blob: 15bf848ae538962dcc0e489487d92e971fdee17b [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/shaders/SkImageShader.h"
#include "src/core/SkArenaAlloc.h"
#include "src/core/SkBitmapController.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkColorSpaceXformSteps.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkOpts.h"
#include "src/core/SkRasterPipeline.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkScopeExit.h"
#include "src/core/SkVM.h"
#include "src/core/SkWriteBuffer.h"
#include "src/image/SkImage_Base.h"
#include "src/shaders/SkBitmapProcShader.h"
#include "src/shaders/SkEmptyShader.h"
/**
* We are faster in clamp, so always use that tiling when we can.
*/
static SkTileMode optimize(SkTileMode tm, int dimension) {
SkASSERT(dimension > 0);
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
// need to update frameworks/base/libs/hwui/tests/unit/SkiaBehaviorTests.cpp:55 to allow
// for transforming to clamp.
return tm;
#else
return dimension == 1 ? SkTileMode::kClamp : tm;
#endif
}
SkImageShader::SkImageShader(sk_sp<SkImage> img,
SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix,
FilterEnum filtering,
bool clampAsIfUnpremul)
: INHERITED(localMatrix)
, fImage(std::move(img))
, fTileModeX(optimize(tmx, fImage->width()))
, fTileModeY(optimize(tmy, fImage->height()))
, fFiltering(filtering)
, fClampAsIfUnpremul(clampAsIfUnpremul)
{}
// fClampAsIfUnpremul is always false when constructed through public APIs,
// so there's no need to read or write it here.
sk_sp<SkFlattenable> SkImageShader::CreateProc(SkReadBuffer& buffer) {
auto tmx = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode);
auto tmy = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode);
FilterEnum filtering = kInheritFromPaint;
if (!buffer.isVersionLT(SkPicturePriv::kFilteringInImageShader_Version)) {
filtering = buffer.read32LE<FilterEnum>(kInheritFromPaint);
}
SkMatrix localMatrix;
buffer.readMatrix(&localMatrix);
sk_sp<SkImage> img = buffer.readImage();
if (!img) {
return nullptr;
}
return SkImageShader::Make(std::move(img), tmx, tmy, &localMatrix, filtering);
}
void SkImageShader::flatten(SkWriteBuffer& buffer) const {
buffer.writeUInt((unsigned)fTileModeX);
buffer.writeUInt((unsigned)fTileModeY);
buffer.writeUInt((unsigned)fFiltering);
buffer.writeMatrix(this->getLocalMatrix());
buffer.writeImage(fImage.get());
SkASSERT(fClampAsIfUnpremul == false);
}
bool SkImageShader::isOpaque() const {
return fImage->isOpaque() &&
fTileModeX != SkTileMode::kDecal && fTileModeY != SkTileMode::kDecal;
}
#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
static bool legacy_shader_can_handle(const SkMatrix& inv) {
SkASSERT(!inv.hasPerspective());
// Scale+translate methods are always present, but affine might not be.
if (!SkOpts::S32_alpha_D32_filter_DXDY && !inv.isScaleTranslate()) {
return false;
}
// legacy code uses SkFixed 32.32, so ensure the inverse doesn't map device coordinates
// out of range.
const SkScalar max_dev_coord = 32767.0f;
const SkRect src = inv.mapRect(SkRect::MakeWH(max_dev_coord, max_dev_coord));
// take 1/4 of max signed 32bits so we have room to subtract local values
const SkScalar max_fixed32dot32 = float(SK_MaxS32) * 0.25f;
if (!SkRect::MakeLTRB(-max_fixed32dot32, -max_fixed32dot32,
+max_fixed32dot32, +max_fixed32dot32).contains(src)) {
return false;
}
// legacy shader impl should be able to handle these matrices
return true;
}
SkShaderBase::Context* SkImageShader::onMakeContext(const ContextRec& rec,
SkArenaAlloc* alloc) const {
SkFilterQuality quality = this->resolveFiltering(rec.fPaint->getFilterQuality());
if (quality == kHigh_SkFilterQuality) {
return nullptr;
}
if (fImage->alphaType() == kUnpremul_SkAlphaType) {
return nullptr;
}
if (fImage->colorType() != kN32_SkColorType) {
return nullptr;
}
if (fTileModeX != fTileModeY) {
return nullptr;
}
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
return nullptr;
}
// SkBitmapProcShader stores bitmap coordinates in a 16bit buffer,
// so it can't handle bitmaps larger than 65535.
