blob: a4e0992d4c435ff7fb0d521dc828a691b6577a78 [file] [log] [blame]
/*
* Copyright 2023 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/private/SkJpegGainmapEncoder.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkStream.h"
#include "include/encode/SkEncoder.h"
#include "include/encode/SkJpegEncoder.h"
#include "include/private/SkGainmapInfo.h"
#include "src/codec/SkCodecPriv.h"
#include "src/codec/SkJpegConstants.h"
#include "src/codec/SkJpegMultiPicture.h"
#include "src/codec/SkJpegPriv.h"
#include "src/codec/SkJpegSegmentScan.h"
#include "src/encode/SkJpegEncoderImpl.h"
#include <vector>
static bool is_single_channel(SkColor4f c) { return c.fR == c.fG && c.fG == c.fB; };
////////////////////////////////////////////////////////////////////////////////////////////////////
// HDRGM encoding
// Generate the XMP metadata for an HDRGM file.
sk_sp<SkData> get_gainmap_image_xmp_metadata(const SkGainmapInfo& gainmapInfo) {
SkDynamicMemoryWStream s;
const float kLog2 = std::log(2.f);
const SkColor4f gainMapMin = {std::log(gainmapInfo.fGainmapRatioMin.fR) / kLog2,
std::log(gainmapInfo.fGainmapRatioMin.fG) / kLog2,
std::log(gainmapInfo.fGainmapRatioMin.fB) / kLog2,
1.f};
const SkColor4f gainMapMax = {std::log(gainmapInfo.fGainmapRatioMax.fR) / kLog2,
std::log(gainmapInfo.fGainmapRatioMax.fG) / kLog2,
std::log(gainmapInfo.fGainmapRatioMax.fB) / kLog2,
1.f};
const SkColor4f gamma = {1.f / gainmapInfo.fGainmapGamma.fR,
1.f / gainmapInfo.fGainmapGamma.fG,
1.f / gainmapInfo.fGainmapGamma.fB,
1.f};
// Write a scalar attribute.
auto write_scalar_attr = [&s](const char* attrib, SkScalar value) {
s.writeText(" ");
s.writeText(attrib);
s.writeText("=\"");
s.writeScalarAsText(value);
s.writeText("\"\n");
};
// Write a scalar attribute only if all channels of |value| are equal (otherwise, write
// nothing).
auto maybe_write_scalar_attr = [&write_scalar_attr](const char* attrib, SkColor4f value) {
if (!is_single_channel(value)) {
return;
}
write_scalar_attr(attrib, value.fR);
};
// Write a float3 attribute as a list ony if not all channels of |value| are equal (otherwise,
// write nothing).
auto maybe_write_float3_attr = [&s](const char* attrib, SkColor4f value) {
if (is_single_channel(value)) {
return;
}
s.writeText(" <");
s.writeText(attrib);
s.writeText(">\n");
s.writeText(" <rdf:Seq>\n");
s.writeText(" <rdf:li>");
s.writeScalarAsText(value.fR);
s.writeText("</rdf:li>\n");
s.writeText(" <rdf:li>");
s.writeScalarAsText(value.fG);
s.writeText("</rdf:li>\n");
s.writeText(" <rdf:li>");
s.writeScalarAsText(value.fB);
s.writeText("</rdf:li>\n");
s.writeText(" </rdf:Seq>\n");
s.writeText(" </");
s.writeText(attrib);
s.writeText(">\n");
};
s.writeText(
"<x:xmpmeta xmlns:x=\"adobe:ns:meta/\" x:xmptk=\"XMP Core 5.5.0\">\n"
" <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n"
" <rdf:Description rdf:about=\"\"\n"
" xmlns:hdrgm=\"http://ns.adobe.com/hdr-gain-map/1.0/\"\n"
" hdrgm:Version=\"1.0\"\n");
maybe_write_scalar_attr("hdrgm:GainMapMin", gainMapMin);
maybe_write_scalar_attr("hdrgm:GainMapMax", gainMapMax);
maybe_write_scalar_attr("hdrgm:Gamma", gamma);
maybe_write_scalar_attr("hdrgm:OffsetSDR", gainmapInfo.fEpsilonSdr);
maybe_write_scalar_attr("hdrgm:OffsetHDR", gainmapInfo.fEpsilonHdr);
write_scalar_attr("hdrgm:HDRCapacityMin", std::log(gainmapInfo.fDisplayRatioSdr) / kLog2);
write_scalar_attr("hdrgm:HDRCapacityMax", std::log(gainmapInfo.fDisplayRatioHdr) / kLog2);
switch (gainmapInfo.fBaseImageType) {
case SkGainmapInfo::BaseImageType::kSDR:
s.writeText(" hdrgm:BaseRenditionIsHDR=\"False\">\n");
break;
case SkGainmapInfo::BaseImageType::kHDR:
s.writeText(" hdrgm:BaseRenditionIsHDR=\"True\">\n");
break;
}
// Write any of the vector parameters that cannot be represented as scalars (and thus cannot
// be written inline as above).
