blob: 33f480dfa27976bd8e563a3efb11ba695d5bf4e4 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLIRGenerator.h"
#include "limits.h"
#include <iterator>
#include <memory>
#include <unordered_set>
#include "include/private/SkSLLayout.h"
#include "include/private/SkTArray.h"
#include "src/core/SkScopeExit.h"
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLConstantFolder.h"
#include "src/sksl/SkSLOperators.h"
#include "src/sksl/SkSLParser.h"
#include "src/sksl/SkSLUtil.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalFunctionReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionPrototype.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLStructDefinition.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
namespace SkSL {
class AutoSymbolTable {
public:
AutoSymbolTable(IRGenerator* ir)
: fIR(ir)
, fPrevious(fIR->fSymbolTable) {
fIR->pushSymbolTable();
}
~AutoSymbolTable() {
fIR->popSymbolTable();
SkASSERT(fPrevious == fIR->fSymbolTable);
}
IRGenerator* fIR;
std::shared_ptr<SymbolTable> fPrevious;
};
IRGenerator::IRGenerator(const Context* context)
: fContext(*context)
, fModifiers(new ModifiersPool()) {}
void IRGenerator::pushSymbolTable() {
auto childSymTable = std::make_shared<SymbolTable>(std::move(fSymbolTable), fIsBuiltinCode);
fSymbolTable = std::move(childSymTable);
}
void IRGenerator::popSymbolTable() {
fSymbolTable = fSymbolTable->fParent;
}
bool IRGenerator::detectVarDeclarationWithoutScope(const Statement& stmt) {
// Parsing an AST node containing a single variable declaration creates a lone VarDeclaration
// statement. An AST with multiple variable declarations creates an unscoped Block containing
// multiple VarDeclaration statements. We need to detect either case.
const Variable* var;
if (stmt.is<VarDeclaration>()) {
// The single-variable case. No blocks at all.
var = &stmt.as<VarDeclaration>().var();
} else if (stmt.is<Block>()) {
// The multiple-variable case: an unscoped, non-empty block...
const Block& block = stmt.as<Block>();
if (block.isScope() || block.children().empty()) {
return false;
}
// ... holding a variable declaration.
const Statement& innerStmt = *block.children().front();
if (!innerStmt.is<VarDeclaration>()) {
return false;
}
var = &innerStmt.as<VarDeclaration>().var();
} else {
// This statement wasn't a variable declaration. No problem.
return false;
}
// Report an error.
SkASSERT(var);
this->errorReporter().error(stmt.fOffset,
"variable '" + var->name() + "' must be created in a scope");
return true;
}
std::unique_ptr<Extension> IRGenerator::convertExtension(int offset, StringFragment name) {
if (this->programKind() != ProgramKind::kFragment &&
this->programKind() != ProgramKind::kVertex &&
this->programKind() != ProgramKind::kGeometry) {
this->errorReporter().error(offset, "extensions are not allowed here");
return nullptr;
}
return std::make_unique<Extension>(offset, name);
}
std::unique_ptr<ModifiersPool> IRGenerator::releaseModifiers() {
std::unique_ptr<ModifiersPool> result = std::move(fModifiers);
fModifiers = std::make_unique<ModifiersPool>();
return result;
}
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTNode& statement) {
switch (statement.fKind) {
case ASTNode::Kind::kBlock:
return this->convertBlock(statement);
case ASTNode::Kind::kVarDeclarations:
return this->convertVarDeclarationStatement(statement);
case ASTNode::Kind::kIf:
return this->convertIf(statement);
case ASTNode::Kind::kFor:
return this->convertFor(statement);
case ASTNode::Kind::kWhile:
return this->convertWhile(statement);
case ASTNode::Kind::kDo:
return this->convertDo(statement);
case ASTNode::Kind::kSwitch:
return this->convertSwitch(statement);
case ASTNode::Kind::kReturn:
return this->convertReturn(statement);
case ASTNode::Kind::kBreak:
return this->convertBreak(statement);
case ASTNode::Kind::kContinue:
return this->convertContinue(statement);
case ASTNode::Kind::kDiscard:
return this->convertDiscard(statement);
case ASTNode::Kind::kType:
// TODO: add IRNode for struct definition inside a function
return nullptr;
default:
// it's an expression
std::unique_ptr<Statement> result = this->convertExpressionStatement(statement);
if (fRTAdjust && this->programKind() == ProgramKind::kGeometry) {
SkASSERT(result->is<ExpressionStatement>());
Expression& expr = *result->as<ExpressionStatement>().expression();
if (expr.is<FunctionCall>()) {
FunctionCall& fc = expr.as<FunctionCall>();
if (fc.function().isBuiltin() && fc.function().name() == "EmitVertex") {
StatementArray statements;
statements.reserve_back(2);
statements.push_back(getNormalizeSkPositionCode());
statements.push_back(std::move(result));
return Block::Make(statement.fOffset, std::move(statements),
fSymbolTable, /*isScope=*/true);
}
}
}
return result;
}
}
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTNode& block) {
SkASSERT(block.fKind == ASTNode::Kind::kBlock);
AutoSymbolTable table(this);
StatementArray statements;
for (const auto& child : block) {
std::unique_ptr<Statement> statement = this->convertStatement(child);
if (!statement) {
return nullptr;
}
statements.push_back(std::move(statement));
}
return Block::Make(block.fOffset, std::move(statements), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kVarDeclarations);
auto decls = this->convertVarDeclarations(s, Variable::Storage::kLocal);
if (decls.empty()) {
return nullptr;
}
return Block::MakeUnscoped(s.fOffset, std::move(decls));
}
int IRGenerator::convertArraySize(const Type& type, int offset, const ASTNode& s) {
if (!s) {
this->errorReporter().error(offset, "array must have a size");
return 0;
}
auto size = this->convertExpression(s);
if (!size) {
return 0;
}
return this->convertArraySize(type, std::move(size));
}
int IRGenerator::convertArraySize(const Type& type, std::unique_ptr<Expression> size) {
size = this->coerce(std::move(size), *fContext.fTypes.fInt);
if (!size) {
return 0;
}
if (type.isVoid()) {
this->errorReporter().error(size->fOffset, "type 'void' may not be used in an array");
return 0;
}
if (type.isOpaque()) {
this->errorReporter().error(
size->fOffset, "opaque type '" + type.name() + "' may not be used in an array");
return 0;
}
if (!size->is<IntLiteral>()) {
this->errorReporter().error(size->fOffset, "array size must be an integer");
return 0;
}
SKSL_INT count = size->as<IntLiteral>().value();
if (count <= 0) {
this->errorReporter().error(size->fOffset, "array size must be positive");
return 0;
}
if (!SkTFitsIn<int>(count)) {
this->errorReporter().error(size->fOffset, "array size is too large");
return 0;
}
return static_cast<int>(count);
}
void IRGenerator::checkVarDeclaration(int offset, const Modifiers& modifiers, const Type* baseType,
Variable::Storage storage) {
if (this->strictES2Mode() && baseType->isArray()) {
this->errorReporter().error(offset, "array size must appear after variable name");
}
if (baseType->componentType().isOpaque() && storage != Variable::Storage::kGlobal) {
this->errorReporter().error(
offset,
"variables of type '" + baseType->displayName() + "' must be global");
}
if (this->programKind() != ProgramKind::kFragmentProcessor) {
if ((modifiers.fFlags & Modifiers::kIn_Flag) && baseType->isMatrix()) {
this->errorReporter().error(offset, "'in' variables may not have matrix type");
}
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(
offset,
"'in uniform' variables only permitted within fragment processors");
}
if (modifiers.fLayout.fWhen.fLength) {
this->errorReporter().error(offset,
"'when' is only permitted within fragment processors");
}
if (modifiers.fLayout.fFlags & Layout::kTracked_Flag) {
this->errorReporter().error(offset,
"'tracked' is only permitted within fragment processors");
}
if (modifiers.fLayout.fCType != Layout::CType::kDefault) {
this->errorReporter().error(offset,
"'ctype' is only permitted within fragment processors");
}
if (modifiers.fLayout.fFlags & Layout::kKey_Flag) {
this->errorReporter().error(offset,
"'key' is only permitted within fragment processors");
}
}
if (this->programKind() == ProgramKind::kRuntimeEffect ||
this->programKind() == ProgramKind::kRuntimeColorFilter ||
this->programKind() == ProgramKind::kRuntimeShader) {
if (modifiers.fFlags & Modifiers::kIn_Flag) {
this->errorReporter().error(offset, "'in' variables not permitted in runtime effects");
}
}
if (baseType->isEffectChild() && !(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(
offset, "variables of type '" + baseType->displayName() + "' must be uniform");
}
if ((modifiers.fLayout.fFlags & Layout::kKey_Flag) &&
(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(offset, "'key' is not permitted on 'uniform' variables");
}
if (modifiers.fLayout.fMarker.fLength) {
if (this->programKind() != ProgramKind::kRuntimeEffect &&
this->programKind() != ProgramKind::kRuntimeShader) {
this->errorReporter().error(offset, "'marker' is only permitted in runtime shaders");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(offset,
"'marker' is only permitted on 'uniform' variables");
}
if (*baseType != *fContext.fTypes.fFloat4x4) {
this->errorReporter().error(offset,
"'marker' is only permitted on float4x4 variables");
}
}
if (modifiers.fLayout.fFlags & Layout::kSRGBUnpremul_Flag) {
if (this->programKind() != ProgramKind::kRuntimeEffect &&
this->programKind() != ProgramKind::kRuntimeColorFilter &&
this->programKind() != ProgramKind::kRuntimeShader) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted on 'uniform' variables");
}
auto validColorXformType = [](const Type& t) {
return t.isVector() && t.componentType().isFloat() &&
(t.columns() == 3 || t.columns() == 4);
};
if (!validColorXformType(*baseType) && !(baseType->isArray() &&
validColorXformType(baseType->componentType()))) {
this->errorReporter().error(offset,
"'srgb_unpremul' is only permitted on half3, half4, "
"float3, or float4 variables");
}
}
int permitted = Modifiers::kConst_Flag;
if (storage == Variable::Storage::kGlobal) {
permitted |= Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag |
Modifiers::kFlat_Flag | Modifiers::kNoPerspective_Flag;
}
// TODO(skbug.com/11301): Migrate above checks into building a mask of permitted layout flags
this->checkModifiers(offset, modifiers, permitted, /*permittedLayoutFlags=*/~0);
}
std::unique_ptr<Variable> IRGenerator::convertVar(int offset, const Modifiers& modifiers,
const Type* baseType, StringFragment name,
bool isArray,
std::unique_ptr<Expression> arraySize,
Variable::Storage storage) {
if (modifiers.fLayout.fLocation == 0 && modifiers.fLayout.fIndex == 0 &&
(modifiers.fFlags & Modifiers::kOut_Flag) &&
this->programKind() == ProgramKind::kFragment && name != Compiler::FRAGCOLOR_NAME) {
this->errorReporter().error(offset,
"out location=0, index=0 is reserved for sk_FragColor");
}
const Type* type = baseType;
int arraySizeValue = 0;
if (isArray) {
SkASSERT(arraySize);
arraySizeValue = this->convertArraySize(*type, std::move(arraySize));
if (!arraySizeValue) {
return {};
}
type = fSymbolTable->addArrayDimension(type, arraySizeValue);
}
return std::make_unique<Variable>(offset, fModifiers->addToPool(modifiers), name, type,
fIsBuiltinCode, storage);
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclaration(std::unique_ptr<Variable> var,
std::unique_ptr<Expression> value) {
std::unique_ptr<Statement> varDecl = VarDeclaration::Convert(fContext, var.get(),
std::move(value));
if (!varDecl) {
return nullptr;
}
// Detect the declaration of magical variables.
