blob: dcb51de458e3ab0942a7be8e314538aef0e9d574 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/svg/SkSVGDevice.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlendMode.h"
#include "include/core/SkClipOp.h"
#include "include/core/SkColor.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkData.h"
#include "include/core/SkEncodedImageFormat.h"
#include "include/core/SkFont.h"
#include "include/core/SkFontStyle.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageEncoder.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPath.h"
#include "include/core/SkPathBuilder.h"
#include "include/core/SkPathEffect.h"
#include "include/core/SkPathTypes.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRRect.h"
#include "include/core/SkRect.h"
#include "include/core/SkScalar.h"
#include "include/core/SkShader.h"
#include "include/core/SkSize.h"
#include "include/core/SkSpan.h"
#include "include/core/SkStream.h"
#include "include/core/SkString.h"
#include "include/core/SkSurfaceProps.h"
#include "include/core/SkTileMode.h"
#include "include/core/SkTypeface.h"
#include "include/private/SkNoncopyable.h"
#include "include/private/SkTHash.h"
#include "include/private/SkTPin.h"
#include "include/private/SkTemplates.h"
#include "include/private/SkTo.h"
#include "include/svg/SkSVGCanvas.h"
#include "include/utils/SkBase64.h"
#include "src/core/SkAnnotationKeys.h"
#include "src/core/SkClipStack.h"
#include "src/core/SkDevice.h"
#include "src/core/SkFontPriv.h"
#include "src/core/SkTLazy.h"
#include "src/image/SkImage_Base.h"
#include "src/shaders/SkShaderBase.h"
#include "src/text/GlyphRun.h"
#include "src/xml/SkXMLWriter.h"
#include <memory>
#include <string>
#include <utility>
#if SK_SUPPORT_GPU
class SkMesh;
#endif
class SkBlender;
class SkVertices;
struct SkSamplingOptions;
#ifdef SK_CODEC_DECODES_JPEG
#include "src/codec/SkJpegCodec.h"
#endif
namespace {
static SkString svg_color(SkColor color) {
// https://www.w3.org/TR/css-color-3/#html4
auto named_color = [](SkColor c) -> const char* {
switch (c & 0xffffff) {
case 0x000000: return "black";
case 0x000080: return "navy";
case 0x0000ff: return "blue";
case 0x008000: return "green";
case 0x008080: return "teal";
case 0x00ff00: return "lime";
case 0x00ffff: return "aqua";
case 0x800000: return "maroon";
case 0x800080: return "purple";
case 0x808000: return "olive";
case 0x808080: return "gray";
case 0xc0c0c0: return "silver";
case 0xff0000: return "red";
case 0xff00ff: return "fuchsia";
case 0xffff00: return "yellow";
case 0xffffff: return "white";
default: break;
}
return nullptr;
};
if (const auto* nc = named_color(color)) {
return SkString(nc);
}
uint8_t r = SkColorGetR(color);
uint8_t g = SkColorGetG(color);
uint8_t b = SkColorGetB(color);
// Some users care about every byte here, so we'll use hex colors with single-digit channels
// when possible.
uint8_t rh = r >> 4;
uint8_t rl = r & 0xf;
uint8_t gh = g >> 4;
uint8_t gl = g & 0xf;
uint8_t bh = b >> 4;
uint8_t bl = b & 0xf;
if ((rh == rl) && (gh == gl) && (bh == bl)) {
return SkStringPrintf("#%1X%1X%1X", rh, gh, bh);
}
return SkStringPrintf("#%02X%02X%02X", r, g, b);
}
static SkScalar svg_opacity(SkColor color) {
return SkIntToScalar(SkColorGetA(color)) / SK_AlphaOPAQUE;
}
// Keep in sync with SkPaint::Cap
static const char* cap_map[] = {
nullptr, // kButt_Cap (default)
"round", // kRound_Cap
"square" // kSquare_Cap
};
static_assert(std::size(cap_map) == SkPaint::kCapCount, "missing_cap_map_entry");
static const char* svg_cap(SkPaint::Cap cap) {
SkASSERT(static_cast<size_t>(cap) < std::size(cap_map));
return cap_map[cap];
}
// Keep in sync with SkPaint::Join
static const char* join_map[] = {
nullptr, // kMiter_Join (default)
"round", // kRound_Join
"bevel" // kBevel_Join
};
static_assert(std::size(join_map) == SkPaint::kJoinCount, "missing_join_map_entry");
static const char* svg_join(SkPaint::Join join) {
SkASSERT(join < std::size(join_map));
return join_map[join];
}
static SkString svg_transform(const SkMatrix& t) {
SkASSERT(!t.isIdentity());
SkString tstr;
switch (t.getType()) {
case SkMatrix::kPerspective_Mask:
// TODO: handle perspective matrices?