//
// We back off another bit to 32767 to make small amounts of
// intermediate math safe, e.g. in
//
// SkFixed fx = ...;
// fx = tile(fx + SK_Fixed1);
//
// we want to make sure (fx + SK_Fixed1) never overflows.
if (fImage-> width() > 32767 ||
fImage->height() > 32767) {
return nullptr;
}
SkMatrix inv;
if (!this->computeTotalInverse(*rec.fMatrix, rec.fLocalMatrix, &inv) ||
!legacy_shader_can_handle(inv)) {
return nullptr;
}
if (!rec.isLegacyCompatible(fImage->colorSpace())) {
return nullptr;
}
// Send in a modified paint with different filter-quality if we don't agree with the paint
SkPaint modifiedPaint;
ContextRec modifiedRec = rec;
if (quality != rec.fPaint->getFilterQuality()) {
modifiedPaint = *rec.fPaint;
modifiedPaint.setFilterQuality(quality);
modifiedRec.fPaint = &modifiedPaint;
}
return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY,
as_IB(fImage.get()), modifiedRec, alloc);
}
#endif
SkImage* SkImageShader::onIsAImage(SkMatrix* texM, SkTileMode xy[]) const {
if (texM) {
*texM = this->getLocalMatrix();
}
if (xy) {
xy[0] = fTileModeX;
xy[1] = fTileModeY;
}
return const_cast<SkImage*>(fImage.get());
}
sk_sp<SkShader> SkImageShader::Make(sk_sp<SkImage> image,
SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix,
FilterEnum filtering,
bool clampAsIfUnpremul) {
if (!image) {
return sk_make_sp<SkEmptyShader>();
}
return sk_sp<SkShader>{
new SkImageShader(image, tmx, tmy, localMatrix, filtering, clampAsIfUnpremul)
};
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "include/private/GrRecordingContext.h"
#include "src/gpu/GrBitmapTextureMaker.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrColorInfo.h"
#include "src/gpu/GrImageTextureMaker.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrTextureAdjuster.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/GrBicubicEffect.h"
#include "src/gpu/effects/GrTextureEffect.h"
std::unique_ptr<GrFragmentProcessor> SkImageShader::asFragmentProcessor(
const GrFPArgs& args) const {
const auto lm = this->totalLocalMatrix(args.fPreLocalMatrix);
SkMatrix lmInverse;
if (!lm->invert(&lmInverse)) {
return nullptr;
}
// This would all be much nicer with std::variant.
static constexpr size_t kSize = std::max({sizeof(GrYUVAImageTextureMaker),
sizeof(GrTextureAdjuster ),
sizeof(GrImageTextureMaker ),
sizeof(GrBitmapTextureMaker )});
static constexpr size_t kAlign = std::max({alignof(GrYUVAImageTextureMaker),
alignof(GrTextureAdjuster ),
alignof(GrImageTextureMaker ),
alignof(GrBitmapTextureMaker )});
std::aligned_storage_t<kSize, kAlign> storage;
GrTextureProducer* producer = nullptr;
SkScopeExit destroyProducer([&producer]{ if (producer) { producer->~GrTextureProducer(); } });
uint32_t pinnedUniqueID;
SkBitmap bm;
if (as_IB(fImage)->isYUVA()) {
producer = new (&storage) GrYUVAImageTextureMaker(args.fContext, fImage.get());
} else if (GrSurfaceProxyView view =
as_IB(fImage)->refPinnedView(args.fContext, &pinnedUniqueID)) {
GrColorInfo colorInfo;
if (args.fContext->priv().caps()->isFormatSRGB(view.proxy()->backendFormat())) {
SkASSERT(fImage->colorType() == kRGBA_8888_SkColorType);
colorInfo = GrColorInfo(GrColorType::kRGBA_8888_SRGB, fImage->alphaType(),
fImage->refColorSpace());
} else {
colorInfo = fImage->imageInfo().colorInfo();
}
producer = new (&storage)
GrTextureAdjuster(args.fContext, std::move(view), colorInfo, pinnedUniqueID);
} else if (fImage->isLazyGenerated()) {
producer = new (&storage)
GrImageTextureMaker(args.fContext, fImage.get(), GrImageTexGenPolicy::kDraw);
} else if (as_IB(fImage)->getROPixels(&bm)) {
producer =
new (&storage) GrBitmapTextureMaker(args.fContext, bm, GrImageTexGenPolicy::kDraw);
} else {
return nullptr;
}
GrSamplerState::WrapMode wmX = SkTileModeToWrapMode(fTileModeX),
wmY = SkTileModeToWrapMode(fTileModeY);
// Must set wrap and filter on the sampler before requesting a texture. In two places
// below we check the matrix scale factors to determine how to interpret the filter
// quality setting. This completely ignores the complexity of the drawVertices case
// where explicit local coords are provided by the caller.
