blob: f12099ab16467106a7ffeaf764bee21d31890109 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/core/SkWriteBuffer.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkData.h"
#include "include/core/SkStream.h"
#include "include/core/SkTypeface.h"
#include "include/private/SkTo.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkPaintPriv.h"
#include "src/core/SkPtrRecorder.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
SkBinaryWriteBuffer::SkBinaryWriteBuffer()
: fFactorySet(nullptr)
, fTFSet(nullptr) {
}
SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize)
: fFactorySet(nullptr)
, fTFSet(nullptr)
, fWriter(storage, storageSize)
{}
SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {}
bool SkBinaryWriteBuffer::usingInitialStorage() const {
return fWriter.usingInitialStorage();
}
void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) {
fWriter.write32(SkToU32(size));
fWriter.writePad(data, size);
}
void SkBinaryWriteBuffer::writeBool(bool value) {
fWriter.writeBool(value);
}
void SkBinaryWriteBuffer::writeScalar(SkScalar value) {
fWriter.writeScalar(value);
}
void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
fWriter.write32(count);
fWriter.write(value, count * sizeof(SkScalar));
}
void SkBinaryWriteBuffer::writeInt(int32_t value) {
fWriter.write32(value);
}
void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
fWriter.write32(count);
fWriter.write(value, count * sizeof(int32_t));
}
void SkBinaryWriteBuffer::writeUInt(uint32_t value) {
fWriter.write32(value);
}
void SkBinaryWriteBuffer::writeString(const char* value) {
fWriter.writeString(value);
}
void SkBinaryWriteBuffer::writeColor(SkColor color) {
fWriter.write32(color);
}
void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
fWriter.write32(count);
fWriter.write(color, count * sizeof(SkColor));
}
void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) {
fWriter.write(&color, sizeof(SkColor4f));
}
void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) {
fWriter.write32(count);
fWriter.write(color, count * sizeof(SkColor4f));
}
void SkBinaryWriteBuffer::writePoint(const SkPoint& point) {
fWriter.writeScalar(point.fX);
fWriter.writeScalar(point.fY);
}
void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) {
this->writePad32(&point, sizeof(SkPoint3));
}
void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
fWriter.write32(count);
fWriter.write(point, count * sizeof(SkPoint));
}
void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) {
fWriter.writeMatrix(matrix);
}
void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) {
fWriter.write(&rect, sizeof(SkIRect));
}
void SkBinaryWriteBuffer::writeRect(const SkRect& rect) {
fWriter.writeRect(rect);
}
void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) {
fWriter.writeRegion(region);
}
void SkBinaryWriteBuffer::writePath(const SkPath& path) {
fWriter.writePath(path);
}
size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) {
fWriter.write32(SkToU32(length));
size_t bytesWritten = fWriter.readFromStream(stream, length);
if (bytesWritten < length) {
fWriter.reservePad(length - bytesWritten);
}
return bytesWritten;
}
bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const {
return fWriter.writeToStream(stream);
}
/* Format:
* (subset) bounds
* size (31bits)
* data [ encoded, with raw width/height ]
*/
void SkBinaryWriteBuffer::writeImage(const SkImage* image) {
const SkIRect bounds = SkImage_getSubset(image);
this->writeIRect(bounds);
sk_sp<SkData> data;
if (fProcs.fImageProc) {
data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx);
}
if (!data) {
data = image->encodeToData();
}
size_t size = data ? data->size() : 0;
if (!SkTFitsIn<int32_t>(size)) {
size = 0; // too big to store
}
this->write32(SkToS32(size)); // writing 0 signals failure
if (size) {
this->writePad32(data->data(), size);
}
}
void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) {
// Write 32 bits (signed)
// 0 -- default font
// >0 -- index
// <0 -- custom (serial procs)
if (obj == nullptr) {
fWriter.write32(0);
} else if (fProcs.fTypefaceProc) {
auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx);
if (data) {
size_t size = data->size();
if (!SkTFitsIn<int32_t>(size)) {
size = 0; // fall back to default font
}
int32_t ssize = SkToS32(size);
fWriter.write32(-ssize); // negative to signal custom
if (size) {
this->writePad32(data->data(), size);
}
return;
}
// no data means fall through for std behavior
}
fWriter.write32(fTFSet ? fTFSet->add(obj) : 0);
}
void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) {
SkPaintPriv::Flatten(paint, *this);
}
void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) {
fFactorySet = std::move(rec);
}
void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) {
fTFSet = std::move(rec);
}
void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
if (nullptr == flattenable) {
this->write32(0);
return;
}
/*
* We can write 1 of 2 versions of the flattenable:
* 1. index into fFactorySet : This assumes the writer will later
* resolve the function-ptrs into strings for its reader. SkPicture
* does exactly this, by writing a table of names (matching the indices)
* up front in its serialized form.
* 2. string name of the flattenable or index into fFlattenableDict: We
* store the string to allow the reader to specify its own factories
* after write time. In order to improve compression, if we have
* already written the string, we write its index instead.
*/
SkFlattenable::Factory factory = flattenable->getFactory();
SkASSERT(factory);
if (fFactorySet) {
this->write32(fFactorySet->add(factory));
} else {
if (uint32_t* indexPtr = fFlattenableDict.find(factory)) {
// We will write the index as a 32-bit int. We want the first byte
// that we send to be zero - this will act as a sentinel that we
// have an index (not a string). This means that we will send the
// the index shifted left by 8. The remaining 24-bits should be
// plenty to store the index. Note that this strategy depends on
// being little endian.
SkASSERT(0 == *indexPtr >> 24);
this->write32(*indexPtr << 8);
} else {
const char* name = flattenable->getTypeName();
SkASSERT(name);
// Otherwise write the string. Clients should not use the empty
// string as a name, or we will have a problem.
SkASSERT(0 != strcmp("", name));
this->writeString(name);
// Add key to dictionary.
fFlattenableDict.set(factory, fFlattenableDict.count() + 1);
}
}
// make room for the size of the flattened object
(void)fWriter.reserve(sizeof(uint32_t));
// record the current size, so we can subtract after the object writes.
size_t offset = fWriter.bytesWritten();
// now flatten the object
flattenable->flatten(*this);
size_t objSize = fWriter.bytesWritten() - offset;
// record the obj's size
fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
}