break;
case SkMatrix::kTranslate_Mask:
tstr.printf("translate(%g %g)", t.getTranslateX(), t.getTranslateY());
break;
case SkMatrix::kScale_Mask:
tstr.printf("scale(%g %g)", t.getScaleX(), t.getScaleY());
break;
default:
// http://www.w3.org/TR/SVG/coords.html#TransformMatrixDefined
// | a c e |
// | b d f |
// | 0 0 1 |
tstr.printf("matrix(%g %g %g %g %g %g)",
t.getScaleX(), t.getSkewY(),
t.getSkewX(), t.getScaleY(),
t.getTranslateX(), t.getTranslateY());
break;
}
return tstr;
}
struct Resources {
Resources(const SkPaint& paint)
: fPaintServer(svg_color(paint.getColor())) {}
SkString fPaintServer;
SkString fColorFilter;
};
// Determine if the paint requires us to reset the viewport.
// Currently, we do this whenever the paint shader calls
// for a repeating image.
bool RequiresViewportReset(const SkPaint& paint) {
SkShader* shader = paint.getShader();
if (!shader)
return false;
SkTileMode xy[2];
SkImage* image = shader->isAImage(nullptr, xy);
if (!image)
return false;
for (int i = 0; i < 2; i++) {
if (xy[i] == SkTileMode::kRepeat)
return true;
}
return false;
}
void AddPath(const sktext::GlyphRun& glyphRun, const SkPoint& offset, SkPath* path) {
struct Rec {
SkPath* fPath;
const SkPoint fOffset;
const SkPoint* fPos;
} rec = { path, offset, glyphRun.positions().data() };
glyphRun.font().getPaths(glyphRun.glyphsIDs().data(), SkToInt(glyphRun.glyphsIDs().size()),
[](const SkPath* path, const SkMatrix& mx, void* ctx) {
Rec* rec = reinterpret_cast<Rec*>(ctx);
if (path) {
SkMatrix total = mx;
total.postTranslate(rec->fPos->fX + rec->fOffset.fX,
rec->fPos->fY + rec->fOffset.fY);
rec->fPath->addPath(*path, total);
} else {
// TODO: this is going to drop color emojis.
}
rec->fPos += 1; // move to the next glyph's position
}, &rec);
}
} // namespace
// For now all this does is serve unique serial IDs, but it will eventually evolve to track
// and deduplicate resources.
class SkSVGDevice::ResourceBucket : ::SkNoncopyable {
public:
ResourceBucket()
: fGradientCount(0)
, fPathCount(0)
, fImageCount(0)
, fPatternCount(0)
, fColorFilterCount(0) {}
SkString addLinearGradient() {
return SkStringPrintf("gradient_%d", fGradientCount++);
}
SkString addPath() {
return SkStringPrintf("path_%d", fPathCount++);
}
SkString addImage() {
return SkStringPrintf("img_%d", fImageCount++);
}
SkString addColorFilter() { return SkStringPrintf("cfilter_%d", fColorFilterCount++); }
SkString addPattern() {
return SkStringPrintf("pattern_%d", fPatternCount++);
}
private:
uint32_t fGradientCount;
uint32_t fPathCount;
uint32_t fImageCount;
uint32_t fPatternCount;
uint32_t fColorFilterCount;
};
struct SkSVGDevice::MxCp {
const SkMatrix* fMatrix;
const SkClipStack* fClipStack;
MxCp(const SkMatrix* mx, const SkClipStack* cs) : fMatrix(mx), fClipStack(cs) {}
MxCp(SkSVGDevice* device) : fMatrix(&device->localToDevice()), fClipStack(&device->cs()) {}
};
class SkSVGDevice::AutoElement : ::SkNoncopyable {
public:
AutoElement(const char name[], SkXMLWriter* writer)
: fWriter(writer)
, fResourceBucket(nullptr) {
fWriter->startElement(name);
}
AutoElement(const char name[], const std::unique_ptr<SkXMLWriter>& writer)
: AutoElement(name, writer.get()) {}
AutoElement(const char name[], SkSVGDevice* svgdev,
ResourceBucket* bucket, const MxCp& mc, const SkPaint& paint)
: fWriter(svgdev->fWriter.get())
, fResourceBucket(bucket) {
svgdev->syncClipStack(*mc.fClipStack);
Resources res = this->addResources(mc, paint);
fWriter->startElement(name);
this->addPaint(paint, res);
if (!mc.fMatrix->isIdentity()) {
this->addAttribute("transform", svg_transform(*mc.fMatrix));
}
}
~AutoElement() {
fWriter->endElement();
}
void addAttribute(const char name[], const char val[]) {
fWriter->addAttribute(name, val);
}
void addAttribute(const char name[], const SkString& val) {
fWriter->addAttribute(name, val.c_str());
}
void addAttribute(const char name[], int32_t val) {
fWriter->addS32Attribute(name, val);
}
void addAttribute(const char name[], SkScalar val) {
fWriter->addScalarAttribute(name, val);
}
void addText(const SkString& text) {
fWriter->addText(text.c_str(), text.size());
}
void addRectAttributes(const SkRect&);
void addPathAttributes(const SkPath&, SkParsePath::PathEncoding);
void addTextAttributes(const SkFont&);
private:
Resources addResources(const MxCp&, const SkPaint& paint);
void addShaderResources(const SkPaint& paint, Resources* resources);
void addGradientShaderResources(const SkShader* shader, const SkPaint& paint,
Resources* resources);
void addColorFilterResources(const SkColorFilter& cf, Resources* resources);
void addImageShaderResources(const SkShader* shader, const SkPaint& paint,
Resources* resources);
void addPatternDef(const SkBitmap& bm);
void addPaint(const SkPaint& paint, const Resources& resources);
SkString addLinearGradientDef(const SkShader::GradientInfo& info, const SkShader* shader);
SkXMLWriter* fWriter;
ResourceBucket* fResourceBucket;
};
void SkSVGDevice::AutoElement::addPaint(const SkPaint& paint, const Resources& resources) {
// Path effects are applied to all vector graphics (rects, rrects, ovals,
// paths etc). This should only happen when a path effect is attached to
// non-vector graphics (text, image) or a new vector graphics primitive is
//added that is not handled by base drawPath() routine.