if ((var->storage() == Variable::Storage::kGlobal) && var->name() == Compiler::FRAGCOLOR_NAME) {
// Silently ignore duplicate definitions of `sk_FragColor`.
const Symbol* symbol = (*fSymbolTable)[var->name()];
if (symbol) {
return nullptr;
}
} else if ((var->storage() == Variable::Storage::kGlobal ||
var->storage() == Variable::Storage::kInterfaceBlock) &&
var->name() == Compiler::RTADJUST_NAME) {
// `sk_RTAdjust` is special, and makes the IR generator emit position-fixup expressions.
if (fRTAdjust) {
this->errorReporter().error(var->fOffset, "duplicate definition of 'sk_RTAdjust'");
return nullptr;
}
if (var->type() != *fContext.fTypes.fFloat4) {
this->errorReporter().error(var->fOffset, "sk_RTAdjust must have type 'float4'");
return nullptr;
}
fRTAdjust = var.get();
}
fSymbolTable->add(std::move(var));
return varDecl;
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclaration(int offset,
const Modifiers& modifiers,
const Type* baseType,
StringFragment name,
bool isArray,
std::unique_ptr<Expression> arraySize,
std::unique_ptr<Expression> value,
Variable::Storage storage) {
std::unique_ptr<Variable> var = this->convertVar(offset, modifiers, baseType, name, isArray,
std::move(arraySize), storage);
if (!var) {
return nullptr;
}
return this->convertVarDeclaration(std::move(var), std::move(value));
}
StatementArray IRGenerator::convertVarDeclarations(const ASTNode& decls,
Variable::Storage storage) {
SkASSERT(decls.fKind == ASTNode::Kind::kVarDeclarations);
auto declarationsIter = decls.begin();
const Modifiers& modifiers = declarationsIter++->getModifiers();
const ASTNode& rawType = *(declarationsIter++);
const Type* baseType = this->convertType(rawType);
if (!baseType) {
return {};
}
this->checkVarDeclaration(decls.fOffset, modifiers, baseType, storage);
StatementArray varDecls;
for (; declarationsIter != decls.end(); ++declarationsIter) {
const ASTNode& varDecl = *declarationsIter;
const ASTNode::VarData& varData = varDecl.getVarData();
std::unique_ptr<Expression> arraySize;
std::unique_ptr<Expression> value;
auto iter = varDecl.begin();
if (iter != varDecl.end() && varData.fIsArray) {
if (*iter) {
arraySize = this->convertExpression(*iter++);
} else {
this->errorReporter().error(decls.fOffset, "array must have a size");
continue;
}
}
if (iter != varDecl.end()) {
value = this->convertExpression(*iter);
if (!value) {
continue;
}
}
std::unique_ptr<Statement> varDeclStmt = this->convertVarDeclaration(varDecl.fOffset,
modifiers,
baseType,
varData.fName,
varData.fIsArray,
std::move(arraySize),
std::move(value),
storage);
if (varDeclStmt) {
varDecls.push_back(std::move(varDeclStmt));
}
}
return varDecls;
}
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(const ASTNode& m) {
if (this->programKind() != ProgramKind::kFragment &&
this->programKind() != ProgramKind::kVertex &&
this->programKind() != ProgramKind::kGeometry) {
this->errorReporter().error(m.fOffset, "layout qualifiers are not allowed here");
return nullptr;
}
SkASSERT(m.fKind == ASTNode::Kind::kModifiers);
Modifiers modifiers = m.getModifiers();
if (modifiers.fLayout.fInvocations != -1) {
if (this->programKind() != ProgramKind::kGeometry) {
this->errorReporter().error(m.fOffset,
"'invocations' is only legal in geometry shaders");
return nullptr;
}
fInvocations = modifiers.fLayout.fInvocations;
if (!this->caps().gsInvocationsSupport()) {
modifiers.fLayout.fInvocations = -1;
if (modifiers.fLayout.description() == "") {
return nullptr;
}
}
}
if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 &&
!this->caps().gsInvocationsSupport()) {
modifiers.fLayout.fMaxVertices *= fInvocations;
}
return std::make_unique<ModifiersDeclaration>(fModifiers->addToPool(modifiers));
}
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTNode& n) {
SkASSERT(n.fKind == ASTNode::Kind::kIf);
auto iter = n.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> ifTrue = this->convertStatement(*(iter++));
if (!ifTrue) {
return nullptr;
}
if (this->detectVarDeclarationWithoutScope(*ifTrue)) {
return nullptr;
}
std::unique_ptr<Statement> ifFalse;
if (iter != n.end()) {
ifFalse = this->convertStatement(*(iter++));
if (!ifFalse) {
return nullptr;
}
if (this->detectVarDeclarationWithoutScope(*ifFalse)) {
return nullptr;
}
}
bool isStatic = n.getBool();
return IfStatement::Convert(fContext, n.fOffset, isStatic, std::move(test),
std::move(ifTrue), std::move(ifFalse));
}
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTNode& f) {
SkASSERT(f.fKind == ASTNode::Kind::kFor);
AutoSymbolTable table(this);
std::unique_ptr<Statement> initializer;
auto iter = f.begin();
if (*iter) {
initializer = this->convertStatement(*iter);
if (!initializer) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> test;
if (*iter) {
test = this->convertExpression(*iter);
if (!test) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> next;
if (*iter) {
next = this->convertExpression(*iter);
if (!next) {
return nullptr;
}
}
++iter;
std::unique_ptr<Statement> statement = this->convertStatement(*iter);
if (!statement) {
return nullptr;
}
if (this->detectVarDeclarationWithoutScope(*statement)) {
return nullptr;
}
return ForStatement::Convert(fContext, f.fOffset, std::move(initializer), std::move(test),
std::move(next), std::move(statement), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTNode& w) {
SkASSERT(w.fKind == ASTNode::Kind::kWhile);
auto iter = w.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
if (this->detectVarDeclarationWithoutScope(*statement)) {
return nullptr;
}
return ForStatement::ConvertWhile(fContext, w.fOffset, std::move(test), std::move(statement),
fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDo);
auto iter = d.begin();
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
if (this->detectVarDeclarationWithoutScope(*statement)) {
return nullptr;
}
return DoStatement::Convert(fContext, std::move(statement), std::move(test));
}
std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kSwitch);
auto iter = s.begin();
std::unique_ptr<Expression> value = this->convertExpression(*(iter++));
if (!value) {
return nullptr;
}
AutoSymbolTable table(this);
ExpressionArray caseValues;
StatementArray caseStatements;
for (; iter != s.end(); ++iter) {
const ASTNode& c = *iter;
SkASSERT(c.fKind == ASTNode::Kind::kSwitchCase);
std::unique_ptr<Expression>& caseValue = caseValues.emplace_back();
auto childIter = c.begin();
if (*childIter) {
caseValue = this->convertExpression(*childIter);
if (!caseValue) {
return nullptr;
}
}
++childIter;
StatementArray statements;
for (; childIter != c.end(); ++childIter) {
std::unique_ptr<Statement> converted = this->convertStatement(*childIter);
if (!converted) {
return nullptr;
}
statements.push_back(std::move(converted));
}
caseStatements.push_back(Block::MakeUnscoped(c.fOffset, std::move(statements)));
}
return SwitchStatement::Convert(fContext, s.fOffset, s.getBool(), std::move(value),
std::move(caseValues), std::move(caseStatements), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(const ASTNode& s) {
std::unique_ptr<Expression> e = this->convertExpression(s);
if (!e) {
return nullptr;
}
return ExpressionStatement::Make(fContext, std::move(e));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(int offset,
std::unique_ptr<Expression> result) {
return ReturnStatement::Make(offset, std::move(result));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTNode& r) {
SkASSERT(r.fKind == ASTNode::Kind::kReturn);
if (r.begin() != r.end()) {
std::unique_ptr<Expression> value = this->convertExpression(*r.begin());
if (!value) {
return nullptr;
}
return this->convertReturn(r.fOffset, std::move(value));
} else {
return this->convertReturn(r.fOffset, /*result=*/nullptr);
}
}
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTNode& b) {
SkASSERT(b.fKind == ASTNode::Kind::kBreak);
return BreakStatement::Make(b.fOffset);
}
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTNode& c) {
SkASSERT(c.fKind == ASTNode::Kind::kContinue);
return ContinueStatement::Make(c.fOffset);
}
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDiscard);
if (this->programKind() != ProgramKind::kFragment &&