maybe_write_float3_attr("hdrgm:GainMapMin", gainMapMin);
maybe_write_float3_attr("hdrgm:GainMapMax", gainMapMax);
maybe_write_float3_attr("hdrgm:Gamma", gamma);
maybe_write_float3_attr("hdrgm:OffsetSDR", gainmapInfo.fEpsilonSdr);
maybe_write_float3_attr("hdrgm:OffsetHDR", gainmapInfo.fEpsilonHdr);
s.writeText(
" </rdf:Description>\n"
" </rdf:RDF>\n"
"</x:xmpmeta>");
return s.detachAsData();
}
// Generate the GContainer metadata for an image with a JPEG gainmap.
static sk_sp<SkData> get_base_image_xmp_metadata(size_t gainmapItemLength) {
SkDynamicMemoryWStream s;
s.writeText(
"<x:xmpmeta xmlns:x=\"adobe:ns:meta/\" x:xmptk=\"Adobe XMP Core 5.1.2\">\n"
" <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n"
" <rdf:Description\n"
" xmlns:Container=\"http://ns.google.com/photos/1.0/container/\"\n"
" xmlns:Item=\"http://ns.google.com/photos/1.0/container/item/\"\n"
" xmlns:hdrgm=\"http://ns.adobe.com/hdr-gain-map/1.0/\"\n"
" hdrgm:Version=\"1.0\">\n"
" <Container:Directory>\n"
" <rdf:Seq>\n"
" <rdf:li rdf:parseType=\"Resource\">\n"
" <Container:Item\n"
" Item:Semantic=\"Primary\"\n"
" Item:Mime=\"image/jpeg\"/>\n"
" </rdf:li>\n"
" <rdf:li rdf:parseType=\"Resource\">\n"
" <Container:Item\n"
" Item:Semantic=\"GainMap\"\n"
" Item:Mime=\"image/jpeg\"\n"
" Item:Length=\"");
s.writeDecAsText(gainmapItemLength);
s.writeText(
"\"/>\n"
" </rdf:li>\n"
" </rdf:Seq>\n"
" </Container:Directory>\n"
" </rdf:Description>\n"
" </rdf:RDF>\n"
"</x:xmpmeta>\n");
return s.detachAsData();
}
static sk_sp<SkData> encode_to_data(const SkPixmap& pm,
const SkJpegEncoder::Options& options,
const SkJpegMetadataEncoder::SegmentList& metadataSegments) {
SkDynamicMemoryWStream encodeStream;
auto encoder = SkJpegEncoderImpl::MakeRGB(&encodeStream, pm, options, metadataSegments);
if (!encoder || !encoder->encodeRows(pm.height())) {
return nullptr;
}
return encodeStream.detachAsData();
}
static sk_sp<SkData> get_mpf_segment(const SkJpegMultiPictureParameters& mpParams) {
SkDynamicMemoryWStream s;
auto segmentParameters = mpParams.serialize();
const size_t mpParameterLength = kJpegSegmentParameterLengthSize + segmentParameters->size();
s.write8(0xFF);
s.write8(kMpfMarker);
s.write8(mpParameterLength / 256);
s.write8(mpParameterLength % 256);
s.write(segmentParameters->data(), segmentParameters->size());
return s.detachAsData();
}
static sk_sp<SkData> get_iso_gainmap_segment_params(sk_sp<SkData> data) {
SkDynamicMemoryWStream s;
s.write(kISOGainmapSig, sizeof(kISOGainmapSig));
s.write(data->data(), data->size());
return s.detachAsData();
}
bool SkJpegGainmapEncoder::EncodeHDRGM(SkWStream* dst,
const SkPixmap& base,
const SkJpegEncoder::Options& baseOptions,
const SkPixmap& gainmap,
const SkJpegEncoder::Options& gainmapOptions,
const SkGainmapInfo& gainmapInfo) {
bool includeUltraHDRv1 = gainmapInfo.isUltraHDRv1Compatible();
// Encode the gainmap image.
sk_sp<SkData> gainmapData;
{
SkJpegMetadataEncoder::SegmentList metadataSegments;
// Add XMP metadata.