if (paint.getPathEffect() != nullptr) {
SkDebugf("Unsupported path effect in addPaint.");
}
SkPaint::Style style = paint.getStyle();
if (style == SkPaint::kFill_Style || style == SkPaint::kStrokeAndFill_Style) {
static constexpr char kDefaultFill[] = "black";
if (!resources.fPaintServer.equals(kDefaultFill)) {
this->addAttribute("fill", resources.fPaintServer);
if (SK_AlphaOPAQUE != SkColorGetA(paint.getColor())) {
this->addAttribute("fill-opacity", svg_opacity(paint.getColor()));
}
}
} else {
SkASSERT(style == SkPaint::kStroke_Style);
this->addAttribute("fill", "none");
}
if (!resources.fColorFilter.isEmpty()) {
this->addAttribute("filter", resources.fColorFilter.c_str());
}
if (style == SkPaint::kStroke_Style || style == SkPaint::kStrokeAndFill_Style) {
this->addAttribute("stroke", resources.fPaintServer);
SkScalar strokeWidth = paint.getStrokeWidth();
if (strokeWidth == 0) {
// Hairline stroke
strokeWidth = 1;
this->addAttribute("vector-effect", "non-scaling-stroke");
}
this->addAttribute("stroke-width", strokeWidth);
if (const char* cap = svg_cap(paint.getStrokeCap())) {
this->addAttribute("stroke-linecap", cap);
}
if (const char* join = svg_join(paint.getStrokeJoin())) {
this->addAttribute("stroke-linejoin", join);
}
if (paint.getStrokeJoin() == SkPaint::kMiter_Join) {
this->addAttribute("stroke-miterlimit", paint.getStrokeMiter());
}
if (SK_AlphaOPAQUE != SkColorGetA(paint.getColor())) {
this->addAttribute("stroke-opacity", svg_opacity(paint.getColor()));
}
} else {
SkASSERT(style == SkPaint::kFill_Style);
// SVG default stroke value is "none".
}
}
Resources SkSVGDevice::AutoElement::addResources(const MxCp& mc, const SkPaint& paint) {
Resources resources(paint);
if (paint.getShader()) {
AutoElement defs("defs", fWriter);
this->addShaderResources(paint, &resources);
}
if (const SkColorFilter* cf = paint.getColorFilter()) {
// TODO: Implement skia color filters for blend modes other than SrcIn
SkBlendMode mode;
if (cf->asAColorMode(nullptr, &mode) && mode == SkBlendMode::kSrcIn) {
this->addColorFilterResources(*cf, &resources);
}
}
return resources;
}
void SkSVGDevice::AutoElement::addGradientShaderResources(const SkShader* shader,
const SkPaint& paint,
Resources* resources) {
SkShader::GradientInfo grInfo;
memset(&grInfo, 0, sizeof(grInfo));
const auto gradient_type = shader->asAGradient(&grInfo);
if (gradient_type != SkShader::kColor_GradientType &&
gradient_type != SkShader::kLinear_GradientType) {
// TODO: other gradient support
return;
}
SkAutoSTArray<16, SkColor> grColors(grInfo.fColorCount);
SkAutoSTArray<16, SkScalar> grOffsets(grInfo.fColorCount);
grInfo.fColors = grColors.get();
grInfo.fColorOffsets = grOffsets.get();
// One more call to get the actual colors/offsets.