bool doBicubic;
GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode(
fImage->width(), fImage->height(), this->resolveFiltering(args.fFilterQuality),
args.fMatrixProvider.localToDevice(), *lm,
args.fContext->priv().options().fSharpenMipmappedTextures, &doBicubic);
const GrSamplerState::Filter* filterOrNull = doBicubic ? nullptr : &textureFilterMode;
auto fp = producer->createFragmentProcessor(lmInverse, SkRect::Make(fImage->dimensions()),
GrTextureProducer::kNo_FilterConstraint, false, wmX,
wmY, filterOrNull);
if (!fp) {
return nullptr;
}
fp = GrColorSpaceXformEffect::Make(std::move(fp), fImage->colorSpace(), producer->alphaType(),
args.fDstColorInfo->colorSpace(), kPremul_SkAlphaType);
bool isAlphaOnly = SkColorTypeIsAlphaOnly(fImage->colorType());
if (isAlphaOnly) {
return fp;
} else if (args.fInputColorIsOpaque) {
return GrFragmentProcessor::OverrideInput(std::move(fp), SK_PMColor4fWHITE, false);
}
return GrFragmentProcessor::MulChildByInputAlpha(std::move(fp));
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
#include "src/core/SkImagePriv.h"
sk_sp<SkShader> SkMakeBitmapShader(const SkBitmap& src, SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix, SkCopyPixelsMode cpm) {
return SkImageShader::Make(SkMakeImageFromRasterBitmap(src, cpm),
tmx, tmy, localMatrix, SkImageShader::kInheritFromPaint);
}
sk_sp<SkShader> SkMakeBitmapShaderForPaint(const SkPaint& paint, const SkBitmap& src,
SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix, SkCopyPixelsMode mode) {
auto s = SkMakeBitmapShader(src, tmx, tmy, localMatrix, mode);
if (!s) {
return nullptr;
}
if (src.colorType() == kAlpha_8_SkColorType && paint.getShader()) {
// Compose the image shader with the paint's shader. Alpha images+shaders should output the
// texture's alpha multiplied by the shader's color. DstIn (d*sa) will achieve this with
// the source image and dst shader (MakeBlend takes dst first, src second).
s = SkShaders::Blend(SkBlendMode::kDstIn, paint.refShader(), std::move(s));
}
return s;
}
void SkShaderBase::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkImageShader); }
class SkImageStageUpdater : public SkStageUpdater {
public:
SkImageStageUpdater(const SkImageShader* shader, bool usePersp)
: fShader(shader)
, fUsePersp(usePersp || as_SB(shader)->getLocalMatrix().hasPerspective())
{}
const SkImageShader* fShader;
const bool fUsePersp; // else use affine
// large enough for perspective, though often we just use 2x3
float fMatrixStorage[9];
#if 0 // TODO: when we support mipmaps
SkRasterPipeline_GatherCtx* fGather;
SkRasterPipeline_TileCtx* fLimitX;
SkRasterPipeline_TileCtx* fLimitY;
SkRasterPipeline_DecalTileCtx* fDecal;
#endif
void append_matrix_stage(SkRasterPipeline* p) {
if (fUsePersp) {
p->append(SkRasterPipeline::matrix_perspective, fMatrixStorage);
} else {
p->append(SkRasterPipeline::matrix_2x3, fMatrixStorage);
}
}
bool update(const SkMatrix& ctm, const SkMatrix* localM) override {
SkMatrix matrix;
if (fShader->computeTotalInverse(ctm, localM, &matrix)) {
if (fUsePersp) {
matrix.get9(fMatrixStorage);
} else {
// if we get here, matrix should be affine. If it isn't, then defensively we
// won't draw (by returning false), but we should work to never let this
// happen (i.e. better preflight by the caller to know ahead of time that we
// may encounter perspective, either in the CTM, or in the localM).