this->programKind() != ProgramKind::kFragmentProcessor) {
this->errorReporter().error(d.fOffset,
"discard statement is only permitted in fragment shaders");
return nullptr;
}
return DiscardStatement::Make(d.fOffset);
}
std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) {
Layout invokeLayout;
Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag);
const FunctionDeclaration* invokeDecl = fSymbolTable->add(std::make_unique<FunctionDeclaration>(
/*offset=*/-1,
fModifiers->addToPool(invokeModifiers),
"_invoke",
std::vector<const Variable*>(),
fContext.fTypes.fVoid.get(),
fIsBuiltinCode));
auto invokeDef = std::make_unique<FunctionDefinition>(/*offset=*/-1, invokeDecl, fIsBuiltinCode,
std::move(main));
invokeDecl->setDefinition(invokeDef.get());
fProgramElements->push_back(std::move(invokeDef));
std::vector<std::unique_ptr<VarDeclaration>> variables;
const Variable* loopIdx = &(*fSymbolTable)["sk_InvocationID"]->as<Variable>();
auto test = BinaryExpression::Make(
fContext,
std::make_unique<VariableReference>(/*offset=*/-1, loopIdx),
Token::Kind::TK_LT,
IntLiteral::Make(fContext, /*offset=*/-1, fInvocations));
auto next = PostfixExpression::Make(
fContext,
std::make_unique<VariableReference>(/*offset=*/-1, loopIdx,VariableRefKind::kReadWrite),
Token::Kind::TK_PLUSPLUS);
ASTNode endPrimitiveID(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, "EndPrimitive");
std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID);
SkASSERT(endPrimitive);
StatementArray loopBody;
loopBody.reserve_back(2);
loopBody.push_back(ExpressionStatement::Make(fContext, this->call(/*offset=*/-1,
*invokeDecl,
ExpressionArray{})));
loopBody.push_back(ExpressionStatement::Make(fContext, this->call(/*offset=*/-1,
std::move(endPrimitive),
ExpressionArray{})));
auto assignment = BinaryExpression::Make(
fContext,
std::make_unique<VariableReference>(/*offset=*/-1, loopIdx, VariableRefKind::kWrite),
Token::Kind::TK_EQ,
IntLiteral::Make(fContext, /*offset=*/-1, /*value=*/0));
auto initializer = ExpressionStatement::Make(fContext, std::move(assignment));
auto loop = ForStatement::Make(fContext, /*offset=*/-1,
std::move(initializer),
std::move(test),
std::move(next),
Block::Make(/*offset=*/-1, std::move(loopBody)),
fSymbolTable);
StatementArray children;
children.push_back(std::move(loop));
return Block::Make(/*offset=*/-1, std::move(children));
}
std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() {
const Variable* skPerVertex = nullptr;
if (const ProgramElement* perVertexDecl = fIntrinsics->find(Compiler::PERVERTEX_NAME)) {
SkASSERT(perVertexDecl->is<InterfaceBlock>());
skPerVertex = &perVertexDecl->as<InterfaceBlock>().variable();
}
// sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw,
// 0,
// sk_Position.w);
SkASSERT(skPerVertex && fRTAdjust);
auto Ref = [](const Variable* var) -> std::unique_ptr<Expression> {
return std::make_unique<VariableReference>(/*offset=*/-1, var,
VariableReference::RefKind::kRead);
};
auto WRef = [](const Variable* var) -> std::unique_ptr<Expression> {
return std::make_unique<VariableReference>(/*offset=*/-1, var,
VariableReference::RefKind::kWrite);
};
auto Field = [&](const Variable* var, int idx) -> std::unique_ptr<Expression> {
return FieldAccess::Make(fContext, Ref(var), idx,
FieldAccess::OwnerKind::kAnonymousInterfaceBlock);
};
auto Pos = [&]() -> std::unique_ptr<Expression> {
return FieldAccess::Make(fContext, WRef(skPerVertex), 0,
FieldAccess::OwnerKind::kAnonymousInterfaceBlock);
};
auto Adjust = [&]() -> std::unique_ptr<Expression> {
return fRTAdjustInterfaceBlock ? Field(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex)
: Ref(fRTAdjust);
};
auto Swizzle = [&](std::unique_ptr<Expression> expr,
const ComponentArray& comp) -> std::unique_ptr<Expression> {
return std::make_unique<SkSL::Swizzle>(fContext, std::move(expr), comp);
};
auto Op = [&](std::unique_ptr<Expression> left, Token::Kind op,
std::unique_ptr<Expression> right) -> std::unique_ptr<Expression> {
return BinaryExpression::Make(fContext, std::move(left), op, std::move(right));
};
static const ComponentArray kXYIndices{0, 1};
static const ComponentArray kXZIndices{0, 2};
static const ComponentArray kYWIndices{1, 3};
static const ComponentArray kWWIndices{3, 3};
static const ComponentArray kWIndex{3};
ExpressionArray children;
children.reserve_back(3);
children.push_back(Op(
Op(Swizzle(Pos(), kXYIndices), Token::Kind::TK_STAR, Swizzle(Adjust(), kXZIndices)),
Token::Kind::TK_PLUS,
Op(Swizzle(Pos(), kWWIndices), Token::Kind::TK_STAR, Swizzle(Adjust(), kYWIndices))));
children.push_back(FloatLiteral::Make(fContext, /*offset=*/-1, /*value=*/0.0));
children.push_back(Swizzle(Pos(), kWIndex));
std::unique_ptr<Expression> result =
Op(Pos(), Token::Kind::TK_EQ,
Constructor::Convert(fContext, /*offset=*/-1, *fContext.fTypes.fFloat4,
std::move(children)));
return ExpressionStatement::Make(fContext, std::move(result));
}
void IRGenerator::checkModifiers(int offset,
const Modifiers& modifiers,
int permittedModifierFlags,
int permittedLayoutFlags) {
int flags = modifiers.fFlags;
auto checkModifier = [&](Modifiers::Flag flag, const char* name) {
if (flags & flag) {
if (!(permittedModifierFlags & flag)) {
this->errorReporter().error(offset, "'" + String(name) + "' is not permitted here");
}
flags &= ~flag;
}
};
checkModifier(Modifiers::kConst_Flag, "const");
checkModifier(Modifiers::kIn_Flag, "in");
checkModifier(Modifiers::kOut_Flag, "out");
checkModifier(Modifiers::kUniform_Flag, "uniform");
checkModifier(Modifiers::kFlat_Flag, "flat");
checkModifier(Modifiers::kNoPerspective_Flag, "noperspective");
checkModifier(Modifiers::kHasSideEffects_Flag, "sk_has_side_effects");
checkModifier(Modifiers::kInline_Flag, "inline");
checkModifier(Modifiers::kNoInline_Flag, "noinline");
SkASSERT(flags == 0);
int layoutFlags = modifiers.fLayout.fFlags;
auto checkLayout = [&](Layout::Flag flag, const char* name) {
if (layoutFlags & flag) {
if (!(permittedLayoutFlags & flag)) {
this->errorReporter().error(
offset, "layout qualifier '" + String(name) + "' is not permitted here");
}
layoutFlags &= ~flag;
}
};
checkLayout(Layout::kOriginUpperLeft_Flag, "origin_upper_left");
checkLayout(Layout::kOverrideCoverage_Flag, "override_coverage");
checkLayout(Layout::kPushConstant_Flag, "push_constant");
checkLayout(Layout::kBlendSupportAllEquations_Flag, "blend_support_all_equations");
checkLayout(Layout::kTracked_Flag, "tracked");
checkLayout(Layout::kSRGBUnpremul_Flag, "srgb_unpremul");
checkLayout(Layout::kKey_Flag, "key");
checkLayout(Layout::kLocation_Flag, "location");
checkLayout(Layout::kOffset_Flag, "offset");
checkLayout(Layout::kBinding_Flag, "binding");
checkLayout(Layout::kIndex_Flag, "index");
checkLayout(Layout::kSet_Flag, "set");
checkLayout(Layout::kBuiltin_Flag, "builtin");
checkLayout(Layout::kInputAttachmentIndex_Flag, "input_attachment_index");
checkLayout(Layout::kPrimitive_Flag, "primitive-type");
checkLayout(Layout::kMaxVertices_Flag, "max_vertices");
checkLayout(Layout::kInvocations_Flag, "invocations");
checkLayout(Layout::kMarker_Flag, "marker");
checkLayout(Layout::kWhen_Flag, "when");
checkLayout(Layout::kCType_Flag, "ctype");
SkASSERT(layoutFlags == 0);
}
void IRGenerator::finalizeFunction(const FunctionDeclaration& funcDecl, Statement* body) {
class Finalizer : public ProgramWriter {
public:
Finalizer(IRGenerator* irGenerator, const FunctionDeclaration* function)
: fIRGenerator(irGenerator)
, fFunction(function) {}
~Finalizer() override {
SkASSERT(!fBreakableLevel);
SkASSERT(!fContinuableLevel);
}
bool functionReturnsValue() const {
return !fFunction->returnType().isVoid();
}
bool visitExpression(Expression& expr) override {
// Do not recurse into expressions.
return false;
}
bool visitStatement(Statement& stmt) override {
switch (stmt.kind()) {
case Statement::Kind::kReturn: {
// early returns from a vertex main function will bypass the sk_Position
// normalization, so SkASSERT that we aren't doing that. It is of course
// possible to fix this by adding a normalization before each return, but it
// will probably never actually be necessary.
