.fKind) { |
| case Expression::kBinary_Kind: |
| discard = this->writeBinaryExpression((BinaryExpression&) e, discard); |
| break; |
| case Expression::kBoolLiteral_Kind: |
| this->writeBoolLiteral((BoolLiteral&) e); |
| break; |
| case Expression::kConstructor_Kind: |
| this->writeConstructor((Constructor&) e); |
| break; |
| case Expression::kExternalFunctionCall_Kind: |
| this->writeExternalFunctionCall((ExternalFunctionCall&) e); |
| break; |
| case Expression::kExternalValue_Kind: |
| this->writeExternalValue((ExternalValueReference&) e); |
| break; |
| case Expression::kFieldAccess_Kind: |
| case Expression::kIndex_Kind: |
| case Expression::kVariableReference_Kind: |
| this->writeVariableExpression(e); |
| break; |
| case Expression::kFloatLiteral_Kind: |
| this->writeFloatLiteral((FloatLiteral&) e); |
| break; |
| case Expression::kFunctionCall_Kind: |
| this->writeFunctionCall((FunctionCall&) e); |
| break; |
| case Expression::kIntLiteral_Kind: |
| this->writeIntLiteral((IntLiteral&) e); |
| break; |
| case Expression::kNullLiteral_Kind: |
| this->writeNullLiteral((NullLiteral&) e); |
| break; |
| case Expression::kPrefix_Kind: |
| discard = this->writePrefixExpression((PrefixExpression&) e, discard); |
| break; |
| case Expression::kPostfix_Kind: |
| discard = this->writePostfixExpression((PostfixExpression&) e, discard); |
| break; |
| case Expression::kSwizzle_Kind: |
| this->writeSwizzle((Swizzle&) e); |
| break; |
| case Expression::kTernary_Kind: |
| this->writeTernaryExpression((TernaryExpression&) e); |
| break; |
| default: |
| #ifdef SK_DEBUG |
| printf("unsupported expression %s\n", e.description().c_str()); |
| #endif |
| SkASSERT(false); |
| } |
| if (discard) { |
| int count = SlotCount(e.fType); |
| if (count > 0) { |
| this->write(ByteCodeInstruction::kPop, count); |
| } |
| discard = false; |
| } |
| } |
| |
| class ByteCodeExternalValueLValue : public ByteCodeGenerator::LValue { |
| public: |
| ByteCodeExternalValueLValue(ByteCodeGenerator* generator, ExternalValue& value, int index) |
| : INHERITED(*generator) |
| , fCount(ByteCodeGenerator::SlotCount(value.type())) |
| , fIndex(index) {} |
| |
| void load() override { |
| fGenerator.write(ByteCodeInstruction::kReadExternal, fCount); |
| fGenerator.write8(fIndex); |
| } |
| |
| void store(bool discard) override { |
| if (!discard) { |
| fGenerator.write(ByteCodeInstruction::kDup, fCount); |
| } |
| fGenerator.write(ByteCodeInstruction::kWriteExternal, fCount); |
| fGenerator.write8(fIndex); |
| } |
| |
| private: |
| typedef LValue INHERITED; |
| |
| int fCount; |
| int fIndex; |
| }; |
| |
| class ByteCodeSwizzleLValue : public ByteCodeGenerator::LValue { |
| public: |
| ByteCodeSwizzleLValue(ByteCodeGenerator* generator, const Swizzle& swizzle) |
| : INHERITED(*generator) |
| , fSwizzle(swizzle) {} |
| |
| void load() override { |
| fGenerator.writeSwizzle(fSwizzle); |
| } |
| |
| void store(bool discard) override { |
| int count = fSwizzle.fComponents.size(); |
| if (!discard) { |
| fGenerator.write(ByteCodeInstruction::kDup, count); |
| } |
| // We already have the correct number of values on the stack, thanks to type checking. |
| // The algorithm: Walk down the values on the stack, doing 'count' single-element stores. |
| // For each value, use the corresponding swizzle component to offset the store location. |
| // |