//
// See https://bugs.chromium.org/p/skia/issues/detail?id=10004
//
if (!matrix.asAffine(fMatrixStorage)) {
SkASSERT(false);
return false;
}
}
return true;
}
return false;
}
};
static void tweak_quality_and_inv_matrix(SkFilterQuality* quality, SkMatrix* matrix) {
// When the matrix is just an integer translate, bilerp == nearest neighbor.
if (*quality == kLow_SkFilterQuality &&
matrix->getType() <= SkMatrix::kTranslate_Mask &&
matrix->getTranslateX() == (int)matrix->getTranslateX() &&
matrix->getTranslateY() == (int)matrix->getTranslateY()) {
*quality = kNone_SkFilterQuality;
}
// See skia:4649 and the GM image_scale_aligned.
if (*quality == kNone_SkFilterQuality) {
if (matrix->getScaleX() >= 0) {
matrix->setTranslateX(nextafterf(matrix->getTranslateX(),
floorf(matrix->getTranslateX())));
}
if (matrix->getScaleY() >= 0) {
matrix->setTranslateY(nextafterf(matrix->getTranslateY(),
floorf(matrix->getTranslateY())));
}
}
}
bool SkImageShader::doStages(const SkStageRec& rec, SkImageStageUpdater* updater) const {
auto quality = this->resolveFiltering(rec.fPaint.getFilterQuality());
if (updater && quality == kMedium_SkFilterQuality) {
// TODO: medium: recall RequestBitmap and update width/height accordingly
return false;
}
SkRasterPipeline* p = rec.fPipeline;
SkArenaAlloc* alloc = rec.fAlloc;
SkMatrix matrix;
if (!this->computeTotalInverse(rec.fMatrixProvider.localToDevice(), rec.fLocalM, &matrix)) {
return false;
}
const auto* state = SkBitmapController::RequestBitmap(as_IB(fImage.get()),
matrix, quality, alloc);
if (!state) {
return false;
}
const SkPixmap& pm = state->pixmap();
matrix = state->invMatrix();
quality = state->quality();
auto info = pm.info();
p->append(SkRasterPipeline::seed_shader);
if (updater) {
updater->append_matrix_stage(p);
} else {
tweak_quality_and_inv_matrix(&quality, &matrix);
p->append_matrix(alloc, matrix);
}
auto gather = alloc->make<SkRasterPipeline_GatherCtx>();
gather->pixels = pm.addr();
gather->stride = pm.rowBytesAsPixels();
gather->width = pm.width();
gather->height = pm.height();
auto limit_x = alloc->make<SkRasterPipeline_TileCtx>(),
limit_y = alloc->make<SkRasterPipeline_TileCtx>();
limit_x->scale = pm.width();
limit_x->invScale = 1.0f / pm.width();
limit_y->scale = pm.height();
limit_y->invScale = 1.0f / pm.height();
SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr;
bool decal_x_and_y = fTileModeX == SkTileMode::kDecal && fTileModeY == SkTileMode::kDecal;
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>();
decal_ctx->limit_x = limit_x->scale;
decal_ctx->limit_y = limit_y->scale;
}
#if 0 // TODO: when we support kMedium
if (updator && (quality == kMedium_SkFilterQuality)) {
// if we change levels in mipmap, we need to update the scales (and invScales)
updator->fGather = gather;
updator->fLimitX = limit_x;
updator->fLimitY = limit_y;
updator->fDecal = decal_ctx;
}
#endif
auto append_tiling_and_gather = [&] {
if (decal_x_and_y) {
p->append(SkRasterPipeline::decal_x_and_y, decal_ctx);
} else {
switch (fTileModeX) {
case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break;
case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x, limit_x); break;
case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x, limit_x); break;
case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_x, decal_ctx); break;
}
switch (fTileModeY) {
case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break;
case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_y, limit_y); break;
case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_y, limit_y); break;
case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_y, decal_ctx); break;
}
}
void* ctx = gather;
switch (info.colorType()) {
case kAlpha_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx); break;
case kA16_unorm_SkColorType: p->append(SkRasterPipeline::gather_a16, ctx); break;