SkASSERT(fIRGenerator->programKind() != ProgramKind::kVertex ||
!fIRGenerator->fRTAdjust ||
!fFunction->isMain());
// Verify that the return statement matches the function's return type.
ReturnStatement& returnStmt = stmt.as<ReturnStatement>();
const Type& returnType = fFunction->returnType();
if (returnStmt.expression()) {
if (this->functionReturnsValue()) {
// Coerce return expression to the function's return type.
returnStmt.setExpression(fIRGenerator->coerce(
std::move(returnStmt.expression()), returnType));
} else {
// Returning something from a function with a void return type.
fIRGenerator->errorReporter().error(returnStmt.fOffset,
"may not return a value from a void function");
}
} else {
if (this->functionReturnsValue()) {
// Returning nothing from a function with a non-void return type.
fIRGenerator->errorReporter().error(returnStmt.fOffset,
"expected function to return '" + returnType.displayName() + "'");
}
}
break;
}
case Statement::Kind::kDo:
case Statement::Kind::kFor: {
++fBreakableLevel;
++fContinuableLevel;
bool result = INHERITED::visitStatement(stmt);
--fContinuableLevel;
--fBreakableLevel;
return result;
}
case Statement::Kind::kSwitch: {
++fBreakableLevel;
bool result = INHERITED::visitStatement(stmt);
--fBreakableLevel;
return result;
}
case Statement::Kind::kBreak:
if (!fBreakableLevel) {
fIRGenerator->errorReporter().error(stmt.fOffset,
"break statement must be inside a loop or switch");
}
break;
case Statement::Kind::kContinue:
if (!fContinuableLevel) {
fIRGenerator->errorReporter().error(stmt.fOffset,
"continue statement must be inside a loop");
}
break;
default:
break;
}
return INHERITED::visitStatement(stmt);
}
private:
IRGenerator* fIRGenerator;
const FunctionDeclaration* fFunction;
// how deeply nested we are in breakable constructs (for, do, switch).
int fBreakableLevel = 0;
// how deeply nested we are in continuable constructs (for, do).
int fContinuableLevel = 0;
using INHERITED = ProgramWriter;
};
Finalizer finalizer{this, &funcDecl};
finalizer.visitStatement(*body);
if (Analysis::CanExitWithoutReturningValue(funcDecl, *body)) {
this->errorReporter().error(funcDecl.fOffset, "function '" + funcDecl.name() +
"' can exit without returning a value");
}
}
void IRGenerator::convertFunction(const ASTNode& f) {
SkASSERT(fReferencedIntrinsics.empty());
SK_AT_SCOPE_EXIT(fReferencedIntrinsics.clear());
auto iter = f.begin();
const Type* returnType = this->convertType(*(iter++), /*allowVoid=*/true);
if (returnType == nullptr) {
return;
}
if (returnType->isArray()) {
this->errorReporter().error(
f.fOffset, "functions may not return type '" + returnType->displayName() + "'");
return;
}
if (this->strictES2Mode() && returnType->isOrContainsArray()) {
this->errorReporter().error(f.fOffset,
"functions may not return structs containing arrays");
return;
}
if (!fIsBuiltinCode && !returnType->isVoid() && returnType->componentType().isOpaque()) {
this->errorReporter().error(
f.fOffset,
"functions may not return opaque type '" + returnType->displayName() + "'");
return;
}
const ASTNode::FunctionData& funcData = f.getFunctionData();
bool isMain = (funcData.fName == "main");
// Check function modifiers.
this->checkModifiers(
f.fOffset,
funcData.fModifiers,
Modifiers::kHasSideEffects_Flag | Modifiers::kInline_Flag | Modifiers::kNoInline_Flag,
/*permittedLayoutFlags=*/0);
if ((funcData.fModifiers.fFlags & Modifiers::kInline_Flag) &&
(funcData.fModifiers.fFlags & Modifiers::kNoInline_Flag)) {
this->errorReporter().error(f.fOffset, "functions cannot be both 'inline' and 'noinline'");
}
auto typeIsValidForColor = [&](const Type& type) {
return type == *fContext.fTypes.fHalf4 || type == *fContext.fTypes.fFloat4;
};
// Check modifiers on each function parameter.
std::vector<const Variable*> parameters;
for (size_t i = 0; i < funcData.fParameterCount; ++i) {
const ASTNode& param = *(iter++);
SkASSERT(param.fKind == ASTNode::Kind::kParameter);
const ASTNode::ParameterData& pd = param.getParameterData();
this->checkModifiers(param.fOffset, pd.fModifiers,
Modifiers::kConst_Flag | Modifiers::kIn_Flag | Modifiers::kOut_Flag,
/*permittedLayoutFlags=*/0);
auto paramIter = param.begin();
const Type* type = this->convertType(*(paramIter++));
if (!type) {
return;
}
if (pd.fIsArray) {
int arraySize = this->convertArraySize(*type, param.fOffset, *paramIter++);
if (!arraySize) {
return;
}
type = fSymbolTable->addArrayDimension(type, arraySize);
}
// Only the (builtin) declarations of 'sample' are allowed to have shader/colorFilter or FP
// parameters. You can pass other opaque types to functions safely; this restriction is
// specific to "child" objects.
if ((type->isEffectChild() || type->isFragmentProcessor()) && !fIsBuiltinCode) {
this->errorReporter().error(
param.fOffset, "parameters of type '" + type->displayName() + "' not allowed");
return;
}
Modifiers m = pd.fModifiers;
if (isMain && (this->programKind() == ProgramKind::kRuntimeEffect ||
this->programKind() == ProgramKind::kRuntimeColorFilter ||
this->programKind() == ProgramKind::kRuntimeShader ||
this->programKind() == ProgramKind::kFragmentProcessor)) {
// We verify that the signature is fully correct later. For now, if this is an .fp or
// runtime effect of any flavor, a float2 param is supposed to be the coords, and
// a half4/float parameter is supposed to be the input color:
if (*type == *fContext.fTypes.fFloat2) {
m.fLayout.fBuiltin = SK_MAIN_COORDS_BUILTIN;
} else if(typeIsValidForColor(*type)) {
m.fLayout.fBuiltin = SK_INPUT_COLOR_BUILTIN;
}
}
const Variable* var = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Variable>(param.fOffset, fModifiers->addToPool(m), pd.fName, type,
fIsBuiltinCode, Variable::Storage::kParameter));
parameters.push_back(var);
}
auto paramIsCoords = [&](int idx) {
return parameters[idx]->type() == *fContext.fTypes.fFloat2 &&
parameters[idx]->modifiers().fFlags == 0 &&
parameters[idx]->modifiers().fLayout.fBuiltin == SK_MAIN_COORDS_BUILTIN;
};
auto paramIsInputColor = [&](int idx) {
return typeIsValidForColor(parameters[idx]->type()) &&
parameters[idx]->modifiers().fFlags == 0 &&
parameters[idx]->modifiers().fLayout.fBuiltin == SK_INPUT_COLOR_BUILTIN;
};
// Check the function signature of `main`.
if (isMain) {
switch (this->programKind()) {
case ProgramKind::kRuntimeEffect: {
// Legacy/generic runtime effects take a wide variety of main() signatures.