| // Static locations: We (wastefully) call getLocation every time, but get good byte code. |
| // Note that we could (but don't) store adjacent/sequential values with fewer instructions. |
| // |
| // Dynamic locations: ... are bad. We have to recompute the base address on each iteration, |
| // because the stack doesn't let us retain that address between stores. Dynamic locations |
| // are rare though, and swizzled writes to those are even rarer, so we just live with this. |
| for (int i = count; i-- > 0;) { |
| ByteCodeGenerator::Location location = fGenerator.getLocation(*fSwizzle.fBase); |
| if (!location.isOnStack()) { |
| fGenerator.write(location.selectStore(ByteCodeInstruction::kStore, |
| ByteCodeInstruction::kStoreGlobal), |
| 1); |
| fGenerator.write8(location.fSlot + fSwizzle.fComponents[i]); |
| } else { |
| fGenerator.write(ByteCodeInstruction::kPushImmediate); |
| fGenerator.write32(fSwizzle.fComponents[i]); |
| fGenerator.write(ByteCodeInstruction::kAddI, 1); |
| fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreExtended, |
| ByteCodeInstruction::kStoreExtendedGlobal), |
| 1); |
| } |
| } |
| } |
| |
| private: |
| const Swizzle& fSwizzle; |
| |
| typedef LValue INHERITED; |
| }; |
| |
| class ByteCodeExpressionLValue : public ByteCodeGenerator::LValue { |
| public: |
| ByteCodeExpressionLValue(ByteCodeGenerator* generator, const Expression& expr) |
| : INHERITED(*generator) |
| , fExpression(expr) {} |
| |
| void load() override { |
| fGenerator.writeVariableExpression(fExpression); |
| } |
| |
| void store(bool discard) override { |
| int count = ByteCodeGenerator::SlotCount(fExpression.fType); |
| if (!discard) { |
| fGenerator.write(ByteCodeInstruction::kDup, count); |
| } |
| ByteCodeGenerator::Location location = fGenerator.getLocation(fExpression); |
| if (location.isOnStack()) { |
| fGenerator.write(location.selectStore(ByteCodeInstruction::kStoreExtended, |
| ByteCodeInstruction::kStoreExtendedGlobal), |
| count); |
| } else { |
| fGenerator.write(location.selectStore(ByteCodeInstruction::kStore, |
| ByteCodeInstruction::kStoreGlobal), |
| count); |
| fGenerator.write8(location.fSlot); |
| } |
| } |
| |
| private: |
| typedef LValue INHERITED; |
| |
| const Expression& fExpression; |
| }; |
| |
| std::unique_ptr<ByteCodeGenerator::LValue> ByteCodeGenerator::getLValue(const Expression& e) { |
| switch (e.fKind) { |
| case Expression::kExternalValue_Kind: { |
| ExternalValue* value = ((ExternalValueReference&) e).fValue; |
| int index = fOutput->fExternalValues.size(); |
| fOutput->fExternalValues.push_back(value); |
| SkASSERT(index <= 255); |
| return std::unique_ptr<LValue>(new ByteCodeExternalValueLValue(this, *value, index)); |
| } |
| case Expression::kFieldAccess_Kind: |
| case Expression::kIndex_Kind: |
| case Expression::kVariableReference_Kind: |
| return std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e)); |
| case Expression::kSwizzle_Kind: { |
| const Swizzle& s = (const Swizzle&) e; |
| return swizzle_is_simple(s) |
| ? std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e)) |
| : std::unique_ptr<LValue>(new ByteCodeSwizzleLValue(this, s)); |
| } |
| case Expression::kTernary_Kind: |
| default: |
| #ifdef SK_DEBUG |
| ABORT("unsupported lvalue %s\n", e.description().c_str()); |
| #endif |
| return nullptr; |
| } |
| } |
| |