shader->asAGradient(&grInfo);
SkASSERT(grInfo.fColorCount <= grColors.count());
SkASSERT(grInfo.fColorCount <= grOffsets.count());
SkASSERT(grColors.size() > 0);
resources->fPaintServer = gradient_type == SkShader::kColor_GradientType
? svg_color(grColors[0])
: SkStringPrintf("url(#%s)", addLinearGradientDef(grInfo, shader).c_str());
}
void SkSVGDevice::AutoElement::addColorFilterResources(const SkColorFilter& cf,
Resources* resources) {
SkString colorfilterID = fResourceBucket->addColorFilter();
{
AutoElement filterElement("filter", fWriter);
filterElement.addAttribute("id", colorfilterID);
filterElement.addAttribute("x", "0%");
filterElement.addAttribute("y", "0%");
filterElement.addAttribute("width", "100%");
filterElement.addAttribute("height", "100%");
SkColor filterColor;
SkBlendMode mode;
bool asAColorMode = cf.asAColorMode(&filterColor, &mode);
SkAssertResult(asAColorMode);
SkASSERT(mode == SkBlendMode::kSrcIn);
{
// first flood with filter color
AutoElement floodElement("feFlood", fWriter);
floodElement.addAttribute("flood-color", svg_color(filterColor));
floodElement.addAttribute("flood-opacity", svg_opacity(filterColor));
floodElement.addAttribute("result", "flood");
}
{
// apply the transform to filter color
AutoElement compositeElement("feComposite", fWriter);
compositeElement.addAttribute("in", "flood");
compositeElement.addAttribute("operator", "in");
}
}
resources->fColorFilter.printf("url(#%s)", colorfilterID.c_str());
}
namespace {
bool is_png(const void* bytes, size_t length) {
constexpr uint8_t kPngSig[] = { 0x89, 0x50, 0x4E, 0x47, 0x0D, 0x0A, 0x1A, 0x0A };
return length >= sizeof(kPngSig) && !memcmp(bytes, kPngSig, sizeof(kPngSig));
}
} // namespace
// Returns data uri from bytes.
// it will use any cached data if available, otherwise will
// encode as png.
sk_sp<SkData> AsDataUri(SkImage* image) {
sk_sp<SkData> imageData = image->encodeToData();
if (!imageData) {
return nullptr;
}
const char* selectedPrefix = nullptr;
size_t selectedPrefixLength = 0;
#ifdef SK_CODEC_DECODES_JPEG
if (SkJpegCodec::IsJpeg(imageData->data(), imageData->size())) {
const static char jpgDataPrefix[] = "data:image/jpeg;base64,";
selectedPrefix = jpgDataPrefix;
selectedPrefixLength = sizeof(jpgDataPrefix);
}
else
#endif
{
if (!is_png(imageData->data(), imageData->size())) {
#ifdef SK_ENCODE_PNG
imageData = image->encodeToData(SkEncodedImageFormat::kPNG, 100);
#else
return nullptr;
#endif
}
const static char pngDataPrefix[] = "data:image/png;base64,";
selectedPrefix = pngDataPrefix;
selectedPrefixLength = sizeof(pngDataPrefix);
}
size_t b64Size = SkBase64::Encode(imageData->data(), imageData->size(), nullptr);
sk_sp<SkData> dataUri = SkData::MakeUninitialized(selectedPrefixLength + b64Size);
char* dest = (char*)dataUri->writable_data();
memcpy(dest, selectedPrefix, selectedPrefixLength);
SkBase64::Encode(imageData->data(), imageData->size(), dest + selectedPrefixLength - 1);
dest[dataUri->size() - 1] = 0;
return dataUri;
}
void SkSVGDevice::AutoElement::addImageShaderResources(const SkShader* shader, const SkPaint& paint,
Resources* resources) {
SkMatrix outMatrix;
SkTileMode xy[2];
SkImage* image = shader->isAImage(&outMatrix, xy);
SkASSERT(image);
SkString patternDims[2]; // width, height
sk_sp<SkData> dataUri = AsDataUri(image);
if (!dataUri) {
return;
}
SkIRect imageSize = image->bounds();
for (int i = 0; i < 2; i++) {
int imageDimension = i == 0 ? imageSize.width() : imageSize.height();
switch (xy[i]) {
case SkTileMode::kRepeat:
patternDims[i].appendScalar(imageDimension);
break;
default:
// TODO: other tile modes?