// (half4|float4) main(float2?, (half4|float4)?)
if (!typeIsValidForColor(*returnType)) {
this->errorReporter().error(f.fOffset,
"'main' must return: 'vec4', 'float4', or 'half4'");
return;
}
bool validParams =
(parameters.size() == 0) ||
(parameters.size() == 1 && paramIsCoords(0)) ||
(parameters.size() == 1 && paramIsInputColor(0)) ||
(parameters.size() == 2 && paramIsCoords(0) && paramIsInputColor(1));
if (!validParams) {
this->errorReporter().error(
f.fOffset,
"'main' parameters must be: ([float2 coords], [half4 color])");
return;
}
break;
}
case ProgramKind::kRuntimeColorFilter: {
// (half4|float4) main(half4|float4)
if (!typeIsValidForColor(*returnType)) {
this->errorReporter().error(f.fOffset,
"'main' must return: 'vec4', 'float4', or 'half4'");
return;
}
bool validParams = (parameters.size() == 1 && paramIsInputColor(0));
if (!validParams) {
this->errorReporter().error(
f.fOffset, "'main' parameter must be 'vec4', 'float4', or 'half4'");
return;
}
break;
}
case ProgramKind::kRuntimeShader: {
// (half4|float4) main(float2) -or- (half4|float4) main(float2, half4|float4)
if (!typeIsValidForColor(*returnType)) {
this->errorReporter().error(f.fOffset,
"'main' must return: 'vec4', 'float4', or 'half4'");
return;
}
bool validParams =
(parameters.size() == 1 && paramIsCoords(0)) ||
(parameters.size() == 2 && paramIsCoords(0) && paramIsInputColor(1));
if (!validParams) {
this->errorReporter().error(
f.fOffset, "'main' parameters must be (float2, (vec4|float4|half4)?)");
}
break;
}
case ProgramKind::kFragmentProcessor: {
if (*returnType != *fContext.fTypes.fHalf4) {
this->errorReporter().error(f.fOffset, ".fp 'main' must return 'half4'");
return;
}
bool validParams = (parameters.size() == 0) ||
(parameters.size() == 1 && paramIsCoords(0));
if (!validParams) {
this->errorReporter().error(
f.fOffset, ".fp 'main' must be declared main() or main(float2)");
return;
}
break;
}
case ProgramKind::kGeneric:
// No rules apply here
break;
case ProgramKind::kFragment:
case ProgramKind::kVertex:
case ProgramKind::kGeometry:
if (parameters.size()) {
this->errorReporter().error(f.fOffset,
"shader 'main' must have zero parameters");
}
break;
}
}
// Find existing declarations and report conflicts.
const FunctionDeclaration* decl = nullptr;
const Symbol* entry = (*fSymbolTable)[funcData.fName];
if (entry) {
std::vector<const FunctionDeclaration*> functions;
switch (entry->kind()) {
case Symbol::Kind::kUnresolvedFunction:
functions = entry->as<UnresolvedFunction>().functions();
break;
case Symbol::Kind::kFunctionDeclaration:
functions.push_back(&entry->as<FunctionDeclaration>());
break;
default:
this->errorReporter().error(f.fOffset,
"symbol '" + funcData.fName + "' was already defined");
return;
}
for (const FunctionDeclaration* other : functions) {
SkASSERT(other->name() == funcData.fName);
if (parameters.size() == other->parameters().size()) {
bool match = true;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->type() != other->parameters()[i]->type()) {
match = false;
break;
}
}
if (match) {
if (*returnType != other->returnType()) {
FunctionDeclaration newDecl(f.fOffset,
fModifiers->addToPool(funcData.fModifiers),
funcData.fName,
parameters,
returnType,
fIsBuiltinCode);
this->errorReporter().error(
f.fOffset, "functions '" + newDecl.description() + "' and '" +
other->description() + "' differ only in return type");
return;
}
decl = other;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->modifiers() != other->parameters()[i]->modifiers()) {
this->errorReporter().error(
f.fOffset,
"modifiers on parameter " + to_string((uint64_t)i + 1) +
" differ between declaration and definition");
return;
}
}
if (other->definition() && !other->isBuiltin()) {
this->errorReporter().error(
f.fOffset, "duplicate definition of " + other->description());
return;
}
break;
}
}
}
}
if (!decl) {
// Conservatively assume all user-defined functions have side effects.
Modifiers declModifiers = funcData.fModifiers;
if (!fIsBuiltinCode) {
declModifiers.fFlags |= Modifiers::kHasSideEffects_Flag;
}
if (fContext.fConfig->fSettings.fForceNoInline) {
// Apply the `noinline` modifier to every function. This allows us to test Runtime
// Effects without any inlining, even when the code is later added to a paint.
declModifiers.fFlags &= ~Modifiers::kInline_Flag;
declModifiers.fFlags |= Modifiers::kNoInline_Flag;
}
// Create a new declaration.
decl = fSymbolTable->add(
std::make_unique<FunctionDeclaration>(f.fOffset,
fModifiers->addToPool(declModifiers),
funcData.fName,
parameters,
returnType,
fIsBuiltinCode));
}
if (iter == f.end()) {
// If there's no body, we've found a prototype.
fProgramElements->push_back(std::make_unique<FunctionPrototype>(f.fOffset, decl,
fIsBuiltinCode));
} else {
// Compile function body.
AutoSymbolTable table(this);
for (const Variable* param : decl->parameters()) {
fSymbolTable->addWithoutOwnership(param);
}
bool needInvocationIDWorkaround = fInvocations != -1 && isMain &&
!this->caps().gsInvocationsSupport();
std::unique_ptr<Block> body = this->convertBlock(*iter);
if (!body) {
return;
}
if (needInvocationIDWorkaround) {
body = this->applyInvocationIDWorkaround(std::move(body));
}
if (ProgramKind::kVertex == this->programKind() && isMain && fRTAdjust) {
body->children().push_back(this->getNormalizeSkPositionCode());
}
this->finalizeFunction(*decl, body.get());
auto result = std::make_unique<FunctionDefinition>(
f.fOffset, decl, fIsBuiltinCode, std::move(body), std::move(fReferencedIntrinsics));
decl->setDefinition(result.get());
result->setSource(&f);
fProgramElements->push_back(std::move(result));
}
}
std::unique_ptr<StructDefinition> IRGenerator::convertStructDefinition(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kType);
const Type* type = this->convertType(node);
if (!type) {
return nullptr;
}
if (!type->isStruct()) {
this->errorReporter().error(node.fOffset,
"expected a struct here, found '" + type->name() + "'");
return nullptr;
}
SkDEBUGCODE(auto [iter, wasInserted] =) fDefinedStructs.insert(type);
SkASSERT(wasInserted);
return std::make_unique<StructDefinition>(node.fOffset, *type);
}
std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTNode& intf) {
if (this->programKind() != ProgramKind::kFragment &&
this->programKind() != ProgramKind::kVertex &&
this->programKind() != ProgramKind::kGeometry) {
this->errorReporter().error(intf.fOffset, "interface block is not allowed here");
return nullptr;
}
SkASSERT(intf.fKind == ASTNode::Kind::kInterfaceBlock);
const ASTNode::InterfaceBlockData& id = intf.getInterfaceBlockData();
std::shared_ptr<SymbolTable> old = fSymbolTable;
std::shared_ptr<SymbolTable> symbols;
std::vector<Type::Field> fields;
bool foundRTAdjust = false;
auto iter = intf.begin();
{
AutoSymbolTable table(this);
symbols = fSymbolTable;
for (size_t i = 0; i < id.fDeclarationCount; ++i) {
StatementArray decls = this->convertVarDeclarations(*(iter++),
Variable::Storage::kInterfaceBlock);
if (decls.empty()) {
return nullptr;
}
for (const auto& decl : decls) {
const VarDeclaration& vd = decl->as<VarDeclaration>();
if (vd.var().type().isOpaque()) {
this->errorReporter().error(decl->fOffset,
"opaque type '" + vd.var().type().name() +
"' is not permitted in an interface block");
}
if (&vd.var() == fRTAdjust) {
foundRTAdjust = true;
SkASSERT(vd.var().type() == *fContext.fTypes.fFloat4);
fRTAdjustFieldIndex = fields.size();
}
fields.push_back(Type::Field(vd.var().modifiers(), vd.var().name(),
&vd.var().type()));
if (vd.value()) {
this->errorReporter().error(
decl->fOffset,
"initializers are not permitted on interface block fields");
}
}
}
}
const Type* type = old->takeOwnershipOfSymbol(Type::MakeStructType(intf.fOffset, id.fTypeName,
fields));
int arraySize = 0;
if (id.fIsArray) {
const ASTNode& size = *(iter++);
if (size) {
// convertArraySize rejects unsized arrays. This is the one place we allow those, but
// we've already checked for that, so this is verifying the other aspects (constant,
// positive, not too large).
