| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkColorData_DEFINED |
| #define SkColorData_DEFINED |
| |
| #include "include/core/SkColor.h" |
| #include "include/core/SkColorPriv.h" |
| #include "include/private/base/SkTo.h" |
| |
| //////////////////////////////////////////////////////////////////////////////////////////// |
| // Convert a 16bit pixel to a 32bit pixel |
| |
| #define SK_R16_BITS 5 |
| #define SK_G16_BITS 6 |
| #define SK_B16_BITS 5 |
| |
| #define SK_R16_SHIFT (SK_B16_BITS + SK_G16_BITS) |
| #define SK_G16_SHIFT (SK_B16_BITS) |
| #define SK_B16_SHIFT 0 |
| |
| #define SK_R16_MASK ((1 << SK_R16_BITS) - 1) |
| #define SK_G16_MASK ((1 << SK_G16_BITS) - 1) |
| #define SK_B16_MASK ((1 << SK_B16_BITS) - 1) |
| |
| #define SkGetPackedR16(color) (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK) |
| #define SkGetPackedG16(color) (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK) |
| #define SkGetPackedB16(color) (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK) |
| |
| static inline unsigned SkR16ToR32(unsigned r) { |
| return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8)); |
| } |
| |
| static inline unsigned SkG16ToG32(unsigned g) { |
| return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8)); |
| } |
| |
| static inline unsigned SkB16ToB32(unsigned b) { |
| return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8)); |
| } |
| |
| #define SkPacked16ToR32(c) SkR16ToR32(SkGetPackedR16(c)) |
| #define SkPacked16ToG32(c) SkG16ToG32(SkGetPackedG16(c)) |
| #define SkPacked16ToB32(c) SkB16ToB32(SkGetPackedB16(c)) |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| #define SkASSERT_IS_BYTE(x) SkASSERT(0 == ((x) & ~0xFFu)) |
| |
| // Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the |
| // pair of them are in the same 2 slots in both RGBA and BGRA, thus there is |
| // no need to pass in the colortype to this function. |
| static inline uint32_t SkSwizzle_RB(uint32_t c) { |
| static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT); |
| |
| unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF; |
| unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF; |
| return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT); |
| } |
| |
| static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { |
| SkASSERT_IS_BYTE(a); |
| SkASSERT_IS_BYTE(r); |
| SkASSERT_IS_BYTE(g); |
| SkASSERT_IS_BYTE(b); |
| return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) | |
| (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT); |
| } |
| |
| static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) { |
| SkASSERT_IS_BYTE(a); |
| SkASSERT_IS_BYTE(r); |
| SkASSERT_IS_BYTE(g); |
| SkASSERT_IS_BYTE(b); |
| return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) | |
| (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT); |
| } |
| |
| static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) { |
| #ifdef SK_PMCOLOR_IS_RGBA |
| return c; |
| #else |
| return SkSwizzle_RB(c); |
| #endif |
| } |
| |
| static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) { |
| #ifdef SK_PMCOLOR_IS_BGRA |
| return c; |
| #else |
| return SkSwizzle_RB(c); |
| #endif |
| } |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| ///@{ |
| /** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/ |
| #define SK_ITU_BT709_LUM_COEFF_R (0.2126f) |
| #define SK_ITU_BT709_LUM_COEFF_G (0.7152f) |
| #define SK_ITU_BT709_LUM_COEFF_B (0.0722f) |
| ///@} |
| |
| ///@{ |
| /** A float value which specifies this channel's contribution to luminance. */ |
| #define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R |
| #define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G |
| #define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B |
| ///@} |
| |
| /** Computes the luminance from the given r, g, and b in accordance with |
| SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space. |
| */ |
| static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) { |
| //The following is |
| //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B |
| //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256). |
| return (r * 54 + g * 183 + b * 19) >> 8; |
| } |
| |
| /** Calculates 256 - (value * alpha256) / 255 in range [0,256], |
| * for [0,255] value and [0,256] alpha256. |
| */ |
| static inline U16CPU SkAlphaMulInv256(U16CPU value, U16CPU alpha256) { |
| unsigned prod = 0xFFFF - value * alpha256; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| // The caller may want negative values, so keep all params signed (int) |