patternDims[i] = "100%";
}
}
SkString patternID = fResourceBucket->addPattern();
{
AutoElement pattern("pattern", fWriter);
pattern.addAttribute("id", patternID);
pattern.addAttribute("patternUnits", "userSpaceOnUse");
pattern.addAttribute("patternContentUnits", "userSpaceOnUse");
pattern.addAttribute("width", patternDims[0]);
pattern.addAttribute("height", patternDims[1]);
pattern.addAttribute("x", 0);
pattern.addAttribute("y", 0);
{
SkString imageID = fResourceBucket->addImage();
AutoElement imageTag("image", fWriter);
imageTag.addAttribute("id", imageID);
imageTag.addAttribute("x", 0);
imageTag.addAttribute("y", 0);
imageTag.addAttribute("width", image->width());
imageTag.addAttribute("height", image->height());
imageTag.addAttribute("xlink:href", static_cast<const char*>(dataUri->data()));
}
}
resources->fPaintServer.printf("url(#%s)", patternID.c_str());
}
void SkSVGDevice::AutoElement::addShaderResources(const SkPaint& paint, Resources* resources) {
const SkShader* shader = paint.getShader();
SkASSERT(shader);
if (shader->asAGradient(nullptr) != SkShader::kNone_GradientType) {
this->addGradientShaderResources(shader, paint, resources);
} else if (shader->isAImage()) {
this->addImageShaderResources(shader, paint, resources);
}
// TODO: other shader types?
}
SkString SkSVGDevice::AutoElement::addLinearGradientDef(const SkShader::GradientInfo& info,
const SkShader* shader) {
SkASSERT(fResourceBucket);
SkString id = fResourceBucket->addLinearGradient();
{
AutoElement gradient("linearGradient", fWriter);
gradient.addAttribute("id", id);
gradient.addAttribute("gradientUnits", "userSpaceOnUse");
gradient.addAttribute("x1", info.fPoint[0].x());
gradient.addAttribute("y1", info.fPoint[0].y());
gradient.addAttribute("x2", info.fPoint[1].x());
gradient.addAttribute("y2", info.fPoint[1].y());
if (!as_SB(shader)->getLocalMatrix().isIdentity()) {
this->addAttribute("gradientTransform", svg_transform(as_SB(shader)->getLocalMatrix()));
}
SkASSERT(info.fColorCount >= 2);
for (int i = 0; i < info.fColorCount; ++i) {
SkColor color = info.fColors[i];
SkString colorStr(svg_color(color));
{
AutoElement stop("stop", fWriter);
stop.addAttribute("offset", info.fColorOffsets[i]);
stop.addAttribute("stop-color", colorStr.c_str());
if (SK_AlphaOPAQUE != SkColorGetA(color)) {
stop.addAttribute("stop-opacity", svg_opacity(color));
}
}
}
}
return id;
}
void SkSVGDevice::AutoElement::addRectAttributes(const SkRect& rect) {
// x, y default to 0
if (rect.x() != 0) {
this->addAttribute("x", rect.x());
}
if (rect.y() != 0) {
this->addAttribute("y", rect.y());
}
this->addAttribute("width", rect.width());
this->addAttribute("height", rect.height());
}
void SkSVGDevice::AutoElement::addPathAttributes(const SkPath& path,
SkParsePath::PathEncoding encoding) {
SkString pathData;
SkParsePath::ToSVGString(path, &pathData, encoding);
this->addAttribute("d", pathData);
}
void SkSVGDevice::AutoElement::addTextAttributes(const SkFont& font) {
this->addAttribute("font-size", font.getSize());
SkString familyName;
SkTHashSet<SkString> familySet;
sk_sp<SkTypeface> tface = font.refTypefaceOrDefault();
SkASSERT(tface);
SkFontStyle style = tface->fontStyle();
if (style.slant() == SkFontStyle::kItalic_Slant) {
this->addAttribute("font-style", "italic");
} else if (style.slant() == SkFontStyle::kOblique_Slant) {
this->addAttribute("font-style", "oblique");
}
int weightIndex = (SkTPin(style.weight(), 100, 900) - 50) / 100;
if (weightIndex != 3) {
static constexpr const char* weights[] = {
"100", "200", "300", "normal", "400", "500", "600", "bold", "800", "900"
};
this->addAttribute("font-weight", weights[weightIndex]);
}
int stretchIndex = style.width() - 1;
if (stretchIndex != 4) {
static constexpr const char* stretches[] = {
"ultra-condensed", "extra-condensed", "condensed", "semi-condensed",
"normal",
"semi-expanded", "expanded", "extra-expanded", "ultra-expanded"
};
this->addAttribute("font-stretch", stretches[stretchIndex]);
}
sk_sp<SkTypeface::LocalizedStrings> familyNameIter(tface->createFamilyNameIterator());
SkTypeface::LocalizedString familyString;
if (familyNameIter) {
while (familyNameIter->next(&familyString)) {
if (familySet.contains(familyString.fString)) {
continue;
}
familySet.add(familyString.fString);
familyName.appendf((familyName.isEmpty() ? "%s" : ", %s"), familyString.fString.c_str());
}
}
if (!familyName.isEmpty()) {
this->addAttribute("font-family", familyName);
}
}
sk_sp<SkBaseDevice> SkSVGDevice::Make(const SkISize& size, std::unique_ptr<SkXMLWriter> writer,
uint32_t flags) {
return writer ? sk_sp<SkBaseDevice>(new SkSVGDevice(size, std::move(writer), flags))
: nullptr;
}
SkSVGDevice::SkSVGDevice(const SkISize& size, std::unique_ptr<SkXMLWriter> writer, uint32_t flags)
: INHERITED(SkImageInfo::MakeUnknown(size.fWidth, size.fHeight),
SkSurfaceProps(0, kUnknown_SkPixelGeometry))
, fWriter(std::move(writer))
, fResourceBucket(new ResourceBucket)
, fFlags(flags)
{
SkASSERT(fWriter);
fWriter->writeHeader();
// The root <svg> tag gets closed by the destructor.