if (includeUltraHDRv1) {
SkJpegMetadataEncoder::AppendXMPStandard(
metadataSegments, get_gainmap_image_xmp_metadata(gainmapInfo).get());
}
// Include the ICC profile of the alternate color space, if it is used.
if (gainmapInfo.fGainmapMathColorSpace) {
SkJpegMetadataEncoder::AppendICC(
metadataSegments, gainmapOptions, gainmapInfo.fGainmapMathColorSpace.get());
}
// Add the ISO 21946-1 metadata.
metadataSegments.emplace_back(kISOGainmapMarker,
get_iso_gainmap_segment_params(gainmapInfo.serialize()));
// Encode the gainmap image.
gainmapData = encode_to_data(gainmap, gainmapOptions, metadataSegments);
if (!gainmapData) {
SkCodecPrintf("Failed to encode gainmap image.\n");
return false;
}
}
// Encode the base image.
sk_sp<SkData> baseData;
{
SkJpegMetadataEncoder::SegmentList metadataSegments;
// Include XMP.
if (includeUltraHDRv1) {
SkJpegMetadataEncoder::AppendXMPStandard(
metadataSegments,
get_base_image_xmp_metadata(static_cast<int32_t>(gainmapData->size())).get());
}
// Include ICC profile metadata.
SkJpegMetadataEncoder::AppendICC(metadataSegments, baseOptions, base.colorSpace());
// Include the ISO 21946-1 version metadata.
metadataSegments.emplace_back(
kISOGainmapMarker,
get_iso_gainmap_segment_params(SkGainmapInfo::SerializeVersion()));
// Encode the base image.
baseData = encode_to_data(base, baseOptions, metadataSegments);
if (!baseData) {
SkCodecPrintf("Failed to encode base image.\n");
return false;
}
}
// Combine them into an MPF.
const SkData* images[] = {
baseData.get(),
gainmapData.get(),
};
return MakeMPF(dst, images, 2);
}
bool SkJpegGainmapEncoder::MakeMPF(SkWStream* dst, const SkData** images, size_t imageCount) {
if (imageCount < 1) {
return true;
}
// Compute the offset into the first individual image where we will write the MP parameters.
size_t mpSegmentOffset = 0;
{
// Scan the image until StartOfScan marker.
SkJpegSegmentScanner scan(kJpegMarkerStartOfScan);
scan.onBytes(images[0]->data(), images[0]->size());
if (!scan.isDone()) {
SkCodecPrintf("Failed to scan image header.\n");
return false;
}
// We'll insert the MPF segment just before the StartOfScan.
// TODO(b/338342146): This is technically not compliant. See 5.1. Basic MP File Structure,
// which indicates "The MP Extensions are specified in the APP2 marker segment which follows
// immediately after the Exif Attributes in the APP1 marker segment except as specified in
// section 7". We currently do not include Exif metadata in encoded files yet.
mpSegmentOffset = scan.getSegments().back().offset;
}
// Populate the MP parameters (image sizes and offsets).
SkJpegMultiPictureParameters mpParams;
{
mpParams.images.resize(imageCount);
size_t cumulativeSize = 0;
for (size_t i = 0; i < imageCount; ++i) {
size_t imageSize = images[i]->size();
if (i == 0) {
// Add the size of the MPF segment to the first individual image. Note that the
// contents of get_mpf_segment() are incorrect (because we don't have the right
// offset values), but the size is correct.
imageSize += static_cast<uint32_t>(get_mpf_segment(mpParams)->size());
}
mpParams.images[i].dataOffset = SkJpegMultiPictureParameters::GetImageDataOffset(
cumulativeSize, mpSegmentOffset);
mpParams.images[i].size = static_cast<uint32_t>(imageSize);
cumulativeSize += imageSize;
}
}
// Write the first individual image.
{
auto image = images[0];
// Write up to the MP segment.
if (!dst->write(image->bytes(), mpSegmentOffset)) {
SkCodecPrintf("Failed to write image header.\n");
return false;
}
// Write the MP segment.
auto mpfSegment = get_mpf_segment(mpParams);
if (!dst->write(mpfSegment->data(), mpfSegment->size())) {
SkCodecPrintf("Failed to write MPF segment.\n");
return false;
}
// Write the rest of the image.
if (!dst->write(image->bytes() + mpSegmentOffset, image->size() - mpSegmentOffset)) {
SkCodecPrintf("Failed to write image body.\n");
return false;
}
}
// Write the non-first individual images.
for (size_t i = 1; i < imageCount; ++i) {
auto image = images[i];
if (!dst->write(image->bytes(), image->size())) {
SkCodecPrintf("Failed to write image body.\n");
return false;
}
}
return true;
}