arraySize = this->convertArraySize(*type, size.fOffset, size);
if (!arraySize) {
return nullptr;
}
} else {
arraySize = Type::kUnsizedArray;
}
type = symbols->addArrayDimension(type, arraySize);
}
const Variable* var = old->takeOwnershipOfSymbol(
std::make_unique<Variable>(intf.fOffset,
fModifiers->addToPool(id.fModifiers),
id.fInstanceName.fLength ? id.fInstanceName : id.fTypeName,
type,
fIsBuiltinCode,
Variable::Storage::kGlobal));
if (foundRTAdjust) {
fRTAdjustInterfaceBlock = var;
}
if (id.fInstanceName.fLength) {
old->addWithoutOwnership(var);
} else {
for (size_t i = 0; i < fields.size(); i++) {
old->add(std::make_unique<Field>(intf.fOffset, var, (int)i));
}
}
return std::make_unique<InterfaceBlock>(intf.fOffset,
var,
id.fTypeName,
id.fInstanceName,
arraySize,
symbols);
}
void IRGenerator::convertGlobalVarDeclarations(const ASTNode& decl) {
StatementArray decls = this->convertVarDeclarations(decl, Variable::Storage::kGlobal);
for (std::unique_ptr<Statement>& stmt : decls) {
const Type* type = &stmt->as<VarDeclaration>().baseType();
if (type->isStruct()) {
auto [iter, wasInserted] = fDefinedStructs.insert(type);
if (wasInserted) {
fProgramElements->push_back(
std::make_unique<StructDefinition>(decl.fOffset, *type));
}
}
fProgramElements->push_back(std::make_unique<GlobalVarDeclaration>(std::move(stmt)));
}
}
void IRGenerator::convertEnum(const ASTNode& e) {
if (this->strictES2Mode()) {
this->errorReporter().error(e.fOffset, "enum is not allowed here");
return;
}
SkASSERT(e.fKind == ASTNode::Kind::kEnum);
SKSL_INT currentValue = 0;
Layout layout;
ASTNode enumType(e.fNodes, e.fOffset, ASTNode::Kind::kType, e.getString());
const Type* type = this->convertType(enumType);
Modifiers modifiers(layout, Modifiers::kConst_Flag);
std::shared_ptr<SymbolTable> oldTable = fSymbolTable;
fSymbolTable = std::make_shared<SymbolTable>(fSymbolTable, fIsBuiltinCode);
for (auto iter = e.begin(); iter != e.end(); ++iter) {
const ASTNode& child = *iter;
SkASSERT(child.fKind == ASTNode::Kind::kEnumCase);
std::unique_ptr<Expression> value;
if (child.begin() != child.end()) {
value = this->convertExpression(*child.begin());
if (!value) {
fSymbolTable = oldTable;
return;
}
if (!ConstantFolder::GetConstantInt(*value, &currentValue)) {
this->errorReporter().error(value->fOffset,
"enum value must be a constant integer");
fSymbolTable = oldTable;
return;
}
}
value = IntLiteral::Make(fContext, e.fOffset, currentValue);
++currentValue;
auto var = std::make_unique<Variable>(e.fOffset, fModifiers->addToPool(modifiers),
child.getString(), type, fIsBuiltinCode,
Variable::Storage::kGlobal);
// enum variables aren't really 'declared', but we have to create a declaration to store
// the value
auto declaration = VarDeclaration::Make(fContext, var.get(), &var->type(), /*arraySize=*/0,
std::move(value));
fSymbolTable->add(std::move(var));
fSymbolTable->takeOwnershipOfIRNode(std::move(declaration));
}
// Now we orphanize the Enum's symbol table, so that future lookups in it are strict
fSymbolTable->fParent = nullptr;
fProgramElements->push_back(std::make_unique<Enum>(e.fOffset, e.getString(), fSymbolTable,
/*isSharedWithCpp=*/fIsBuiltinCode,
/*isBuiltin=*/fIsBuiltinCode));
fSymbolTable = oldTable;
}
bool IRGenerator::typeContainsPrivateFields(const Type& type) {
// Checks for usage of private types, including fields inside a struct.
if (type.isPrivate()) {
return true;
}
if (type.isStruct()) {
for (const auto& f : type.fields()) {
if (this->typeContainsPrivateFields(*f.fType)) {
return true;
}
}
}
return false;
}
const Type* IRGenerator::convertType(const ASTNode& type, bool allowVoid) {
StringFragment name = type.getString();
const Symbol* symbol = (*fSymbolTable)[name];
if (!symbol || !symbol->is<Type>()) {
this->errorReporter().error(type.fOffset, "unknown type '" + name + "'");
return nullptr;
}
const Type* result = &symbol->as<Type>();
const bool isArray = (type.begin() != type.end());
if (result->isVoid() && !allowVoid) {
this->errorReporter().error(type.fOffset,
"type '" + name + "' not allowed in this context");
return nullptr;
}
if (!fIsBuiltinCode && this->typeContainsPrivateFields(*result)) {
this->errorReporter().error(type.fOffset, "type '" + name + "' is private");
return nullptr;
}
if (isArray) {
auto iter = type.begin();
int arraySize = this->convertArraySize(*result, type.fOffset, *iter);
if (!arraySize) {
return nullptr;
}
result = fSymbolTable->addArrayDimension(result, arraySize);
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTNode& expr) {
switch (expr.fKind) {
case ASTNode::Kind::kBinary:
return this->convertBinaryExpression(expr);
case ASTNode::Kind::kBool:
return BoolLiteral::Make(fContext, expr.fOffset, expr.getBool());
case ASTNode::Kind::kCall:
return this->convertCallExpression(expr);
case ASTNode::Kind::kField:
return this->convertFieldExpression(expr);
case ASTNode::Kind::kFloat:
return FloatLiteral::Make(fContext, expr.fOffset, expr.getFloat());
case ASTNode::Kind::kIdentifier:
return this->convertIdentifier(expr);
case ASTNode::Kind::kIndex:
return this->convertIndexExpression(expr);
case ASTNode::Kind::kInt:
return IntLiteral::Make(fContext, expr.fOffset, expr.getInt());
case ASTNode::Kind::kPostfix:
return this->convertPostfixExpression(expr);
case ASTNode::Kind::kPrefix:
return this->convertPrefixExpression(expr);
case ASTNode::Kind::kScope:
return this->convertScopeExpression(expr);
case ASTNode::Kind::kTernary:
return this->convertTernaryExpression(expr);
default:
SkDEBUGFAILF("unsupported expression: %s\n", expr.description().c_str());
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(int offset, StringFragment name) {
const Symbol* result = (*fSymbolTable)[name];
if (!result) {
this->errorReporter().error(offset, "unknown identifier '" + name + "'");
return nullptr;
}
switch (result->kind()) {
case Symbol::Kind::kFunctionDeclaration: {
std::vector<const FunctionDeclaration*> f = {
&result->as<FunctionDeclaration>()
};
return std::make_unique<FunctionReference>(fContext, offset, f);
}
case Symbol::Kind::kUnresolvedFunction: {
const UnresolvedFunction* f = &result->as<UnresolvedFunction>();
return std::make_unique<FunctionReference>(fContext, offset, f->functions());
}
case Symbol::Kind::kVariable: {
const Variable* var = &result->as<Variable>();
const Modifiers& modifiers = var->modifiers();
switch (modifiers.fLayout.fBuiltin) {
#ifndef SKSL_STANDALONE
case SK_FRAGCOORD_BUILTIN:
fInputs.fFlipY = true;
if (this->settings().fFlipY &&
!this->caps().fragCoordConventionsExtensionString()) {
fInputs.fRTHeight = true;
}
#endif
}
if (this->programKind() == ProgramKind::kFragmentProcessor &&
(modifiers.fFlags & Modifiers::kIn_Flag) &&
!(modifiers.fFlags & Modifiers::kUniform_Flag) &&
!(modifiers.fLayout.fFlags & Layout::kKey_Flag) &&
modifiers.fLayout.fBuiltin == -1 &&
!var->type().isFragmentProcessor() &&
var->type().typeKind() != Type::TypeKind::kSampler) {
bool valid = false;
for (const auto& decl : fFile->root()) {
if (decl.fKind == ASTNode::Kind::kSection) {
const ASTNode::SectionData& section = decl.getSectionData();
if (section.fName == "setData") {
valid = true;
break;
}
}
}
if (!valid) {
this->errorReporter().error(
offset,
"'in' variable must be either 'uniform' or 'layout(key)', or there "
"must be a custom @setData function");
}
}
// default to kRead_RefKind; this will be corrected later if the variable is written to
return std::make_unique<VariableReference>(offset,
var,
VariableReference::RefKind::kRead);
}
case Symbol::Kind::kField: {
const Field* field = &result->as<Field>();
auto base = std::make_unique<VariableReference>(offset, &field->owner(),
VariableReference::RefKind::kRead);
return FieldAccess::Make(fContext, std::move(base), field->fieldIndex(),
FieldAccess::OwnerKind::kAnonymousInterfaceBlock);
}
case Symbol::Kind::kType: {
const Type* t = &result->as<Type>();
return std::make_unique<TypeReference>(fContext, offset, t);
}
case Symbol::Kind::kExternal: {
const ExternalFunction* r = &result->as<ExternalFunction>();
return std::make_unique<ExternalFunctionReference>(offset, r);
}
default:
SK_ABORT("unsupported symbol type %d\n", (int) result->kind());
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTNode& identifier) {
return this->convertIdentifier(identifier.fOffset, identifier.getString());
}
std::unique_ptr<Section> IRGenerator::convertSection(const ASTNode& s) {
if (this->programKind() != ProgramKind::kFragmentProcessor) {
this->errorReporter().error(s.fOffset, "syntax error");
return nullptr;
}
const ASTNode::SectionData& section = s.getSectionData();
return std::make_unique<Section>(s.fOffset, section.fName, section.fArgument,
section.fText);
}
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
const Type& type) {
return type.coerceExpression(std::move(expr), fContext);
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kBinary);
auto iter = expression.begin();
std::unique_ptr<Expression> left = this->convertExpression(*(iter++));
if (!left) {
return nullptr;
}
std::unique_ptr<Expression> right = this->convertExpression(*(iter++));
if (!right) {
return nullptr;
}
return BinaryExpression::Convert(fContext, std::move(left), expression.getOperator(),
std::move(right));
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kTernary);
auto iter = node.begin();
std::unique_ptr<Expression> test = this->convertExpression(*(iter++));
if (!test) {
return nullptr;
}
std::unique_ptr<Expression> ifTrue = this->convertExpression(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Expression> ifFalse = this->convertExpression(*(iter++));
if (!ifFalse) {
return nullptr;
}
return TernaryExpression::Convert(fContext, std::move(test),
std::move(ifTrue), std::move(ifFalse));
}
void IRGenerator::copyIntrinsicIfNeeded(const FunctionDeclaration& function) {
if (const ProgramElement* found = fIntrinsics->findAndInclude(function.description())) {
const FunctionDefinition& original = found->as<FunctionDefinition>();
// Sort the referenced intrinsics into a consistent order; otherwise our output will become
// non-deterministic.
std::vector<const FunctionDeclaration*> intrinsics(original.referencedIntrinsics().begin(),
original.referencedIntrinsics().end());
std::sort(intrinsics.begin(), intrinsics.end(),
[](const FunctionDeclaration* a, const FunctionDeclaration* b) {
if (a->isBuiltin() != b->isBuiltin()) {
return a->isBuiltin() < b->isBuiltin();
}
if (a->fOffset != b->fOffset) {
return a->fOffset < b->fOffset;
}
if (a->name() != b->name()) {
return a->name() < b->name();
}
return a->description() < b->description();
});
for (const FunctionDeclaration* f : intrinsics) {
this->copyIntrinsicIfNeeded(*f);
}
fSharedElements->push_back(found);
}
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
const FunctionDeclaration& function,
ExpressionArray arguments) {
if (function.isBuiltin()) {
if (function.definition()) {
fReferencedIntrinsics.insert(&function);
}
if (!fIsBuiltinCode && fIntrinsics) {
this->copyIntrinsicIfNeeded(function);
}
}
return FunctionCall::Convert(fContext, offset, function, std::move(arguments));
}
/**
* Determines the cost of coercing the arguments of a function to the required types. Cost has no
* particular meaning other than "lower costs are preferred". Returns CoercionCost::Impossible() if
* the call is not valid.