fRootElement = std::make_unique<AutoElement>("svg", fWriter);
fRootElement->addAttribute("xmlns", "http://www.w3.org/2000/svg");
fRootElement->addAttribute("xmlns:xlink", "http://www.w3.org/1999/xlink");
fRootElement->addAttribute("width", size.width());
fRootElement->addAttribute("height", size.height());
}
SkSVGDevice::~SkSVGDevice() {
// Pop order is important.
while (!fClipStack.empty()) {
fClipStack.pop_back();
}
}
SkParsePath::PathEncoding SkSVGDevice::pathEncoding() const {
return (fFlags & SkSVGCanvas::kRelativePathEncoding_Flag)
? SkParsePath::PathEncoding::Relative
: SkParsePath::PathEncoding::Absolute;
}
void SkSVGDevice::syncClipStack(const SkClipStack& cs) {
SkClipStack::B2TIter iter(cs);
const SkClipStack::Element* elem;
size_t rec_idx = 0;
// First, find/preserve the common bottom.
while ((elem = iter.next()) && (rec_idx < fClipStack.size())) {
if (fClipStack[SkToInt(rec_idx)].fGenID != elem->getGenID()) {
break;
}
rec_idx++;
}
// Discard out-of-date stack top.
while (fClipStack.size() > rec_idx) {
fClipStack.pop_back();
}
auto define_clip = [this](const SkClipStack::Element* e) {
const auto cid = SkStringPrintf("cl_%x", e->getGenID());
AutoElement clip_path("clipPath", fWriter);
clip_path.addAttribute("id", cid);
// TODO: handle non-intersect clips.
switch (e->getDeviceSpaceType()) {
case SkClipStack::Element::DeviceSpaceType::kEmpty: {
// TODO: can we skip this?
AutoElement rect("rect", fWriter);
} break;
case SkClipStack::Element::DeviceSpaceType::kRect: {
AutoElement rect("rect", fWriter);
rect.addRectAttributes(e->getDeviceSpaceRect());
} break;
case SkClipStack::Element::DeviceSpaceType::kRRect: {
// TODO: complex rrect handling?
const auto& rr = e->getDeviceSpaceRRect();
const auto radii = rr.getSimpleRadii();
AutoElement rrect("rect", fWriter);
rrect.addRectAttributes(rr.rect());
rrect.addAttribute("rx", radii.x());
rrect.addAttribute("ry", radii.y());
} break;
case SkClipStack::Element::DeviceSpaceType::kPath: {
const auto& p = e->getDeviceSpacePath();
AutoElement path("path", fWriter);
path.addPathAttributes(p, this->pathEncoding());
if (p.getFillType() == SkPathFillType::kEvenOdd) {
path.addAttribute("clip-rule", "evenodd");
}
} break;
case SkClipStack::Element::DeviceSpaceType::kShader:
// TODO: handle shader clipping, perhaps rasterize and apply as a mask image?
break;
}
return cid;
};
// Rebuild the top.
while (elem) {
const auto cid = define_clip(elem);
auto clip_grp = std::make_unique<AutoElement>("g", fWriter);
clip_grp->addAttribute("clip-path", SkStringPrintf("url(#%s)", cid.c_str()));
fClipStack.push_back({ std::move(clip_grp), elem->getGenID() });
elem = iter.next();
}
}
void SkSVGDevice::drawPaint(const SkPaint& paint) {
AutoElement rect("rect", this, fResourceBucket.get(), MxCp(this), paint);
rect.addRectAttributes(SkRect::MakeWH(SkIntToScalar(this->width()),
SkIntToScalar(this->height())));
}
void SkSVGDevice::drawAnnotation(const SkRect& rect, const char key[], SkData* value) {
if (!value) {
return;
}
if (!strcmp(SkAnnotationKeys::URL_Key(), key) ||
!strcmp(SkAnnotationKeys::Link_Named_Dest_Key(), key)) {
this->cs().save();
this->cs().clipRect(rect, this->localToDevice(), SkClipOp::kIntersect, true);
SkRect transformedRect = this->cs().bounds(this->getGlobalBounds());
this->cs().restore();
if (transformedRect.isEmpty()) {
return;
}
SkString url(static_cast<const char*>(value->data()), value->size() - 1);
AutoElement a("a", fWriter);
a.addAttribute("xlink:href", url.c_str());
{
AutoElement r("rect", fWriter);
r.addAttribute("fill-opacity", "0.0");
r.addRectAttributes(transformedRect);
}
}
}
void SkSVGDevice::drawPoints(SkCanvas::PointMode mode, size_t count,
const SkPoint pts[], const SkPaint& paint) {
SkPathBuilder path;
switch (mode) {
// todo
case SkCanvas::kPoints_PointMode:
// TODO?