case kA16_float_SkColorType: p->append(SkRasterPipeline::gather_af16, ctx); break;
case kRGB_565_SkColorType: p->append(SkRasterPipeline::gather_565, ctx); break;
case kARGB_4444_SkColorType: p->append(SkRasterPipeline::gather_4444, ctx); break;
case kR8G8_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg88, ctx); break;
case kR16G16_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg1616, ctx); break;
case kR16G16_float_SkColorType: p->append(SkRasterPipeline::gather_rgf16, ctx); break;
case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); break;
case kRGBA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); break;
case kR16G16B16A16_unorm_SkColorType:
p->append(SkRasterPipeline::gather_16161616,ctx); break;
case kRGBA_F16Norm_SkColorType:
case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::gather_f16, ctx); break;
case kRGBA_F32_SkColorType: p->append(SkRasterPipeline::gather_f32, ctx); break;
case kGray_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx);
p->append(SkRasterPipeline::alpha_to_gray ); break;
case kRGB_888x_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx);
p->append(SkRasterPipeline::force_opaque ); break;
case kBGRA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx);
p->append(SkRasterPipeline::swap_rb ); break;
case kRGB_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx);
p->append(SkRasterPipeline::force_opaque ); break;
case kBGR_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx);
p->append(SkRasterPipeline::force_opaque );
p->append(SkRasterPipeline::swap_rb ); break;
case kBGRA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx);
p->append(SkRasterPipeline::swap_rb ); break;
case kUnknown_SkColorType: SkASSERT(false);
}
if (decal_ctx) {
p->append(SkRasterPipeline::check_decal_mask, decal_ctx);
}
};
auto append_misc = [&] {
SkColorSpace* cs = info.colorSpace();
SkAlphaType at = info.alphaType();
// Color for A8 images comes from the paint. TODO: all alpha images? none?
if (info.colorType() == kAlpha_8_SkColorType) {
SkColor4f rgb = rec.fPaint.getColor4f();
p->append_set_rgb(alloc, rgb);
cs = sk_srgb_singleton();
at = kUnpremul_SkAlphaType;
}
// Bicubic filtering naturally produces out of range values on both sides of [0,1].
if (quality == kHigh_SkFilterQuality) {
p->append(SkRasterPipeline::clamp_0);
p->append(at == kUnpremul_SkAlphaType || fClampAsIfUnpremul
? SkRasterPipeline::clamp_1
: SkRasterPipeline::clamp_a);
}
// Transform color space and alpha type to match shader convention (dst CS, premul alpha).
alloc->make<SkColorSpaceXformSteps>(cs, at,
rec.fDstCS, kPremul_SkAlphaType)
->apply(p);
return true;
};
// Check for fast-path stages.
auto ct = info.colorType();
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType)
&& quality == kLow_SkFilterQuality
&& fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) {
p->append(SkRasterPipeline::bilerp_clamp_8888, gather);
if (ct == kBGRA_8888_SkColorType) {
p->append(SkRasterPipeline::swap_rb);
}
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats
&& quality == kLow_SkFilterQuality
&& fTileModeX != SkTileMode::kDecal // TODO decal too?
&& fTileModeY != SkTileMode::kDecal) {
auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>();
*(SkRasterPipeline_GatherCtx*)(ctx) = *gather;
ctx->ct = ct;
ctx->tileX = fTileModeX;
ctx->tileY = fTileModeY;
ctx->invWidth = 1.0f / ctx->width;
ctx->invHeight = 1.0f / ctx->height;
p->append(SkRasterPipeline::bilinear, ctx);
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType)
&& quality == kHigh_SkFilterQuality
&& fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) {
p->append(SkRasterPipeline::bicubic_clamp_8888, gather);
if (ct == kBGRA_8888_SkColorType) {
p->append(SkRasterPipeline::swap_rb);
}
return append_misc();
}
if (true
&& (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats
&& quality == kHigh_SkFilterQuality
&& fTileModeX != SkTileMode::kDecal // TODO decal too?