| // so we don't accidentally slip into unsigned math and lose the sign |
| // extension when we shift (in SkAlphaMul) |
| static inline int SkAlphaBlend(int src, int dst, int scale256) { |
| SkASSERT((unsigned)scale256 <= 256); |
| return dst + SkAlphaMul(src - dst, scale256); |
| } |
| |
| static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) { |
| SkASSERT(r <= SK_R16_MASK); |
| SkASSERT(g <= SK_G16_MASK); |
| SkASSERT(b <= SK_B16_MASK); |
| |
| return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT)); |
| } |
| |
| #define SK_R16_MASK_IN_PLACE (SK_R16_MASK << SK_R16_SHIFT) |
| #define SK_G16_MASK_IN_PLACE (SK_G16_MASK << SK_G16_SHIFT) |
| #define SK_B16_MASK_IN_PLACE (SK_B16_MASK << SK_B16_SHIFT) |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Abstract 4-byte interpolation, implemented on top of SkPMColor |
| * utility functions. Third parameter controls blending of the first two: |
| * (src, dst, 0) returns dst |
| * (src, dst, 0xFF) returns src |
| * scale is [0..256], unlike SkFourByteInterp which takes [0..255] |
| */ |
| static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst, int scale) { |
| unsigned a = SkTo<uint8_t>(SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale)); |
| unsigned r = SkTo<uint8_t>(SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale)); |
| unsigned g = SkTo<uint8_t>(SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale)); |
| unsigned b = SkTo<uint8_t>(SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale)); |
| |
| return SkPackARGB32(a, r, g, b); |
| } |
| |
| /** |
| * Abstract 4-byte interpolation, implemented on top of SkPMColor |
| * utility functions. Third parameter controls blending of the first two: |
| * (src, dst, 0) returns dst |
| * (src, dst, 0xFF) returns src |
| */ |
| static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst, U8CPU srcWeight) { |
| int scale = (int)SkAlpha255To256(srcWeight); |
| return SkFourByteInterp256(src, dst, scale); |
| } |
| |
| /** |
| * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB |
| */ |
| static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) { |
| const uint32_t mask = 0x00FF00FF; |
| *ag = (color >> 8) & mask; |
| *rb = color & mask; |
| } |
| |
| /** |
| * 0xAARRGGBB -> 0x00AA00GG00RR00BB |
| * (note, ARGB -> AGRB) |
| */ |
| static inline uint64_t SkSplay(uint32_t color) { |
| const uint32_t mask = 0x00FF00FF; |
| uint64_t agrb = (color >> 8) & mask; // 0x0000000000AA00GG |
| agrb <<= 32; // 0x00AA00GG00000000 |
| agrb |= color & mask; // 0x00AA00GG00RR00BB |
| return agrb; |
| } |
| |
| /** |
| * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB |
| */ |
| static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) { |
| const uint32_t mask = 0xFF00FF00; |
| return (ag & mask) | ((rb & mask) >> 8); |
| } |
| |
| /** |
| * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB |
| * (note, AGRB -> ARGB) |
| */ |
| static inline uint32_t SkUnsplay(uint64_t agrb) { |
| const uint32_t mask = 0xFF00FF00; |
| return SkPMColor( |
| ((agrb & mask) >> 8) | // 0x00RR00BB |
| ((agrb >> 32) & mask)); // 0xAARRGGBB |
| } |
| |
| static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) { |
| SkASSERT(scale <= 256); |
| |
| // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide. |
| uint32_t src_ag, src_rb, dst_ag, dst_rb; |
| SkSplay(src, &src_ag, &src_rb); |
| SkSplay(dst, &dst_ag, &dst_rb); |
| |
| const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag; |
| const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb; |
| |
| return SkUnsplay(ret_ag, ret_rb); |
| } |
| |
| static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) { |
| SkASSERT(scale <= 256); |
| // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide. |
| return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst)); |
| } |
| |
| // TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere. |
| |
| /** |
| * Same as SkFourByteInterp256, but faster. |
| */ |
| static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) { |
| // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine. |
| if (sizeof(void*) == 4) { |
| return SkFastFourByteInterp256_32(src, dst, scale); |
| } else { |
| return SkFastFourByteInterp256_64(src, dst, scale); |
| } |
| } |
| |
| /** |
| * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better |
| * srcWeight scaling to [0, 256]. |
| */ |
| static inline SkPMColor SkFastFourByteInterp(SkPMColor src, SkPMColor dst, U8CPU srcWeight) { |
