blob: 2939d3dc7d5220b5472211059a25db96de761590 [file] [log] [blame]
/*
* Copyright 2010 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/SkGr.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColorFilter.h"
#include "include/core/SkData.h"
#include "include/core/SkPixelRef.h"
#include "include/effects/SkRuntimeEffect.h"
#include "include/gpu/GrContext.h"
#include "include/gpu/GrTypes.h"
#include "include/private/GrRecordingContext.h"
#include "include/private/SkIDChangeListener.h"
#include "include/private/SkImageInfoPriv.h"
#include "include/private/SkTemplates.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkBlendModePriv.h"
#include "src/core/SkColorFilterBase.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkMaskFilterBase.h"
#include "src/core/SkMessageBus.h"
#include "src/core/SkMipMap.h"
#include "src/core/SkPaintPriv.h"
#include "src/core/SkResourceCache.h"
#include "src/core/SkTraceEvent.h"
#include "src/gpu/GrBitmapTextureMaker.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrColorSpaceXform.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrGpuResourcePriv.h"
#include "src/gpu/GrPaint.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/GrXferProcessor.h"
#include "src/gpu/effects/GrBicubicEffect.h"
#include "src/gpu/effects/GrPorterDuffXferProcessor.h"
#include "src/gpu/effects/GrSkSLFP.h"
#include "src/gpu/effects/GrXfermodeFragmentProcessor.h"
#include "src/gpu/effects/generated/GrClampFragmentProcessor.h"
#include "src/gpu/effects/generated/GrConstColorProcessor.h"
#include "src/image/SkImage_Base.h"
#include "src/shaders/SkShaderBase.h"
GR_FP_SRC_STRING SKSL_DITHER_SRC = R"(
// This controls the range of values added to color channels and is based on the destination color
// type; as such it doesn't really affect our program cache to have a variant per-range.
in half range;
void main(inout half4 color) {
half value;
@if (sk_Caps.integerSupport)
{
// This ordered-dither code is lifted from the cpu backend.
uint x = uint(sk_FragCoord.x);
uint y = uint(sk_FragCoord.y) ^ x;
uint m = (y & 1) << 5 | (x & 1) << 4 |
(y & 2) << 2 | (x & 2) << 1 |
(y & 4) >> 1 | (x & 4) >> 2;
value = half(m) * 1.0 / 64.0 - 63.0 / 128.0;
} else {
// Simulate the integer effect used above using step/mod/abs. For speed, simulates a 4x4
// dither pattern rather than an 8x8 one. Since it's 4x4, this is effectively computing:
// uint m = (y & 1) << 3 | (x & 1) << 2 |
// (y & 2) << 0 | (x & 2) >> 1;
// where 'y' has already been XOR'ed with 'x' as in the integer-supported case.
// To get the low bit of p.x and p.y, we compute mod 2.0; for the high bit, we mod 4.0
half4 bits = mod(half4(sk_FragCoord.yxyx), half4(2.0, 2.0, 4.0, 4.0));
// Use step to convert the 0-3 value in bits.zw into a 0|1 value. bits.xy is already 0|1.
bits.zw = step(2.0, bits.zw);
// bits was constructed such that the p.x bits were already in the right place for
// interleaving (in bits.yw). We just need to update the other bits from p.y to (p.x ^ p.y).
// These are in bits.xz. Since the values are 0|1, we can simulate ^ as abs(y - x).
bits.xz = abs(bits.xz - bits.yw);
// Manual binary sum, divide by N^2, and offset
value = dot(bits, half4(8.0 / 16.0, 4.0 / 16.0, 2.0 / 16.0, 1.0 / 16.0)) - 15.0 / 32.0;
}
// For each color channel, add the random offset to the channel value and then clamp
// between 0 and alpha to keep the color premultiplied.