&& fTileModeY != SkTileMode::kDecal) {
auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>();
*(SkRasterPipeline_GatherCtx*)(ctx) = *gather;
ctx->ct = ct;
ctx->tileX = fTileModeX;
ctx->tileY = fTileModeY;
ctx->invWidth = 1.0f / ctx->width;
ctx->invHeight = 1.0f / ctx->height;
p->append(SkRasterPipeline::bicubic, ctx);
return append_misc();
}
SkRasterPipeline_SamplerCtx* sampler = nullptr;
if (quality != kNone_SkFilterQuality) {
sampler = alloc->make<SkRasterPipeline_SamplerCtx>();
}
auto sample = [&](SkRasterPipeline::StockStage setup_x,
SkRasterPipeline::StockStage setup_y) {
p->append(setup_x, sampler);
p->append(setup_y, sampler);
append_tiling_and_gather();
p->append(SkRasterPipeline::accumulate, sampler);
};
if (quality == kNone_SkFilterQuality) {
append_tiling_and_gather();
} else if (quality == kLow_SkFilterQuality) {
p->append(SkRasterPipeline::save_xy, sampler);
sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_ny);
sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_ny);
sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_py);
sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_py);
p->append(SkRasterPipeline::move_dst_src);
} else {
SkASSERT(quality == kHigh_SkFilterQuality);
p->append(SkRasterPipeline::save_xy, sampler);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n3y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n1y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p1y);
sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p3y);
sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p3y);
p->append(SkRasterPipeline::move_dst_src);
}
return append_misc();
}
bool SkImageShader::onAppendStages(const SkStageRec& rec) const {
return this->doStages(rec, nullptr);
}
SkStageUpdater* SkImageShader::onAppendUpdatableStages(const SkStageRec& rec) const {
bool usePersp = rec.fMatrixProvider.localToDevice().hasPerspective();
auto updater = rec.fAlloc->make<SkImageStageUpdater>(this, usePersp);
return this->doStages(rec, updater) ? updater : nullptr;
}
skvm::Color SkImageShader::onProgram(skvm::Builder* p,
skvm::Coord device, skvm::Coord local, skvm::Color paint,
const SkMatrixProvider& matrices, const SkMatrix* localM,
SkFilterQuality quality, const SkColorInfo& dst,
skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const {
quality = this->resolveFiltering(quality);
SkMatrix inv;
if (!this->computeTotalInverse(matrices.localToDevice(), localM, &inv)) {
return {};
}
// We use RequestBitmap() to make sure our SkBitmapController::State lives in the alloc.
// This lets the SkVMBlitter hang on to this state and keep our image alive.
auto state = SkBitmapController::RequestBitmap(as_IB(fImage.get()), inv, quality, alloc);
if (!state) {
return {};
}
const SkPixmap& pm = state->pixmap();
inv = state->invMatrix();
quality = state->quality();
tweak_quality_and_inv_matrix(&quality, &inv);
inv.normalizePerspective();
// Apply matrix to convert dst coords to sample center coords.
local = SkShaderBase::ApplyMatrix(p, inv, local, uniforms);
// Bail out if sample() can't yet handle our image's color type.
switch (pm.colorType()) {
default: return {};
case kGray_8_SkColorType:
case kAlpha_8_SkColorType:
case kRGB_565_SkColorType:
case kRGB_888x_SkColorType:
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
case kRGBA_1010102_SkColorType:
case kBGRA_1010102_SkColorType:
case kRGB_101010x_SkColorType:
case kBGR_101010x_SkColorType: break;
}
// We can exploit image opacity to skip work unpacking alpha channels.
const bool input_is_opaque = SkAlphaTypeIsOpaque(pm.alphaType())
|| SkColorTypeIsAlwaysOpaque(pm.colorType());
// Each call to sample() will try to rewrite the same uniforms over and over,
// so remember where we start and reset back there each time. That way each
// sample() call uses the same uniform offsets.
