blob: 70d357b6a78804323c776309f4f989bd1818b0f6 [file] [log] [blame]
"""
This file specifies a clang toolchain that can run on a Linux host which doesn't depend on any
installed packages from the host machine.
See download_linux_amd64_toolchain.bzl for more details on the creation of the toolchain.
It uses the usr subfolder of the built toolchain as a sysroot
It follows the example of:
- https://docs.bazel.build/versions/4.2.1/tutorial/cc-toolchain-config.html
- https://github.com/emscripten-core/emsdk/blob/7f39d100d8cd207094decea907121df72065517e/bazel/emscripten_toolchain/crosstool.bzl
"""
# https://github.com/bazelbuild/bazel/blob/master/tools/build_defs/cc/action_names.bzl
load("@bazel_tools//tools/build_defs/cc:action_names.bzl", "ACTION_NAMES")
# https://github.com/bazelbuild/bazel/blob/master/tools/cpp/cc_toolchain_config_lib.bzl
load(
"@bazel_tools//tools/cpp:cc_toolchain_config_lib.bzl",
"action_config",
"feature",
"flag_group",
"flag_set",
"tool",
"variable_with_value",
)
load(":clang_layering_check.bzl", "make_layering_check_features")
# The location of the created clang toolchain.
EXTERNAL_TOOLCHAIN = "external/clang_linux_amd64"
def _linux_amd64_toolchain_info(ctx):
action_configs = _make_action_configs()
features = []
features += _make_default_flags()
features += make_layering_check_features()
features += _make_diagnostic_flags()
features += _make_iwyu_flags()
# https://bazel.build/rules/lib/cc_common#create_cc_toolchain_config_info
# Note, this rule is defined in Java code, not Starlark
# https://cs.opensource.google/bazel/bazel/+/master:src/main/java/com/google/devtools/build/lib/starlarkbuildapi/cpp/CcModuleApi.java
return cc_common.create_cc_toolchain_config_info(
ctx = ctx,
features = features,
action_configs = action_configs,
# This is important because the linker will complain if the libc shared libraries are not
# under this directory. Because we extract the libc libraries to
# EXTERNAL_TOOLCHAIN/lib, and the various headers and shared libraries to
# EXTERNAL_TOOLCHAIN/usr, we make the top level folder the sysroot so the linker can
# find the referenced libraries (e.g. EXTERNAL_TOOLCHAIN/usr/lib/x86_64-linux-gnu/libc.so
# is just a text file that refers to "/lib/x86_64-linux-gnu/libc.so.6" and
# "/lib64/ld-linux-x86-64.so.2" which will use the sysroot as the root).
builtin_sysroot = EXTERNAL_TOOLCHAIN,
# These are required, but do nothing
compiler = "",
target_cpu = "",
target_libc = "",
target_system_name = "",
toolchain_identifier = "",
)
provide_linux_amd64_toolchain_config = rule(
attrs = {},
provides = [CcToolchainConfigInfo],
implementation = _linux_amd64_toolchain_info,
)
def _make_action_configs():
"""
This function sets up the tools needed to perform the various compile/link actions.
Bazel normally restricts us to referring to (and therefore running) executables/scripts
that are in this directory (That is EXEC_ROOT/toolchain). However, the executables we want
to run are brought in via WORKSPACE.bazel and are located in EXEC_ROOT/external/clang....
Therefore, we make use of "trampoline scripts" that will call the binaries from the
toolchain directory.
These action_configs also let us dynamically specify arguments from the Bazel
environment if necessary (see cpp_link_static_library_action).