color = half4(clamp(color.rgb + value * range, 0.0, color.a), color.a);
}
)";
void GrMakeKeyFromImageID(GrUniqueKey* key, uint32_t imageID, const SkIRect& imageBounds) {
SkASSERT(key);
SkASSERT(imageID);
SkASSERT(!imageBounds.isEmpty());
static const GrUniqueKey::Domain kImageIDDomain = GrUniqueKey::GenerateDomain();
GrUniqueKey::Builder builder(key, kImageIDDomain, 5, "Image");
builder[0] = imageID;
builder[1] = imageBounds.fLeft;
builder[2] = imageBounds.fTop;
builder[3] = imageBounds.fRight;
builder[4] = imageBounds.fBottom;
}
////////////////////////////////////////////////////////////////////////////////
sk_sp<SkIDChangeListener> GrMakeUniqueKeyInvalidationListener(GrUniqueKey* key,
uint32_t contextID) {
class Listener : public SkIDChangeListener {
public:
Listener(const GrUniqueKey& key, uint32_t contextUniqueID) : fMsg(key, contextUniqueID) {}
void changed() override { SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); }
private:
GrUniqueKeyInvalidatedMessage fMsg;
};
auto listener = sk_make_sp<Listener>(*key, contextID);
// We stick a SkData on the key that calls invalidateListener in its destructor.
auto invalidateListener = [](const void* ptr, void* /*context*/) {
auto listener = reinterpret_cast<const sk_sp<Listener>*>(ptr);
(*listener)->markShouldDeregister();
delete listener;
};
auto data = SkData::MakeWithProc(new sk_sp<Listener>(listener),
sizeof(sk_sp<Listener>),
invalidateListener,
nullptr);
SkASSERT(!key->getCustomData());
key->setCustomData(std::move(data));
return std::move(listener);
}
sk_sp<GrSurfaceProxy> GrCopyBaseMipMapToTextureProxy(GrRecordingContext* ctx,
GrSurfaceProxy* baseProxy,
GrSurfaceOrigin origin,
SkBudgeted budgeted) {
SkASSERT(baseProxy);
if (!ctx->priv().caps()->isFormatCopyable(baseProxy->backendFormat())) {
return {};
}
auto copy = GrSurfaceProxy::Copy(ctx, baseProxy, origin, GrMipMapped::kYes,
SkBackingFit::kExact, budgeted);
if (!copy) {
return {};
}
SkASSERT(copy->asTextureProxy());
return copy;
}
GrSurfaceProxyView GrCopyBaseMipMapToView(GrRecordingContext* context,
GrSurfaceProxyView src,
SkBudgeted budgeted) {
auto origin = src.origin();
auto swizzle = src.swizzle();
auto* proxy = src.proxy();
return {GrCopyBaseMipMapToTextureProxy(context, proxy, origin, budgeted), origin, swizzle};
}
GrSurfaceProxyView GrRefCachedBitmapView(GrRecordingContext* ctx, const SkBitmap& bitmap,
GrMipMapped mipMapped) {
GrBitmapTextureMaker maker(ctx, bitmap, GrImageTexGenPolicy::kDraw);
return maker.view(mipMapped);
}
GrSurfaceProxyView GrMakeCachedBitmapProxyView(GrRecordingContext* context,
const SkBitmap& bitmap) {
if (!bitmap.peekPixels(nullptr)) {
return {};
}
GrBitmapTextureMaker maker(context, bitmap, GrImageTexGenPolicy::kDraw);
return maker.view(GrMipMapped::kNo);
}
///////////////////////////////////////////////////////////////////////////////
SkPMColor4f SkColorToPMColor4f(SkColor c, const GrColorInfo& colorInfo) {
SkColor4f color = SkColor4f::FromColor(c);
if (auto* xform = colorInfo.colorSpaceXformFromSRGB()) {
color = xform->apply(color);
}
return color.premul();
}
SkColor4f SkColor4fPrepForDst(SkColor4f color, const GrColorInfo& colorInfo) {
if (auto* xform = colorInfo.colorSpaceXformFromSRGB()) {
color = xform->apply(color);
}
return color;
}
///////////////////////////////////////////////////////////////////////////////
static inline bool blend_requires_shader(const SkBlendMode mode) {
return SkBlendMode::kDst != mode;
}
#ifndef SK_IGNORE_GPU_DITHER
static inline float dither_range_for_config(GrColorType dstColorType) {
// We use 1 / (2^bitdepth-1) as the range since each channel can hold 2^bitdepth values
switch (dstColorType) {
// 4 bit
case GrColorType::kABGR_4444:
return 1 / 15.f;
// 6 bit
case GrColorType::kBGR_565:
