blob: e8cb49a8b2ce507f0878e3dc5fa34e14ed8454c2 [file] [log] [blame]
layout(builtin=15) float4 sk_FragCoord;
//--- Luma ------------------------------------------------------------------------
half4 sk_luma(half3 color) {
return saturate(dot(half3(0.2126, 0.7152, 0.0722), color)).000r;
}
//--- Decal ------------------------------------------------------------------------
half4 sk_decal(shader image, float2 coord, float4 decalBounds) {
half4 d = half4(decalBounds - coord.xyxy) * half4(-1, -1, 1, 1);
d = saturate(d + 0.5);
return (d.x * d.y * d.z * d.w) * image.eval(coord);
}
//--- Displacement -----------------------------------------------------------------
half4 sk_displacement(shader displMap,
shader colorMap,
float2 coord,
half2 scale,
half4 xSelect, // Only one of RGBA will be 1, the rest are 0
half4 ySelect) {
half4 displColor = unpremul(displMap.eval(coord));
half2 displ = half2(dot(displColor, xSelect), dot(displColor, ySelect));
displ = scale * (displ - 0.5);
return colorMap.eval(coord + displ);
}
//--- Magnifier --------------------------------------------------------------------
half4 sk_magnifier(shader src, float2 coord, float4 lensBounds, float4 zoomXform,
float2 invInset) {
float2 zoomCoord = zoomXform.xy + zoomXform.zw*coord;
// edgeInset is the smallest distance to the lens bounds edges, in units of "insets".
float2 edgeInset = min(coord - lensBounds.xy, lensBounds.zw - coord) * invInset;
// The equations for 'weight' ensure that it is 0 along the outside of
// lensBounds so it seams with any un-zoomed, un-filtered content. The zoomed
// content fills a rounded rectangle that is 1 "inset" in from lensBounds with
// circular corners with radii equal to the inset distance. Outside of this
// region, there is a non-linear weighting to compress the un-zoomed content
// to the zoomed content. The critical zone about each corner is limited
// to 2x"inset" square.
float weight = all(lessThan(edgeInset, float2(2.0)))
// Circular distortion weighted by distance to inset corner
? (2.0 - length(2.0 - edgeInset))
// Linear zoom, or single-axis compression outside of the inset
// area (if delta < 1)
: min(edgeInset.x, edgeInset.y);
// Saturate before squaring so that negative weights are clamped to 0
// before squaring
weight = saturate(weight);
return src.eval(mix(coord, zoomCoord, weight*weight));
}
//--- High Contrast ----------------------------------------------------------------
$pure half3 $high_contrast_rgb_to_hsl(half3 c) {
half mx = max(max(c.r,c.g),c.b),
mn = min(min(c.r,c.g),c.b),
d = mx-mn,
invd = 1.0 / d,
g_lt_b = c.g < c.b ? 6.0 : 0.0;
// We'd prefer to write these tests like `mx == c.r`, but on some GPUs, max(x,y) is
// not always equal to either x or y. So we use long form, c.r >= c.g && c.r >= c.b.
half h = (1/6.0) * (mx == mn ? 0.0 :
/*mx==c.r*/ c.r >= c.g && c.r >= c.b ? invd * (c.g - c.b) + g_lt_b :
/*mx==c.g*/ c.g >= c.b ? invd * (c.b - c.r) + 2.0
/*mx==c.b*/ : invd * (c.r - c.g) + 4.0);
half sum = mx+mn,
l = sum * 0.5,
s = mx == mn ? 0.0
: d / (l > 0.5 ? 2.0 - sum : sum);
return half3(h,s,l);
}
half3 sk_high_contrast(half3 color, half grayscale, half invertStyle, half contrast) {
if (grayscale == 1) {
color = dot(half3(0.2126, 0.7152, 0.0722), color).rrr;
}
if (invertStyle == 1) { // brightness
color = 1.0 - color;
} else if (invertStyle == 2) { // lightness
color = $high_contrast_rgb_to_hsl(color);
color.b = 1 - color.b;
color = $hsl_to_rgb(color);
}
return saturate(mix(half3(0.5), color, contrast));
}
//--- Normal -----------------------------------------------------------------------
$pure half3 $normal_filter(half3 alphaC0, half3 alphaC1, half3 alphaC2, half negSurfaceDepth) {
// The right column (or bottom row) terms of the Sobel filter. The left/top is just the
// negative, and the middle row/column is all 0s so those instructions are skipped.