const size_t uniforms_before_sample = uniforms->buf.size();
auto sample = [&](skvm::F32 sx, skvm::F32 sy) -> skvm::Color {
uniforms->buf.resize(uniforms_before_sample);
// repeat() and mirror() are written assuming they'll be followed by a [0,scale) clamp.
auto repeat = [&](skvm::F32 v, float scale) {
skvm::F32 S = p->uniformF(uniforms->pushF( scale)),
I = p->uniformF(uniforms->pushF(1.0f/scale));
return v - floor(v * I) * S;
};
auto mirror = [&](skvm::F32 v, float scale) {
skvm::F32 S = p->uniformF(uniforms->pushF( scale)),
I2 = p->uniformF(uniforms->pushF(0.5f/scale));
// abs( (v-scale) - (2*scale)*floor((v-scale)*(0.5f/scale)) - scale )
// {---A---} {------------------B------------------}
skvm::F32 A = v - S,
B = (S + S) * floor(A * I2);
return abs(A - B - S);
};
switch (fTileModeX) {
case SkTileMode::kDecal: /* handled after gather */ break;
case SkTileMode::kClamp: /* we always clamp */ break;
case SkTileMode::kRepeat: sx = repeat(sx, pm.width()); break;
case SkTileMode::kMirror: sx = mirror(sx, pm.width()); break;
}
switch (fTileModeY) {
case SkTileMode::kDecal: /* handled after gather */ break;
case SkTileMode::kClamp: /* we always clamp */ break;
case SkTileMode::kRepeat: sy = repeat(sy, pm.height()); break;
case SkTileMode::kMirror: sy = mirror(sy, pm.height()); break;
}
// Always clamp sample coordinates to [0,width), [0,height), both for memory
// safety and to handle the clamps still needed by kClamp, kRepeat, and kMirror.
auto clamp0x = [&](skvm::F32 v, float limit) {
// Subtract an ulp so the upper clamp limit excludes limit itself.
int bits;
memcpy(&bits, &limit, 4);
return clamp(v, 0.0f, p->uniformF(uniforms->push(bits-1)));
};
skvm::F32 clamped_x = clamp0x(sx, pm. width()),
clamped_y = clamp0x(sy, pm.height());
// Load pixels from pm.addr()[(int)sx + (int)sy*stride].
skvm::Uniform img = uniforms->pushPtr(pm.addr());
skvm::I32 index = trunc(clamped_x) +
trunc(clamped_y) * p->uniform32(uniforms->push(pm.rowBytesAsPixels()));
skvm::Color c;
switch (pm.colorType()) {
default: SkUNREACHABLE;
case kGray_8_SkColorType: c.r = c.g = c.b = from_unorm(8, gather8(img, index));
c.a = p->splat(1.0f);
break;
case kAlpha_8_SkColorType: c.r = c.g = c.b = p->splat(0.0f);
c.a = from_unorm(8, gather8(img, index));
break;
case kRGB_565_SkColorType: c = unpack_565 (gather16(img, index)); break;
case kRGB_888x_SkColorType: [[fallthrough]];
case kRGBA_8888_SkColorType: c = unpack_8888(gather32(img, index));
break;
case kBGRA_8888_SkColorType: c = unpack_8888(gather32(img, index));
std::swap(c.r, c.b);
break;
case kRGB_101010x_SkColorType: [[fallthrough]];
case kRGBA_1010102_SkColorType: c = unpack_1010102(gather32(img, index));
break;
case kBGR_101010x_SkColorType: [[fallthrough]];
case kBGRA_1010102_SkColorType: c = unpack_1010102(gather32(img, index));
std::swap(c.r, c.b);
break;
}
// If we know the image is opaque, jump right to alpha = 1.0f, skipping work to unpack it.
if (input_is_opaque) {
c.a = p->splat(1.0f);
}
// Mask away any pixels that we tried to sample outside the bounds in kDecal.
if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) {
skvm::I32 mask = p->splat(~0);
if (fTileModeX == SkTileMode::kDecal) { mask &= (sx == clamped_x); }
if (fTileModeY == SkTileMode::kDecal) { mask &= (sy == clamped_y); }
c.r = bit_cast(p->bit_and(mask, bit_cast(c.r)));
c.g = bit_cast(p->bit_and(mask, bit_cast(c.g)));
c.b = bit_cast(p->bit_and(mask, bit_cast(c.b)));
c.a = bit_cast(p->bit_and(mask, bit_cast(c.a)));
// Notice that even if input_is_opaque, c.a might now be 0.