| void ByteCodeGenerator::writeBlock(const Block& b) { |
| for (const auto& s : b.fStatements) { |
| this->writeStatement(*s); |
| } |
| } |
| |
| void ByteCodeGenerator::setBreakTargets() { |
| std::vector<DeferredLocation>& breaks = fBreakTargets.top(); |
| for (DeferredLocation& b : breaks) { |
| b.set(); |
| } |
| fBreakTargets.pop(); |
| } |
| |
| void ByteCodeGenerator::setContinueTargets() { |
| std::vector<DeferredLocation>& continues = fContinueTargets.top(); |
| for (DeferredLocation& c : continues) { |
| c.set(); |
| } |
| fContinueTargets.pop(); |
| } |
| |
| void ByteCodeGenerator::writeBreakStatement(const BreakStatement& b) { |
| // TODO: Include BranchIfAllFalse to top-most LoopNext |
| this->write(ByteCodeInstruction::kLoopBreak); |
| } |
| |
| void ByteCodeGenerator::writeContinueStatement(const ContinueStatement& c) { |
| // TODO: Include BranchIfAllFalse to top-most LoopNext |
| this->write(ByteCodeInstruction::kLoopContinue); |
| } |
| |
| void ByteCodeGenerator::writeDoStatement(const DoStatement& d) { |
| this->write(ByteCodeInstruction::kLoopBegin); |
| size_t start = fCode->size(); |
| this->writeStatement(*d.fStatement); |
| this->write(ByteCodeInstruction::kLoopNext); |
| this->writeExpression(*d.fTest); |
| this->write(ByteCodeInstruction::kLoopMask); |
| // TODO: Could shorten this with kBranchIfAnyTrue |
| this->write(ByteCodeInstruction::kBranchIfAllFalse); |
| DeferredLocation endLocation(this); |
| this->write(ByteCodeInstruction::kBranch); |
| this->write16(start); |
| endLocation.set(); |
| this->write(ByteCodeInstruction::kLoopEnd); |
| } |
| |
| void ByteCodeGenerator::writeForStatement(const ForStatement& f) { |
| fContinueTargets.emplace(); |
| fBreakTargets.emplace(); |
| if (f.fInitializer) { |
| this->writeStatement(*f.fInitializer); |
| } |
| this->write(ByteCodeInstruction::kLoopBegin); |
| size_t start = fCode->size(); |
| if (f.fTest) { |
| this->writeExpression(*f.fTest); |
| this->write(ByteCodeInstruction::kLoopMask); |
| } |
| this->write(ByteCodeInstruction::kBranchIfAllFalse); |
| DeferredLocation endLocation(this); |
| this->writeStatement(*f.fStatement); |
| this->write(ByteCodeInstruction::kLoopNext); |
| if (f.fNext) { |
| this->writeExpression(*f.fNext, true); |
| } |
| this->write(ByteCodeInstruction::kBranch); |
| this->write16(start); |
| endLocation.set(); |
| this->write(ByteCodeInstruction::kLoopEnd); |
| } |
| |
| void ByteCodeGenerator::writeIfStatement(const IfStatement& i) { |
| this->writeExpression(*i.fTest); |
| this->write(ByteCodeInstruction::kMaskPush); |
| this->write(ByteCodeInstruction::kBranchIfAllFalse); |
| DeferredLocation falseLocation(this); |
| this->writeStatement(*i.fIfTrue); |
| falseLocation.set(); |
| if (i.fIfFalse) { |
| this->write(ByteCodeInstruction::kMaskNegate); |
| this->write(ByteCodeInstruction::kBranchIfAllFalse); |
| DeferredLocation endLocation(this); |
| this->writeStatement(*i.fIfFalse); |
| endLocation.set(); |
| } |
| this->write(ByteCodeInstruction::kMaskPop); |
| } |
| |
| void ByteCodeGenerator::writeReturnStatement(const ReturnStatement& r) { |
| if (fLoopCount || fConditionCount) { |
| fErrors.error(r.fOffset, "return not allowed inside conditional or loop"); |
| return; |
| } |
| int count = SlotCount(r.fExpression->fType); |
| this->writeExpression(*r.fExpression); |
| |