return 1 / 63.f;
// 8 bit
case GrColorType::kUnknown:
case GrColorType::kAlpha_8:
case GrColorType::kAlpha_8xxx:
case GrColorType::kGray_8:
case GrColorType::kGray_8xxx:
case GrColorType::kR_8:
case GrColorType::kRG_88:
case GrColorType::kRGB_888:
case GrColorType::kRGB_888x:
case GrColorType::kRGBA_8888:
case GrColorType::kRGBA_8888_SRGB:
case GrColorType::kBGRA_8888:
return 1 / 255.f;
// 10 bit
case GrColorType::kRGBA_1010102:
case GrColorType::kBGRA_1010102:
return 1 / 1023.f;
// 16 bit
case GrColorType::kAlpha_16:
case GrColorType::kR_16:
case GrColorType::kRG_1616:
case GrColorType::kRGBA_16161616:
return 1 / 32767.f;
// Half
case GrColorType::kAlpha_F16:
case GrColorType::kGray_F16:
case GrColorType::kR_F16:
case GrColorType::kRG_F16:
case GrColorType::kRGBA_F16:
case GrColorType::kRGBA_F16_Clamped:
// Float
case GrColorType::kAlpha_F32xxx:
case GrColorType::kRGBA_F32:
return 0.f; // no dithering
}
SkUNREACHABLE;
}
#endif
static inline bool skpaint_to_grpaint_impl(GrRecordingContext* context,
const GrColorInfo& dstColorInfo,
const SkPaint& skPaint,
const SkMatrixProvider& matrixProvider,
std::unique_ptr<GrFragmentProcessor>* shaderProcessor,
SkBlendMode* primColorMode,
GrPaint* grPaint) {
// Convert SkPaint color to 4f format in the destination color space
SkColor4f origColor = SkColor4fPrepForDst(skPaint.getColor4f(), dstColorInfo);
GrFPArgs fpArgs(context, matrixProvider, skPaint.getFilterQuality(), &dstColorInfo);
// Setup the initial color considering the shader, the SkPaint color, and the presence or not
// of per-vertex colors.
std::unique_ptr<GrFragmentProcessor> paintFP;
if (!primColorMode || blend_requires_shader(*primColorMode)) {
fpArgs.fInputColorIsOpaque = origColor.isOpaque();
if (shaderProcessor) {
paintFP = std::move(*shaderProcessor);
} else {
if (const SkShaderBase* shader = as_SB(skPaint.getShader())) {
paintFP = shader->asFragmentProcessor(fpArgs);
if (paintFP == nullptr) {
return false;
}
}
}
}
// Set this in below cases if the output of the shader/paint-color/paint-alpha/primXfermode is
// a known constant value. In that case we can simply apply a color filter during this
// conversion without converting the color filter to a GrFragmentProcessor.
bool applyColorFilterToPaintColor = false;
if (paintFP) {
if (primColorMode) {
// There is a blend between the primitive color and the shader color. The shader sees
// the opaque paint color. The shader's output is blended using the provided mode by
// the primitive color. The blended color is then modulated by the paint's alpha.
// The geometry processor will insert the primitive color to start the color chain, so
// the GrPaint color will be ignored.
SkPMColor4f shaderInput = origColor.makeOpaque().premul();
paintFP = GrFragmentProcessor::OverrideInput(std::move(paintFP), shaderInput);
paintFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(paintFP),
*primColorMode);
// We can ignore origColor here - alpha is unchanged by gamma
float paintAlpha = skPaint.getColor4f().fA;
if (1.0f != paintAlpha) {
// No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all
// color channels. It's value should be treated as the same in ANY color space.
paintFP = GrConstColorProcessor::Make(
std::move(paintFP), { paintAlpha, paintAlpha, paintAlpha, paintAlpha },
GrConstColorProcessor::InputMode::kModulateRGBA);
}
} else {
// The shader's FP sees the paint *unpremul* color
SkPMColor4f origColorAsPM = { origColor.fR, origColor.fG, origColor.fB, origColor.fA };
grPaint->setColor4f(origColorAsPM);
}
} else {
if (primColorMode) {
// There is a blend between the primitive color and the paint color. The blend considers
// the opaque paint color. The paint's alpha is applied to the post-blended color.