}
return c;
};
skvm::Color c;
if (quality == kNone_SkFilterQuality) {
c = sample(local.x,local.y);
} else if (quality == kLow_SkFilterQuality) {
// Our four sample points are the corners of a logical 1x1 pixel
// box surrounding (x,y) at (0.5,0.5) off-center.
skvm::F32 left = local.x - 0.5f,
top = local.y - 0.5f,
right = local.x + 0.5f,
bottom = local.y + 0.5f;
// The fractional parts of right and bottom are our lerp factors in x and y respectively.
skvm::F32 fx = fract(right ),
fy = fract(bottom);
c = lerp(lerp(sample(left,top ), sample(right,top ), fx),
lerp(sample(left,bottom), sample(right,bottom), fx), fy);
} else {
SkASSERT(quality == kHigh_SkFilterQuality);
// All bicubic samples have the same fractional offset (fx,fy) from the center.
// They're either the 16 corners of a 3x3 grid/ surrounding (x,y) at (0.5,0.5) off-center.
skvm::F32 fx = fract(local.x + 0.5f),
fy = fract(local.y + 0.5f);
// See GrCubicEffect for details of these weights.
// TODO: these maybe don't seem right looking at gm/bicubic and GrBicubicEffect.
auto near = [&](skvm::F32 t) {
// 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
return t * (t * (t * (-21/18.0f) + 27/18.0f) + 9/18.0f) + 1/18.0f;
};
auto far = [&](skvm::F32 t) {
// 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
return t * t * (t * (7/18.0f) - 6/18.0f);
};
const skvm::F32 wx[] = {
far (1.0f - fx),
near(1.0f - fx),
near( fx),
far ( fx),
};
const skvm::F32 wy[] = {
far (1.0f - fy),
near(1.0f - fy),
near( fy),
far ( fy),
};
c.r = c.g = c.b = c.a = p->splat(0.0f);
skvm::F32 sy = local.y - 1.5f;
for (int j = 0; j < 4; j++, sy += 1.0f) {
skvm::F32 sx = local.x - 1.5f;
for (int i = 0; i < 4; i++, sx += 1.0f) {
skvm::Color s = sample(sx,sy);
skvm::F32 w = wx[i] * wy[j];
c.r += s.r * w;
c.g += s.g * w;
c.b += s.b * w;
c.a += s.a * w;
}
}
}
// If the input is opaque and we're not in decal mode, that means the output is too.
// Forcing *a to 1.0 here will retroactively skip any work we did to interpolate sample alphas.
if (input_is_opaque
&& fTileModeX != SkTileMode::kDecal
&& fTileModeY != SkTileMode::kDecal) {
c.a = p->splat(1.0f);
}
// Alpha-only images get their color from the paint (already converted to dst color space).
SkColorSpace* cs = pm.colorSpace();
SkAlphaType at = pm.alphaType();
if (SkColorTypeIsAlphaOnly(pm.colorType())) {
c.r = paint.r;
c.g = paint.g;
c.b = paint.b;
cs = dst.colorSpace();
at = kUnpremul_SkAlphaType;
}
if (quality == kHigh_SkFilterQuality) {
// Bicubic filtering naturally produces out of range values on both sides of [0,1].
c.a = clamp01(c.a);
skvm::F32 limit = (at == kUnpremul_SkAlphaType || fClampAsIfUnpremul)
? p->splat(1.0f)
: c.a;
c.r = clamp(c.r, 0.0f, limit);
c.g = clamp(c.g, 0.0f, limit);
c.b = clamp(c.b, 0.0f, limit);
}
SkColorSpaceXformSteps steps{cs,at, dst.colorSpace(),kPremul_SkAlphaType};
return steps.program(p, uniforms, c);
}