const half3 kSobel = 0.25 * half3(1,2,1);
half3 alphaR0 = half3(alphaC0.x, alphaC1.x, alphaC2.x);
half3 alphaR2 = half3(alphaC0.z, alphaC1.z, alphaC2.z);
half nx = dot(kSobel, alphaC2) - dot(kSobel, alphaC0);
half ny = dot(kSobel, alphaR2) - dot(kSobel, alphaR0);
return normalize(half3(negSurfaceDepth * half2(nx, ny), 1));
}
half4 sk_normal(shader alphaMap, float2 coord, float4 edgeBounds, half negSurfaceDepth) {
half3 alphaC0 = half3(
alphaMap.eval(clamp(coord + float2(-1,-1), edgeBounds.LT, edgeBounds.RB)).a,
alphaMap.eval(clamp(coord + float2(-1, 0), edgeBounds.LT, edgeBounds.RB)).a,
alphaMap.eval(clamp(coord + float2(-1, 1), edgeBounds.LT, edgeBounds.RB)).a);
half3 alphaC1 = half3(
alphaMap.eval(clamp(coord + float2( 0,-1), edgeBounds.LT, edgeBounds.RB)).a,
alphaMap.eval(clamp(coord + float2( 0, 0), edgeBounds.LT, edgeBounds.RB)).a,
alphaMap.eval(clamp(coord + float2( 0, 1), edgeBounds.LT, edgeBounds.RB)).a);
half3 alphaC2 = half3(
alphaMap.eval(clamp(coord + float2( 1,-1), edgeBounds.LT, edgeBounds.RB)).a,
alphaMap.eval(clamp(coord + float2( 1, 0), edgeBounds.LT, edgeBounds.RB)).a,
alphaMap.eval(clamp(coord + float2( 1, 1), edgeBounds.LT, edgeBounds.RB)).a);
half mainAlpha = alphaC1.y; // offset = (0,0)
return half4($normal_filter(alphaC0, alphaC1, alphaC2, negSurfaceDepth), mainAlpha);
}
//--- Lighting ---------------------------------------------------------------------
$pure half3 $surface_to_light(half lightType, half3 lightPos, half3 lightDir, half3 coord) {
// Spot (> 0) and point (== 0) have the same equation
return lightType >= 0 ? normalize(lightPos - coord)
: lightDir;
}
$pure half $spotlight_scale(half3 lightDir, half3 surfaceToLight, half cosCutoffAngle,
half spotFalloff) {
const half kConeAAThreshold = 0.016;
const half kConeScale = 1.0 / kConeAAThreshold;
half cosAngle = -dot(surfaceToLight, lightDir);
if (cosAngle < cosCutoffAngle) {
return 0.0;
} else {
half scale = pow(cosAngle, spotFalloff);
return (cosAngle < cosCutoffAngle + kConeAAThreshold)
? scale * (cosAngle - cosCutoffAngle) * kConeScale
: scale;
}
}
$pure half4 $compute_lighting(half3 color, half shininess, half materialType, half lightType,
half3 normal, half3 lightDir, half3 surfaceToLight,
half cosCutoffAngle, half spotFalloff) {
// Point and distant light color contributions are constant, but
// spotlights fade based on the angle away from its direction.
if (lightType > 0) {
color *= $spotlight_scale(lightDir, surfaceToLight, cosCutoffAngle, spotFalloff);
}
// Diffuse and specular reflections scale the light's color differently
if (materialType == 0) {
half coeff = dot(normal, surfaceToLight);
color = saturate(coeff * color);
return half4(color, 1.0);
} else {
half3 halfDir = normalize(surfaceToLight + half3(0, 0, 1));
half coeff = pow(dot(normal, halfDir), shininess);
color = saturate(coeff * color);
return half4(color, max(max(color.r, color.g), color.b));
}
}
half4 sk_lighting(shader normalMap, float2 coord,
half depth, half shininess, half materialType, half lightType,
half3 lightPos, half spotFalloff,
half3 lightDir, half cosCutoffAngle,
half3 lightColor) {
half4 normalAndA = normalMap.eval(coord);
half3 surfaceToLight = $surface_to_light(lightType, lightPos, lightDir,
half3(coord, depth * normalAndA.a));
return $compute_lighting(lightColor, shininess, materialType, lightType, normalAndA.xyz,
lightDir, surfaceToLight, cosCutoffAngle, spotFalloff);
}
//--- Arithmetic Blend -------------------------------------------------------------
half4 sk_arithmetic_blend(half4 src, half4 dst, half4 k, half pmClamp) {
half4 color = saturate(k.x * src * dst + k.y * src + k.z * dst + k.w);
color.rgb = min(color.rgb, max(color.a, pmClamp));
return color;
}
//--- Sparse Morphology ------------------------------------------------------------
half4 sk_sparse_morphology(shader child, float2 coord, half2 offset, half flip) {
half4 aggregate = max(flip * child.eval(coord + offset),
flip * child.eval(coord - offset));
return flip * aggregate;
}
//--- Linear Morphology ------------------------------------------------------------
half4 sk_linear_morphology(shader child, float2 coord, half2 offset, half flip, int radius) {
// KEEP IN SYNC WITH CONSTANT IN `SkMorphologyImageFilter.cpp`
const int kMaxLinearRadius = 14;
half4 aggregate = flip * child.eval(coord); // case 0 only needs a single sample
half2 delta = offset;
for (int i = 1; i <= kMaxLinearRadius; ++i) {
if (i > radius) break;
aggregate = max(aggregate, max(flip * child.eval(coord + delta),
flip * child.eval(coord - delta)));
delta += offset;
}
return flip * aggregate;
}
//--- Overdraw ---------------------------------------------------------------------
half4 sk_overdraw(half alpha, half4 color0, half4 color1, half4 color2,
half4 color3, half4 color4, half4 color5) {
return alpha < (0.5 / 255.) ? color0
: alpha < (1.5 / 255.) ? color1
: alpha < (2.5 / 255.) ? color2
: alpha < (3.5 / 255.) ? color3
: alpha < (4.5 / 255.) ? color4
: color5;
}