SkPMColor4f opaqueColor = origColor.makeOpaque().premul();
paintFP = GrConstColorProcessor::Make(/*inputFP=*/nullptr, opaqueColor,
GrConstColorProcessor::InputMode::kIgnore);
paintFP = GrXfermodeFragmentProcessor::MakeFromSrcProcessor(std::move(paintFP),
*primColorMode);
grPaint->setColor4f(opaqueColor);
// We can ignore origColor here - alpha is unchanged by gamma
float paintAlpha = skPaint.getColor4f().fA;
if (1.0f != paintAlpha) {
// No gamut conversion - paintAlpha is a (linear) alpha value, splatted to all
// color channels. It's value should be treated as the same in ANY color space.
paintFP = GrConstColorProcessor::Make(
std::move(paintFP), { paintAlpha, paintAlpha, paintAlpha, paintAlpha },
GrConstColorProcessor::InputMode::kModulateRGBA);
}
} else {
// No shader, no primitive color.
grPaint->setColor4f(origColor.premul());
applyColorFilterToPaintColor = true;
}
}
SkColorFilter* colorFilter = skPaint.getColorFilter();
if (colorFilter) {
if (applyColorFilterToPaintColor) {
SkColorSpace* dstCS = dstColorInfo.colorSpace();
grPaint->setColor4f(colorFilter->filterColor4f(origColor, dstCS, dstCS).premul());
} else {
auto [success, fp] = as_CFB(colorFilter)->asFragmentProcessor(std::move(paintFP),
context, dstColorInfo);
if (!success) {
return false;
}
paintFP = std::move(fp);
}
}
if (paintFP) {
grPaint->addColorFragmentProcessor(std::move(paintFP));
}
SkMaskFilterBase* maskFilter = as_MFB(skPaint.getMaskFilter());
if (maskFilter) {
// We may have set this before passing to the SkShader.
fpArgs.fInputColorIsOpaque = false;
if (auto mfFP = maskFilter->asFragmentProcessor(fpArgs)) {
grPaint->addCoverageFragmentProcessor(std::move(mfFP));
}
}
// When the xfermode is null on the SkPaint (meaning kSrcOver) we need the XPFactory field on
// the GrPaint to also be null (also kSrcOver).
SkASSERT(!grPaint->getXPFactory());
if (!skPaint.isSrcOver()) {
grPaint->setXPFactory(SkBlendMode_AsXPFactory(skPaint.getBlendMode()));
}
#ifndef SK_IGNORE_GPU_DITHER
GrColorType ct = dstColorInfo.colorType();
if (SkPaintPriv::ShouldDither(skPaint, GrColorTypeToSkColorType(ct)) &&
grPaint->numColorFragmentProcessors() > 0) {
float ditherRange = dither_range_for_config(ct);
if (ditherRange > 0.f) {
static auto effect = std::get<0>(SkRuntimeEffect::Make(SkString(SKSL_DITHER_SRC)));
auto ditherFP = GrSkSLFP::Make(context, effect, "Dither",
SkData::MakeWithCopy(&ditherRange, sizeof(ditherRange)));
if (ditherFP) {
grPaint->addColorFragmentProcessor(std::move(ditherFP));
}
}
}
#endif
if (GrColorTypeClampType(dstColorInfo.colorType()) == GrClampType::kManual) {
if (grPaint->numColorFragmentProcessors()) {
grPaint->addColorFragmentProcessor(
GrClampFragmentProcessor::Make(/*inputFP=*/nullptr, /*clampToPremul=*/false));
} else {
auto color = grPaint->getColor4f();
grPaint->setColor4f({SkTPin(color.fR, 0.f, 1.f),
SkTPin(color.fG, 0.f, 1.f),
SkTPin(color.fB, 0.f, 1.f),
SkTPin(color.fA, 0.f, 1.f)});
}
}
return true;
}
bool SkPaintToGrPaint(GrRecordingContext* context,
const GrColorInfo& dstColorInfo,
const SkPaint& skPaint,
const SkMatrixProvider& matrixProvider,
GrPaint* grPaint) {
return skpaint_to_grpaint_impl(context, dstColorInfo, skPaint, matrixProvider, nullptr, nullptr,
grPaint);
}
/** Replaces the SkShader (if any) on skPaint with the passed in GrFragmentProcessor. */
bool SkPaintToGrPaintReplaceShader(GrRecordingContext* context,
const GrColorInfo& dstColorInfo,
const SkPaint& skPaint,
const SkMatrixProvider& matrixProvider,
std::unique_ptr<GrFragmentProcessor> shaderFP,
GrPaint* grPaint) {
if (!shaderFP) {
return false;
}
return skpaint_to_grpaint_impl(context, dstColorInfo, skPaint, matrixProvider, &shaderFP,
nullptr, grPaint);
}
/** Ignores the SkShader (if any) on skPaint. */
bool SkPaintToGrPaintNoShader(GrRecordingContext* context,
const GrColorInfo& dstColorInfo,
const SkPaint& skPaint,
const SkMatrixProvider& matrixProvider,
GrPaint* grPaint) {
// Use a ptr to a nullptr to to indicate that the SkShader is ignored and not replaced.