| SkASSERT(srcWeight <= 255); |
| // scale = srcWeight + (srcWeight >> 7) is more accurate than |
| // scale = srcWeight + 1, but 7% slower |
| return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7)); |
| } |
| |
| /** |
| * Interpolates between colors src and dst using [0,256] scale. |
| */ |
| static inline SkPMColor SkPMLerp(SkPMColor src, SkPMColor dst, unsigned scale) { |
| return SkFastFourByteInterp256(src, dst, scale); |
| } |
| |
| static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) { |
| SkASSERT((unsigned)aa <= 255); |
| |
| unsigned src_scale = SkAlpha255To256(aa); |
| unsigned dst_scale = SkAlphaMulInv256(SkGetPackedA32(src), src_scale); |
| |
| const uint32_t mask = 0xFF00FF; |
| |
| uint32_t src_rb = (src & mask) * src_scale; |
| uint32_t src_ag = ((src >> 8) & mask) * src_scale; |
| |
| uint32_t dst_rb = (dst & mask) * dst_scale; |
| uint32_t dst_ag = ((dst >> 8) & mask) * dst_scale; |
| |
| return (((src_rb + dst_rb) >> 8) & mask) | ((src_ag + dst_ag) & ~mask); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////// |
| // Convert a 32bit pixel to a 16bit pixel (no dither) |
| |
| #define SkR32ToR16_MACRO(r) ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS)) |
| #define SkG32ToG16_MACRO(g) ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS)) |
| #define SkB32ToB16_MACRO(b) ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS)) |
| |
| #ifdef SK_DEBUG |
| static inline unsigned SkR32ToR16(unsigned r) { |
| SkR32Assert(r); |
| return SkR32ToR16_MACRO(r); |
| } |
| static inline unsigned SkG32ToG16(unsigned g) { |
| SkG32Assert(g); |
| return SkG32ToG16_MACRO(g); |
| } |
| static inline unsigned SkB32ToB16(unsigned b) { |
| SkB32Assert(b); |
| return SkB32ToB16_MACRO(b); |
| } |
| #else |
| #define SkR32ToR16(r) SkR32ToR16_MACRO(r) |
| #define SkG32ToG16(g) SkG32ToG16_MACRO(g) |
| #define SkB32ToB16(b) SkB32ToB16_MACRO(b) |
| #endif |
| |
| static inline U16CPU SkPixel32ToPixel16(SkPMColor c) { |
| unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT; |
| unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT; |
| unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT; |
| return r | g | b; |
| } |
| |
| static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) { |
| return (SkR32ToR16(r) << SK_R16_SHIFT) | |
| (SkG32ToG16(g) << SK_G16_SHIFT) | |
| (SkB32ToB16(b) << SK_B16_SHIFT); |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////////////// |
| |
| static inline SkColor SkPixel16ToColor(U16CPU src) { |
| SkASSERT(src == SkToU16(src)); |
| |
| unsigned r = SkPacked16ToR32(src); |
| unsigned g = SkPacked16ToG32(src); |
| unsigned b = SkPacked16ToB32(src); |
| |
| SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src)); |
| SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src)); |
| SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src)); |
| |
| return SkColorSetRGB(r, g, b); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| typedef uint16_t SkPMColor16; |
| |
| // Put in OpenGL order (r g b a) |
| #define SK_A4444_SHIFT 0 |
| #define SK_R4444_SHIFT 12 |
| #define SK_G4444_SHIFT 8 |
| #define SK_B4444_SHIFT 4 |
| |
| static inline U8CPU SkReplicateNibble(unsigned nib) { |
| SkASSERT(nib <= 0xF); |
| return (nib << 4) | nib; |
| } |
| |
| #define SkGetPackedA4444(c) (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF) |
| #define SkGetPackedR4444(c) (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF) |
| #define SkGetPackedG4444(c) (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF) |
| #define SkGetPackedB4444(c) (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF) |
| |
| #define SkPacked4444ToA32(c) SkReplicateNibble(SkGetPackedA4444(c)) |
| |
| static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) { |
| uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) | |
| (SkGetPackedR4444(c) << SK_R32_SHIFT) | |
| (SkGetPackedG4444(c) << SK_G32_SHIFT) | |
| (SkGetPackedB4444(c) << SK_B32_SHIFT); |
| return d | (d << 4); |
| } |
| |
| using SkPMColor4f = SkRGBA4f<kPremul_SkAlphaType>; |
| |
| constexpr SkPMColor4f SK_PMColor4fTRANSPARENT = { 0, 0, 0, 0 }; |
| constexpr SkPMColor4f SK_PMColor4fBLACK = { 0, 0, 0, 1 }; |
| constexpr SkPMColor4f SK_PMColor4fWHITE = { 1, 1, 1, 1 }; |
| constexpr SkPMColor4f SK_PMColor4fILLEGAL = { SK_FloatNegativeInfinity, |
| SK_FloatNegativeInfinity, |
| SK_FloatNegativeInfinity, |
| SK_FloatNegativeInfinity }; |
| #endif // SkColorData_DEFINED |