break;
case SkCanvas::kLines_PointMode:
count -= 1;
for (size_t i = 0; i < count; i += 2) {
path.moveTo(pts[i]);
path.lineTo(pts[i+1]);
}
break;
case SkCanvas::kPolygon_PointMode:
if (count > 1) {
path.addPolygon(pts, SkToInt(count), false);
}
break;
}
this->drawPath(path.detach(), paint, true);
}
void SkSVGDevice::drawRect(const SkRect& r, const SkPaint& paint) {
std::unique_ptr<AutoElement> svg;
if (RequiresViewportReset(paint)) {
svg = std::make_unique<AutoElement>("svg", this, fResourceBucket.get(), MxCp(this), paint);
svg->addRectAttributes(r);
}
AutoElement rect("rect", this, fResourceBucket.get(), MxCp(this), paint);
if (svg) {
rect.addAttribute("x", 0);
rect.addAttribute("y", 0);
rect.addAttribute("width", "100%");
rect.addAttribute("height", "100%");
} else {
rect.addRectAttributes(r);
}
}
void SkSVGDevice::drawOval(const SkRect& oval, const SkPaint& paint) {
AutoElement ellipse("ellipse", this, fResourceBucket.get(), MxCp(this), paint);
ellipse.addAttribute("cx", oval.centerX());
ellipse.addAttribute("cy", oval.centerY());
ellipse.addAttribute("rx", oval.width() / 2);
ellipse.addAttribute("ry", oval.height() / 2);
}
void SkSVGDevice::drawRRect(const SkRRect& rr, const SkPaint& paint) {
AutoElement elem("path", this, fResourceBucket.get(), MxCp(this), paint);
elem.addPathAttributes(SkPath::RRect(rr), this->pathEncoding());
}
void SkSVGDevice::drawPath(const SkPath& path, const SkPaint& paint, bool pathIsMutable) {
if (path.isInverseFillType()) {
SkDebugf("Inverse path fill type not yet implemented.");
return;
}
SkPath pathStorage;
SkPath* pathPtr = const_cast<SkPath*>(&path);
SkTCopyOnFirstWrite<SkPaint> path_paint(paint);
// Apply path effect from paint to path.
if (path_paint->getPathEffect()) {
if (!pathIsMutable) {
pathPtr = &pathStorage;
}
bool fill = path_paint->getFillPath(path, pathPtr);
if (fill) {
// Path should be filled.
path_paint.writable()->setStyle(SkPaint::kFill_Style);
} else {
// Path should be drawn with a hairline (width == 0).
path_paint.writable()->setStyle(SkPaint::kStroke_Style);
path_paint.writable()->setStrokeWidth(0);
}
path_paint.writable()->setPathEffect(nullptr); // path effect processed
}
// Create path element.
AutoElement elem("path", this, fResourceBucket.get(), MxCp(this), *path_paint);
elem.addPathAttributes(*pathPtr, this->pathEncoding());
// TODO: inverse fill types?