std::unique_ptr<GrFragmentProcessor> nullShaderFP(nullptr);
return skpaint_to_grpaint_impl(context, dstColorInfo, skPaint, matrixProvider, &nullShaderFP,
nullptr, grPaint);
}
/** Blends the SkPaint's shader (or color if no shader) with a per-primitive color which must
be setup as a vertex attribute using the specified SkBlendMode. */
bool SkPaintToGrPaintWithXfermode(GrRecordingContext* context,
const GrColorInfo& dstColorInfo,
const SkPaint& skPaint,
const SkMatrixProvider& matrixProvider,
SkBlendMode primColorMode,
GrPaint* grPaint) {
return skpaint_to_grpaint_impl(context, dstColorInfo, skPaint, matrixProvider, nullptr,
&primColorMode, grPaint);
}
bool SkPaintToGrPaintWithTexture(GrRecordingContext* context,
const GrColorInfo& dstColorInfo,
const SkPaint& paint,
const SkMatrixProvider& matrixProvider,
std::unique_ptr<GrFragmentProcessor> fp,
bool textureIsAlphaOnly,
GrPaint* grPaint) {
std::unique_ptr<GrFragmentProcessor> shaderFP;
if (textureIsAlphaOnly) {
if (const auto* shader = as_SB(paint.getShader())) {
shaderFP = shader->asFragmentProcessor(
GrFPArgs(context, matrixProvider, paint.getFilterQuality(), &dstColorInfo));
if (!shaderFP) {
return false;
}
std::unique_ptr<GrFragmentProcessor> fpSeries[] = { std::move(shaderFP), std::move(fp) };
shaderFP = GrFragmentProcessor::RunInSeries(fpSeries, 2);
} else {
shaderFP = GrFragmentProcessor::MakeInputPremulAndMulByOutput(std::move(fp));
}
} else {
if (paint.getColor4f().isOpaque()) {
shaderFP = GrFragmentProcessor::OverrideInput(std::move(fp), SK_PMColor4fWHITE, false);
} else {
shaderFP = GrFragmentProcessor::MulChildByInputAlpha(std::move(fp));
}
}
return SkPaintToGrPaintReplaceShader(context, dstColorInfo, paint, matrixProvider,
std::move(shaderFP), grPaint);
}
////////////////////////////////////////////////////////////////////////////////////////////////
GrSamplerState::Filter GrSkFilterQualityToGrFilterMode(int imageWidth, int imageHeight,
SkFilterQuality paintFilterQuality,
const SkMatrix& viewM,
const SkMatrix& localM,
bool sharpenMipmappedTextures,
bool* doBicubic) {
*doBicubic = false;
if (imageWidth <= 1 && imageHeight <= 1) {
return GrSamplerState::Filter::kNearest;
}
switch (paintFilterQuality) {
case kNone_SkFilterQuality:
return GrSamplerState::Filter::kNearest;
case kLow_SkFilterQuality:
return GrSamplerState::Filter::kBilerp;
case kMedium_SkFilterQuality: {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
// With sharp mips, we bias lookups by -0.5. That means our final LOD is >= 0 until the
// computed LOD is >= 0.5. At what scale factor does a texture get an LOD of 0.5?
//
// Want: 0 = log2(1/s) - 0.5
// 0.5 = log2(1/s)
// 2^0.5 = 1/s
// 1/2^0.5 = s
// 2^0.5/2 = s
SkScalar mipScale = sharpenMipmappedTextures ? SK_ScalarRoot2Over2 : SK_Scalar1;
if (matrix.getMinScale() < mipScale) {
return GrSamplerState::Filter::kMipMap;
} else {
// Don't trigger MIP level generation unnecessarily.
return GrSamplerState::Filter::kBilerp;
}
}
case kHigh_SkFilterQuality: {
SkMatrix matrix;
matrix.setConcat(viewM, localM);
GrSamplerState::Filter textureFilterMode;
*doBicubic = GrBicubicEffect::ShouldUseBicubic(matrix, &textureFilterMode);
return textureFilterMode;
}
}
SkUNREACHABLE;
}