*/
CoercionCost IRGenerator::callCost(const FunctionDeclaration& function,
const ExpressionArray& arguments) {
if (function.parameters().size() != arguments.size()) {
return CoercionCost::Impossible();
}
FunctionDeclaration::ParamTypes types;
const Type* ignored;
if (!function.determineFinalTypes(arguments, &types, &ignored)) {
return CoercionCost::Impossible();
}
CoercionCost total = CoercionCost::Free();
for (size_t i = 0; i < arguments.size(); i++) {
total = total + arguments[i]->coercionCost(*types[i]);
}
return total;
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
std::unique_ptr<Expression> functionValue,
ExpressionArray arguments) {
switch (functionValue->kind()) {
case Expression::Kind::kTypeReference:
return Constructor::Convert(fContext,
offset,
functionValue->as<TypeReference>().value(),
std::move(arguments));
case Expression::Kind::kExternalFunctionReference: {
const ExternalFunction& f = functionValue->as<ExternalFunctionReference>().function();
int count = f.callParameterCount();
if (count != (int) arguments.size()) {
this->errorReporter().error(offset, "external function expected " +
to_string(count) + " arguments, but found " +
to_string((int)arguments.size()));
return nullptr;
}
static constexpr int PARAMETER_MAX = 16;
SkASSERT(count < PARAMETER_MAX);
const Type* types[PARAMETER_MAX];
f.getCallParameterTypes(types);
for (int i = 0; i < count; ++i) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
}
return std::make_unique<ExternalFunctionCall>(offset, &f, std::move(arguments));
}
case Expression::Kind::kFunctionReference: {
const FunctionReference& ref = functionValue->as<FunctionReference>();
const std::vector<const FunctionDeclaration*>& functions = ref.functions();
CoercionCost bestCost = CoercionCost::Impossible();
const FunctionDeclaration* best = nullptr;
if (functions.size() > 1) {
for (const auto& f : functions) {
CoercionCost cost = this->callCost(*f, arguments);
if (cost < bestCost) {
bestCost = cost;
best = f;
}
}
if (best) {
return this->call(offset, *best, std::move(arguments));
}
String msg = "no match for " + functions[0]->name() + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->type().displayName();
}
msg += ")";
this->errorReporter().error(offset, msg);
return nullptr;
}
return this->call(offset, *functions[0], std::move(arguments));
}
default:
this->errorReporter().error(offset, "not a function");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kPrefix);
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
return PrefixExpression::Convert(fContext, expression.getOperator(), std::move(base));
}
// Swizzles are complicated due to constant components. The most difficult case is a mask like
// '.x1w0'. A naive approach might turn that into 'float4(base.x, 1, base.w, 0)', but that evaluates
// 'base' twice. We instead group the swizzle mask ('xw') and constants ('1, 0') together and use a
// secondary swizzle to put them back into the right order, so in this case we end up with
// 'float4(base.xw, 1, 0).xzyw'.
std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
String fields) {
const int offset = base->fOffset;
const Type& baseType = base->type();
if (!baseType.isVector() && !baseType.isNumber()) {
this->errorReporter().error(
offset, "cannot swizzle value of type '" + baseType.displayName() + "'");
return nullptr;
}
if (fields.length() > 4) {
this->errorReporter().error(offset, "too many components in swizzle mask '" + fields + "'");
return nullptr;
}
ComponentArray components;
bool foundXYZW = false;
for (char field : fields) {
switch (field) {
case '0':
components.push_back(SwizzleComponent::ZERO);
break;
case '1':
components.push_back(SwizzleComponent::ONE);
break;
case 'x':
case 'r':
case 's':
case 'L':
components.push_back(SwizzleComponent::X);
foundXYZW = true;
break;
case 'y':
case 'g':
case 't':
case 'T':
if (baseType.columns() >= 2) {
components.push_back(SwizzleComponent::Y);
foundXYZW = true;
break;
}
[[fallthrough]];
case 'z':
case 'b':
case 'p':
case 'R':
if (baseType.columns() >= 3) {
components.push_back(SwizzleComponent::Z);
foundXYZW = true;
break;
}
[[fallthrough]];
case 'w':
case 'a':
case 'q':
case 'B':
if (baseType.columns() >= 4) {
components.push_back(SwizzleComponent::W);
foundXYZW = true;
break;
}
[[fallthrough]];
default:
this->errorReporter().error(
offset, String::printf("invalid swizzle component '%c'", field));
return nullptr;
}
}
if (!foundXYZW) {
this->errorReporter().error(offset, "swizzle must refer to base expression");
return nullptr;
}
return Swizzle::Convert(fContext, std::move(base), components);
}
std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type,
StringFragment field) {
const ProgramElement* enumElement = nullptr;
// Find the Enum element that this type refers to, start by searching our elements
for (const std::unique_ptr<ProgramElement>& e : *fProgramElements) {
if (e->is<Enum>() && type.name() == e->as<Enum>().typeName()) {
enumElement = e.get();
break;
}
}
// ... if that fails, look in our shared elements
if (!enumElement) {
for (const ProgramElement* e : *fSharedElements) {
if (e->is<Enum>() && type.name() == e->as<Enum>().typeName()) {
enumElement = e;
break;
}
}
}
// ... and if that fails, check the intrinsics, add it to our shared elements
if (!enumElement && !fIsBuiltinCode && fIntrinsics) {
if (const ProgramElement* found = fIntrinsics->findAndInclude(type.name())) {
fSharedElements->push_back(found);
enumElement = found;
}
}
if (!enumElement) {
this->errorReporter().error(offset,
"type '" + type.displayName() + "' is not a known enum");
return nullptr;
}
// We found the Enum element. Look for 'field' as a member.
std::shared_ptr<SymbolTable> old = fSymbolTable;
fSymbolTable = enumElement->as<Enum>().symbols();
std::unique_ptr<Expression> result =
convertIdentifier(ASTNode(&fFile->fNodes, offset, ASTNode::Kind::kIdentifier, field));
if (result) {
const Variable& v = *result->as<VariableReference>().variable();
SkASSERT(v.initialValue());
result = IntLiteral::Make(offset, v.initialValue()->as<IntLiteral>().value(), &type);
} else {
this->errorReporter().error(
offset, "type '" + type.name() + "' does not contain enumerator '" + field + "'");
}
fSymbolTable = old;
return result;
}
std::unique_ptr<Expression> IRGenerator::convertIndexExpression(const ASTNode& index) {
SkASSERT(index.fKind == ASTNode::Kind::kIndex);
auto iter = index.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
if (base->is<TypeReference>()) {
// Convert an index expression starting with a type name: `int[12]`
if (iter == index.end()) {
this->errorReporter().error(index.fOffset, "array must have a size");
return nullptr;
}
const Type* type = &base->as<TypeReference>().value();
int arraySize = this->convertArraySize(*type, index.fOffset, *iter);
if (!arraySize) {
return nullptr;
}
type = fSymbolTable->addArrayDimension(type, arraySize);
return std::make_unique<TypeReference>(fContext, base->fOffset, type);
}
if (iter == index.end()) {
this->errorReporter().error(base->fOffset, "missing index in '[]'");
return nullptr;
}
std::unique_ptr<Expression> converted = this->convertExpression(*(iter++));
if (!converted) {
return nullptr;
}
return IndexExpression::Convert(fContext, std::move(base), std::move(converted));
}
std::unique_ptr<Expression> IRGenerator::convertCallExpression(const ASTNode& callNode) {
SkASSERT(callNode.fKind == ASTNode::Kind::kCall);
auto iter = callNode.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
ExpressionArray arguments;
for (; iter != callNode.end(); ++iter) {
std::unique_ptr<Expression> converted = this->convertExpression(*iter);
if (!converted) {
return nullptr;
}
arguments.push_back(std::move(converted));
}
return this->call(callNode.fOffset, std::move(base), std::move(arguments));
}
std::unique_ptr<Expression> IRGenerator::convertFieldExpression(const ASTNode& fieldNode) {
std::unique_ptr<Expression> base = this->convertExpression(*fieldNode.begin());
if (!base) {
return nullptr;
}
const StringFragment& field = fieldNode.getString();
const Type& baseType = base->type();
if (baseType == *fContext.fTypes.fSkCaps) {
return Setting::Convert(fContext, fieldNode.fOffset, field);
}
if (baseType.isStruct()) {
return FieldAccess::Convert(fContext, std::move(base), field);
}
return this->convertSwizzle(std::move(base), field);
}
std::unique_ptr<Expression> IRGenerator::convertScopeExpression(const ASTNode& scopeNode) {
std::unique_ptr<Expression> base = this->convertExpression(*scopeNode.begin());
if (!base) {
return nullptr;
}
if (!base->is<TypeReference>()) {
this->errorReporter().error(scopeNode.fOffset, "'::' must follow a type name");
return nullptr;
}
const StringFragment& member = scopeNode.getString();
return this->convertTypeField(base->fOffset, base->as<TypeReference>().value(), member);
}
std::unique_ptr<Expression> IRGenerator::convertPostfixExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kPostfix);
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
return PostfixExpression::Convert(fContext, std::move(base), expression.getOperator());
}
void IRGenerator::checkValid(const Expression& expr) {
switch (expr.kind()) {
case Expression::Kind::kFunctionCall: {
const FunctionDeclaration& decl = expr.as<FunctionCall>().function();
if (!decl.isBuiltin() && !decl.definition()) {
this->errorReporter().error(expr.fOffset,
"function '" + decl.description() + "' is not defined");
}
break;
}
case Expression::Kind::kFunctionReference:
case Expression::Kind::kTypeReference:
SkDEBUGFAIL("invalid reference-expression, should have been reported by coerce()");
this->errorReporter().error(expr.fOffset, "invalid expression");
break;
default:
if (expr.type() == *fContext.fTypes.fInvalid) {
this->errorReporter().error(expr.fOffset, "invalid expression");
}
break;
}
}
void IRGenerator::findAndDeclareBuiltinVariables() {
class BuiltinVariableScanner : public ProgramVisitor {
public:
BuiltinVariableScanner(IRGenerator* generator) : fGenerator(generator) {}
void addDeclaringElement(const String& name) {
// If this is the *first* time we've seen this builtin, findAndInclude will return
// the corresponding ProgramElement.