if (pathPtr->getFillType() == SkPathFillType::kEvenOdd) {
elem.addAttribute("fill-rule", "evenodd");
}
}
static sk_sp<SkData> encode(const SkBitmap& src) {
SkDynamicMemoryWStream buf;
return SkEncodeImage(&buf, src, SkEncodedImageFormat::kPNG, 80) ? buf.detachAsData() : nullptr;
}
void SkSVGDevice::drawBitmapCommon(const MxCp& mc, const SkBitmap& bm, const SkPaint& paint) {
sk_sp<SkData> pngData = encode(bm);
if (!pngData) {
return;
}
size_t b64Size = SkBase64::Encode(pngData->data(), pngData->size(), nullptr);
SkAutoTMalloc<char> b64Data(b64Size);
SkBase64::Encode(pngData->data(), pngData->size(), b64Data.get());
SkString svgImageData("data:image/png;base64,");
svgImageData.append(b64Data.get(), b64Size);
SkString imageID = fResourceBucket->addImage();
{
AutoElement defs("defs", fWriter);
{
AutoElement image("image", fWriter);
image.addAttribute("id", imageID);
image.addAttribute("width", bm.width());
image.addAttribute("height", bm.height());
image.addAttribute("xlink:href", svgImageData);
}
}
{
AutoElement imageUse("use", this, fResourceBucket.get(), mc, paint);
imageUse.addAttribute("xlink:href", SkStringPrintf("#%s", imageID.c_str()));
}
}
void SkSVGDevice::drawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst,
const SkSamplingOptions& sampling, const SkPaint& paint,
SkCanvas::SrcRectConstraint constraint) {
SkBitmap bm;
// TODO: support gpu images
if (!as_IB(image)->getROPixels(nullptr, &bm)) {
return;
}
SkClipStack* cs = &this->cs();
SkClipStack::AutoRestore ar(cs, false);
if (src && *src != SkRect::Make(bm.bounds())) {
cs->save();
cs->clipRect(dst, this->localToDevice(), SkClipOp::kIntersect, paint.isAntiAlias());
}
SkMatrix adjustedMatrix = this->localToDevice()
* SkMatrix::RectToRect(src ? *src : SkRect::Make(bm.bounds()), dst);
drawBitmapCommon(MxCp(&adjustedMatrix, cs), bm, paint);
}
class SVGTextBuilder : SkNoncopyable {
public:
SVGTextBuilder(SkPoint origin, const sktext::GlyphRun& glyphRun)
: fOrigin(origin) {
auto runSize = glyphRun.runSize();
SkAutoSTArray<64, SkUnichar> unichars(runSize);
SkFontPriv::GlyphsToUnichars(glyphRun.font(), glyphRun.glyphsIDs().data(),
runSize, unichars.get());
auto positions = glyphRun.positions();
for (size_t i = 0; i < runSize; ++i) {
this->appendUnichar(unichars[i], positions[i]);
}
}
const SkString& text() const { return fText; }
const SkString& posX() const { return fPosXStr; }
const SkString& posY() const { return fHasConstY ? fConstYStr : fPosYStr; }
private:
void appendUnichar(SkUnichar c, SkPoint position) {
bool discardPos = false;
bool isWhitespace = false;
switch(c) {
case ' ':
case '\t':
// consolidate whitespace to match SVG's xml:space=default munging
// (http://www.w3.org/TR/SVG/text.html#WhiteSpace)
if (fLastCharWasWhitespace) {
discardPos = true;
} else {
fText.appendUnichar(c);
}
isWhitespace = true;
break;
case '\0':
// SkPaint::glyphsToUnichars() returns \0 for inconvertible glyphs, but these
// are not legal XML characters (http://www.w3.org/TR/REC-xml/#charsets)
discardPos = true;
isWhitespace = fLastCharWasWhitespace; // preserve whitespace consolidation
break;
case '&':
fText.append("&amp;");
break;
case '"':
fText.append("&quot;");
break;
case '\'':
fText.append("&apos;");
break;
case '<':
fText.append("&lt;");
break;
case '>':
fText.append("&gt;");
break;
default:
fText.appendUnichar(c);
break;
}
fLastCharWasWhitespace = isWhitespace;
if (discardPos) {
return;
}
position += fOrigin;
fPosXStr.appendf("%.8g, ", position.fX);
fPosYStr.appendf("%.8g, ", position.fY);
if (fConstYStr.isEmpty()) {
fConstYStr = fPosYStr;
fConstY = position.fY;
} else {
fHasConstY &= SkScalarNearlyEqual(fConstY, position.fY);
}
}
const SkPoint fOrigin;
SkString fText,
fPosXStr, fPosYStr,
fConstYStr;
SkScalar fConstY;
bool fLastCharWasWhitespace = true, // start off in whitespace mode to strip leading space
fHasConstY = true;
};
void SkSVGDevice::onDrawGlyphRunList(SkCanvas* canvas,
const sktext::GlyphRunList& glyphRunList,
const SkPaint& initialPaint,
const SkPaint& drawingPaint) {
SkASSERT(!glyphRunList.hasRSXForm());
const auto draw_as_path = (fFlags & SkSVGCanvas::kConvertTextToPaths_Flag) ||
drawingPaint.getPathEffect();
if (draw_as_path) {
// Emit a single <path> element.
SkPath path;
for (auto& glyphRun : glyphRunList) {
AddPath(glyphRun, glyphRunList.origin(), &path);
}
this->drawPath(path, drawingPaint);
return;
}
// Emit one <text> element for each run.
for (auto& glyphRun : glyphRunList) {
AutoElement elem("text", this, fResourceBucket.get(), MxCp(this), drawingPaint);
elem.addTextAttributes(glyphRun.font());
SVGTextBuilder builder(glyphRunList.origin(), glyphRun);
elem.addAttribute("x", builder.posX());
elem.addAttribute("y", builder.posY());
elem.addText(builder.text());
}
}
void SkSVGDevice::drawVertices(const SkVertices*, sk_sp<SkBlender>, const SkPaint&, bool) {
// todo
}
#ifdef SK_ENABLE_SKSL
void SkSVGDevice::drawMesh(const SkMesh&, sk_sp<SkBlender>, const SkPaint&) {
// todo
}
#endif