"""
# https://cs.opensource.google/bazel/bazel/+/master:tools/cpp/cc_toolchain_config_lib.bzl;l=435;drc=3b9e6f201a9a3465720aad8712ab7bcdeaf2e5da
clang_tool = tool(path = "linux_trampolines/clang_trampoline_linux.sh")
ar_tool = tool(path = "linux_trampolines/ar_trampoline_linux.sh")
# https://cs.opensource.google/bazel/bazel/+/master:tools/cpp/cc_toolchain_config_lib.bzl;l=488;drc=3b9e6f201a9a3465720aad8712ab7bcdeaf2e5da
assemble_action = action_config(
action_name = ACTION_NAMES.assemble,
tools = [clang_tool],
)
c_compile_action = action_config(
action_name = ACTION_NAMES.c_compile,
tools = [clang_tool],
)
cpp_compile_action = action_config(
action_name = ACTION_NAMES.cpp_compile,
tools = [clang_tool],
)
linkstamp_compile_action = action_config(
action_name = ACTION_NAMES.linkstamp_compile,
tools = [clang_tool],
)
preprocess_assemble_action = action_config(
action_name = ACTION_NAMES.preprocess_assemble,
tools = [clang_tool],
)
cpp_link_dynamic_library_action = action_config(
action_name = ACTION_NAMES.cpp_link_dynamic_library,
tools = [clang_tool],
)
cpp_link_executable_action = action_config(
action_name = ACTION_NAMES.cpp_link_executable,
# Bazel assumes it is talking to clang when building an executable. There are
# "-Wl" flags on the command: https://releases.llvm.org/6.0.1/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang-Wl
tools = [clang_tool],
)
cpp_link_nodeps_dynamic_library_action = action_config(
action_name = ACTION_NAMES.cpp_link_nodeps_dynamic_library,
tools = [clang_tool],
)
# This is the same rule as
# https://github.com/emscripten-core/emsdk/blob/7f39d100d8cd207094decea907121df72065517e/bazel/emscripten_toolchain/crosstool.bzl#L143
# By default, there are no flags or libraries passed to the llvm-ar tool, so
# we need to specify them. The variables mentioned by expand_if_available are defined
# https://bazel.build/docs/cc-toolchain-config-reference#cctoolchainconfiginfo-build-variables
cpp_link_static_library_action = action_config(
action_name = ACTION_NAMES.cpp_link_static_library,
flag_sets = [
flag_set(
flag_groups = [
flag_group(
# https://llvm.org/docs/CommandGuide/llvm-ar.html
# replace existing files or insert them if they already exist,
# create the file if it doesn't already exist
# symbol table should be added
# Deterministic timestamps should be used
flags = ["rcsD", "%{output_execpath}"],
# Despite the name, output_execpath just refers to linker output,
# e.g. libFoo.a
expand_if_available = "output_execpath",
),
],
),
flag_set(
flag_groups = [
flag_group(
iterate_over = "libraries_to_link",
flag_groups = [
flag_group(
flags = ["%{libraries_to_link.name}"],
expand_if_equal = variable_with_value(
name = "libraries_to_link.type",
value = "object_file",
),
),
flag_group(
flags = ["%{libraries_to_link.object_files}"],
iterate_over = "libraries_to_link.object_files",
expand_if_equal = variable_with_value(
name = "libraries_to_link.type",
value = "object_file_group",
),
),
],
expand_if_available = "libraries_to_link",
),
],
),
flag_set(
flag_groups = [
flag_group(
flags = ["@%{linker_param_file}"],
expand_if_available = "linker_param_file",
),
],
),
],
tools = [ar_tool],
)
action_configs = [
assemble_action,
c_compile_action,
cpp_compile_action,
cpp_link_dynamic_library_action,
cpp_link_executable_action,
cpp_link_nodeps_dynamic_library_action,
cpp_link_static_library_action,
linkstamp_compile_action,
preprocess_assemble_action,
]
return action_configs
def _make_default_flags():
"""Here we define the flags for certain actions that are always applied.
For any flag that might be conditionally applied, it should be defined in //bazel/copts.bzl.
Flags that are set here will be unconditionally applied to everything we compile with
this toolchain, even third_party deps.
"""