| // Technically, the kReturn also pops fOutput->fLocalCount values from the stack, too, but we |
| // haven't counted pushing those (they're outside the scope of our stack tracking). Instead, |
| // we account for those in writeFunction(). |
| |
| // This is all fine because we don't allow conditional returns, so we only return once anyway. |
| this->write(ByteCodeInstruction::kReturn, count); |
| } |
| |
| void ByteCodeGenerator::writeSwitchStatement(const SwitchStatement& r) { |
| // not yet implemented |
| abort(); |
| } |
| |
| void ByteCodeGenerator::writeVarDeclarations(const VarDeclarations& v) { |
| for (const auto& declStatement : v.fVars) { |
| const VarDeclaration& decl = (VarDeclaration&) *declStatement; |
| // we need to grab the location even if we don't use it, to ensure it has been allocated |
| Location location = this->getLocation(*decl.fVar); |
| if (decl.fValue) { |
| this->writeExpression(*decl.fValue); |
| int count = SlotCount(decl.fValue->fType); |
| this->write(ByteCodeInstruction::kStore, count); |
| this->write8(location.fSlot); |
| } |
| } |
| } |
| |
| void ByteCodeGenerator::writeWhileStatement(const WhileStatement& w) { |
| this->write(ByteCodeInstruction::kLoopBegin); |
| size_t cond = fCode->size(); |
| this->writeExpression(*w.fTest); |
| this->write(ByteCodeInstruction::kLoopMask); |
| this->write(ByteCodeInstruction::kBranchIfAllFalse); |
| DeferredLocation endLocation(this); |
| this->writeStatement(*w.fStatement); |
| this->write(ByteCodeInstruction::kLoopNext); |
| this->write(ByteCodeInstruction::kBranch); |
| this->write16(cond); |
| endLocation.set(); |
| this->write(ByteCodeInstruction::kLoopEnd); |
| } |
| |
| void ByteCodeGenerator::writeStatement(const Statement& s) { |
| switch (s.fKind) { |
| case Statement::kBlock_Kind: |
| this->writeBlock((Block&) s); |
| break; |
| case Statement::kBreak_Kind: |
| this->writeBreakStatement((BreakStatement&) s); |
| break; |
| case Statement::kContinue_Kind: |
| this->writeContinueStatement((ContinueStatement&) s); |
| break; |
| case Statement::kDiscard_Kind: |
| // not yet implemented |
| abort(); |
| case Statement::kDo_Kind: |
| this->writeDoStatement((DoStatement&) s); |
| break; |
| case Statement::kExpression_Kind: |
| this->writeExpression(*((ExpressionStatement&) s).fExpression, true); |
| break; |
| case Statement::kFor_Kind: |
| this->writeForStatement((ForStatement&) s); |
| break; |
| case Statement::kIf_Kind: |
| this->writeIfStatement((IfStatement&) s); |
| break; |
| case Statement::kNop_Kind: |
| break; |
| case Statement::kReturn_Kind: |
| this->writeReturnStatement((ReturnStatement&) s); |
| break; |
| case Statement::kSwitch_Kind: |
| this->writeSwitchStatement((SwitchStatement&) s); |
| break; |
| case Statement::kVarDeclarations_Kind: |
| this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration); |
| break; |
| case Statement::kWhile_Kind: |
| this->writeWhileStatement((WhileStatement&) s); |
| break; |
| default: |
| SkASSERT(false); |
| } |
| } |
| |
| ByteCodeFunction::ByteCodeFunction(const FunctionDeclaration* declaration) |
| : fName(declaration->fName) { |
| fParameterCount = 0; |
| for (const auto& p : declaration->fParameters) { |
| int slots = ByteCodeGenerator::SlotCount(p->fType); |
| fParameters.push_back({ slots, (bool)(p->fModifiers.fFlags & Modifiers::kOut_Flag) }); |
| fParameterCount += slots; |
| } |
| } |
| |
| } |