if (const ProgramElement* decl = fGenerator->fIntrinsics->findAndInclude(name)) {
SkASSERT(decl->is<GlobalVarDeclaration>() || decl->is<InterfaceBlock>());
fNewElements.push_back(decl);
}
}
bool visitProgramElement(const ProgramElement& pe) override {
if (pe.is<FunctionDefinition>()) {
const FunctionDefinition& funcDef = pe.as<FunctionDefinition>();
// We synthesize writes to sk_FragColor if main() returns a color, even if it's
// otherwise unreferenced. Check main's return type to see if it's half4.
if (funcDef.declaration().isMain() &&
funcDef.declaration().returnType() == *fGenerator->fContext.fTypes.fHalf4) {
fPreserveFragColor = true;
}
}
return INHERITED::visitProgramElement(pe);
}
bool visitExpression(const Expression& e) override {
if (e.is<VariableReference>() && e.as<VariableReference>().variable()->isBuiltin()) {
this->addDeclaringElement(e.as<VariableReference>().variable()->name());
}
return INHERITED::visitExpression(e);
}
IRGenerator* fGenerator;
std::vector<const ProgramElement*> fNewElements;
bool fPreserveFragColor = false;
using INHERITED = ProgramVisitor;
using INHERITED::visitProgramElement;
};
BuiltinVariableScanner scanner(this);
SkASSERT(fProgramElements);
for (auto& e : *fProgramElements) {
scanner.visitProgramElement(*e);
}
if (scanner.fPreserveFragColor) {
// main() returns a half4, so make sure we don't dead-strip sk_FragColor.
scanner.addDeclaringElement(Compiler::FRAGCOLOR_NAME);
}
switch (this->programKind()) {
case ProgramKind::kFragment:
// Vulkan requires certain builtin variables be present, even if they're unused. At one
// time, validation errors would result if sk_Clockwise was missing. Now, it's just
// (Adreno) driver bugs that drop or corrupt draws if they're missing.
scanner.addDeclaringElement("sk_Clockwise");
break;
default:
break;
}
fSharedElements->insert(
fSharedElements->begin(), scanner.fNewElements.begin(), scanner.fNewElements.end());
}
void IRGenerator::start(const ParsedModule& base,
bool isBuiltinCode,
const std::vector<std::unique_ptr<ExternalFunction>>* externalFunctions,
std::vector<std::unique_ptr<ProgramElement>>* elements,
std::vector<const ProgramElement*>* sharedElements) {
fProgramElements = elements;
fSharedElements = sharedElements;
fSymbolTable = base.fSymbols;
fIntrinsics = base.fIntrinsics.get();
if (fIntrinsics) {
fIntrinsics->resetAlreadyIncluded();
}
fIsBuiltinCode = isBuiltinCode;
fInputs.reset();
fInvocations = -1;
fRTAdjust = nullptr;
fRTAdjustInterfaceBlock = nullptr;
fDefinedStructs.clear();
this->pushSymbolTable();
if (this->programKind() == ProgramKind::kGeometry && !fIsBuiltinCode) {
// Declare sk_InvocationID programmatically. With invocations support, it's an 'in' builtin.
// If we're applying the workaround, then it's a plain global.
bool workaround = !this->caps().gsInvocationsSupport();
Modifiers m;
if (!workaround) {
m.fFlags = Modifiers::kIn_Flag;
m.fLayout.fBuiltin = SK_INVOCATIONID_BUILTIN;
}
auto var = std::make_unique<Variable>(/*offset=*/-1, fModifiers->addToPool(m),
"sk_InvocationID", fContext.fTypes.fInt.get(),
/*builtin=*/false, Variable::Storage::kGlobal);
auto decl = VarDeclaration::Make(fContext, var.get(), fContext.fTypes.fInt.get(),
/*arraySize=*/0, /*value=*/nullptr);
fSymbolTable->add(std::move(var));
fProgramElements->push_back(std::make_unique<GlobalVarDeclaration>(std::move(decl)));
}
if (externalFunctions) {
// Add any external values to the new symbol table, so they're only visible to this Program
for (const auto& ef : *externalFunctions) {
fSymbolTable->addWithoutOwnership(ef.get());
}
}
}
IRGenerator::IRBundle IRGenerator::finish() {
// Variables defined in the pre-includes need their declaring elements added to the program
if (!fIsBuiltinCode && fIntrinsics) {
this->findAndDeclareBuiltinVariables();
}
// Do a pass looking for dangling FunctionReference or TypeReference expressions
class FindIllegalExpressions : public ProgramVisitor {
public:
FindIllegalExpressions(IRGenerator* generator) : fGenerator(generator) {}
bool visitExpression(const Expression& e) override {
fGenerator->checkValid(e);
return INHERITED::visitExpression(e);
}
IRGenerator* fGenerator;
using INHERITED = ProgramVisitor;
using INHERITED::visitProgramElement;
};
for (const auto& pe : *fProgramElements) {
FindIllegalExpressions{this}.visitProgramElement(*pe);
}
// If we're in ES2 mode (runtime effects), do a pass to enforce Appendix A, Section 5 of the
// GLSL ES 1.00 spec -- Indexing. Don't bother if we've already found errors - this logic
// assumes that all loops meet the criteria of Section 4, and if they don't, could crash.
if (this->strictES2Mode() && this->errorReporter().errorCount() == 0) {
for (const auto& pe : *fProgramElements) {
Analysis::ValidateIndexingForES2(*pe, this->errorReporter());
}
}
IRBundle result{std::move(*fProgramElements), std::move(*fSharedElements),
this->releaseModifiers(), fSymbolTable, fInputs};
fSymbolTable = nullptr;
return result;
}
IRGenerator::IRBundle IRGenerator::convertProgram(
const ParsedModule& base,
bool isBuiltinCode,
const char* text,
size_t length,
const std::vector<std::unique_ptr<ExternalFunction>>* externalFunctions) {
std::vector<std::unique_ptr<ProgramElement>> elements;
std::vector<const ProgramElement*> sharedElements;
this->start(base, isBuiltinCode, externalFunctions, &elements, &sharedElements);
Parser parser(text, length, *fSymbolTable, this->errorReporter());
fFile = parser.compilationUnit();
if (this->errorReporter().errorCount() == 0) {
SkASSERT(fFile);
for (const auto& decl : fFile->root()) {
switch (decl.fKind) {
case ASTNode::Kind::kVarDeclarations:
this->convertGlobalVarDeclarations(decl);
break;
case ASTNode::Kind::kEnum:
this->convertEnum(decl);
break;
case ASTNode::Kind::kFunction:
this->convertFunction(decl);
break;
case ASTNode::Kind::kModifiers: {
std::unique_ptr<ModifiersDeclaration> f =
this->convertModifiersDeclaration(decl);
if (f) {
fProgramElements->push_back(std::move(f));
}
break;
}
case ASTNode::Kind::kInterfaceBlock: {
std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(decl);
if (i) {
fProgramElements->push_back(std::move(i));
}
break;
}
case ASTNode::Kind::kExtension: {
std::unique_ptr<Extension> e = this->convertExtension(decl.fOffset,
decl.getString());
if (e) {
fProgramElements->push_back(std::move(e));
}
break;
}
case ASTNode::Kind::kSection: {
std::unique_ptr<Section> s = this->convertSection(decl);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
case ASTNode::Kind::kType: {