# Note: These values must be kept in sync with those defined in cmake_exporter.go.
cxx_compile_includes = flag_set(
actions = [
ACTION_NAMES.c_compile,
ACTION_NAMES.cpp_compile,
],
flag_groups = [
flag_group(
flags = [
# THIS ORDER MATTERS GREATLY. If these are in the wrong order, the
# #include_next directives will fail to find the files, causing a compilation
# error (or, without -no-canonical-prefixes, a mysterious case where files
# are included with an absolute path and fail the build).
"-isystem",
EXTERNAL_TOOLCHAIN + "/include/c++/v1",
# https://github.com/llvm/llvm-project/issues/57104
"-isystem",
EXTERNAL_TOOLCHAIN + "/include/x86_64-unknown-linux-gnu/c++/v1/",
"-isystem",
EXTERNAL_TOOLCHAIN + "/usr/include",
"-isystem",
EXTERNAL_TOOLCHAIN + "/lib/clang/15.0.1/include",
"-isystem",
EXTERNAL_TOOLCHAIN + "/usr/include/x86_64-linux-gnu",
# We do not want clang to search in absolute paths for files. This makes
# Bazel think we are using an outside resource and fail the compile.
"-no-canonical-prefixes",
],
),
],
)
cpp_compile_flags = flag_set(
actions = [
ACTION_NAMES.cpp_compile,
],
flag_groups = [
flag_group(
flags = [
"-std=c++17",
"-stdlib=libc++",
],
),
],
)
link_exe_flags = flag_set(
actions = [
ACTION_NAMES.cpp_link_executable,
ACTION_NAMES.cpp_link_dynamic_library,
ACTION_NAMES.cpp_link_nodeps_dynamic_library,
],
flag_groups = [
flag_group(
flags = [
"-fuse-ld=lld",
# We chose to use the llvm runtime, not the gcc one because it is already
# included in the clang binary
"--rtlib=compiler-rt",
"-std=c++17",
"-stdlib=libc++",
# We statically include these libc++ libraries so they do not need to be
# on a developer's machine (they can be tricky to get).
EXTERNAL_TOOLCHAIN + "/lib/x86_64-unknown-linux-gnu/libc++.a",
EXTERNAL_TOOLCHAIN + "/lib/x86_64-unknown-linux-gnu/libc++abi.a",
EXTERNAL_TOOLCHAIN + "/lib/x86_64-unknown-linux-gnu/libunwind.a",
# Dynamically Link in the other parts of glibc (not needed in glibc 2.34+)
"-lpthread",
"-lm",
"-ldl",
],
),
],
)
return [feature(
"default_flags",
enabled = True,
flag_sets = [
cxx_compile_includes,
cpp_compile_flags,
link_exe_flags,
],
)]
def _make_diagnostic_flags():
"""Here we define the flags that can be turned on via features to yield debug info."""
cxx_diagnostic = flag_set(
actions = [
ACTION_NAMES.c_compile,
ACTION_NAMES.cpp_compile,
],
flag_groups = [
flag_group(
flags = [
"--trace-includes",
"-v",
],
),
],
)
link_diagnostic = flag_set(
actions = [ACTION_NAMES.cpp_link_executable],
flag_groups = [
flag_group(
flags = [
"-Wl,--verbose",
"-v",
],
),
],
)
link_search_dirs = flag_set(
actions = [ACTION_NAMES.cpp_link_executable],
flag_groups = [
flag_group(
flags = [
"--print-search-dirs",
],
),
],
)
return [
# Running a Bazel command with --features diagnostic will cause the compilation and
# link steps to be more verbose.
feature(
"diagnostic",
enabled = False,
flag_sets = [
cxx_diagnostic,
link_diagnostic,
],
),
feature(
"diagnostic_link",
enabled = False,
flag_sets = [
link_diagnostic,
],
),
# Running a Bazel command with --features print_search_dirs will cause the link to fail
# but directories searched for libraries, etc will be displayed.
feature(
"print_search_dirs",
enabled = False,
flag_sets = [
link_search_dirs,
],
),
]
def _make_iwyu_flags():
"""Here we define the flags that signal whether or not to enforce IWYU."""
# https://bazel.build/docs/cc-toolchain-config-reference#features
opt_file_into_iwyu = flag_set(
actions = [
ACTION_NAMES.c_compile,
ACTION_NAMES.cpp_compile,
],
flag_groups = [
flag_group(
flags = [
# This define does not impact compilation, but it acts as a signal to the
# clang_trampoline.sh whether to maybe check the file with include-what-you-use
# A define was chosen because it is ignored by clang and IWYU, but can be
# easily found with bash.
# The clang_trampoline.sh file has a list of allowed subdirectories for which
# IWYU should be enforced, allowing us to slowly opt more and more directories
# in over time.
"-DSKIA_ENFORCE_IWYU",
],
),
],
)
skip_linking_when_iwyu = flag_set(
actions = [
ACTION_NAMES.cpp_link_executable,
ACTION_NAMES.cpp_link_static_library,
],
flag_groups = [
flag_group(
flags = [
# IWYU is generally a compile-only check, so we can skip the linking step
# to reduce the work needed, especially when enforcing IWYU on the executables.
"-DSKIA_SKIP_LINKING",
],
),
],
)
return [
feature(
"skia_enforce_iwyu",
enabled = False,
flag_sets = [
opt_file_into_iwyu,
skip_linking_when_iwyu,
],
),
]