blob: e80092e6e1fa5f69b540ec3ce40e01767f0232de [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkTypes.h"
#include "include/private/SkFloatingPoint.h"
#include "src/core/SkGaussFilter.h"
#include <cmath>
// The value when we can stop expanding the filter. The spec implies that 3% is acceptable, but
// we just use 1%.
static constexpr double kGoodEnough = 1.0 / 100.0;
// Normalize the values of gauss to 1.0, and make sure they add to one.
// NB if n == 1, then this will force gauss[0] == 1.
static void normalize(int n, double* gauss) {
// Carefully add from smallest to largest to calculate the normalizing sum.
double sum = 0;
for (int i = n-1; i >= 1; i--) {
sum += 2 * gauss[i];
}
sum += gauss[0];
// Normalize gauss.
for (int i = 0; i < n; i++) {
gauss[i] /= sum;
}
// The factors should sum to 1. Take any remaining slop, and add it to gauss[0]. Add the
// values in such a way to maintain the most accuracy.
sum = 0;
for (int i = n - 1; i >= 1; i--) {
sum += 2 * gauss[i];
}
gauss[0] = 1 - sum;
}
static int calculate_bessel_factors(double sigma, double *gauss) {
auto var = sigma * sigma;
// The two functions below come from the equations in "Handbook of Mathematical Functions"
// by Abramowitz and Stegun. Specifically, equation 9.6.10 on page 375. Bessel0 is given
// explicitly as 9.6.12
// BesselI_0 for 0 <= sigma < 2.
// NB the k = 0 factor is just sum = 1.0.
auto besselI_0 = [](double t) -> double {
auto tSquaredOver4 = t * t / 4.0;
auto sum = 1.0;
auto factor = 1.0;
auto k = 1;
// Use a variable number of loops. When sigma is small, this only requires 3-4 loops, but
// when sigma is near 2, it could require 10 loops. The same holds for BesselI_1.
while(factor > 1.0/1000000.0) {
factor *= tSquaredOver4 / (k * k);
sum += factor;
k += 1;
}
return sum;
};
// BesselI_1 for 0 <= sigma < 2.
auto besselI_1 = [](double t) -> double {
auto tSquaredOver4 = t * t / 4.0;
auto sum = t / 2.0;
auto factor = sum;
auto k = 1;
while (factor > 1.0/1000000.0) {
factor *= tSquaredOver4 / (k * (k + 1));
sum += factor;
k += 1;
}
return sum;
};
// The following formula for calculating the Gaussian kernel is from
// "Scale-Space for Discrete Signals" by Tony Lindeberg.
// gauss(n; var) = besselI_n(var) / (e^var)
auto d = std::exp(var);
double b[SkGaussFilter::kGaussArrayMax] = {besselI_0(var), besselI_1(var)};
gauss[0] = b[0]/d;
gauss[1] = b[1]/d;
// The code below is tricky, and written to mirror the recursive equations from the book.
// The maximum spread for sigma == 2 is guass[4], but in order to know to stop guass[5]
// is calculated. At this point n == 5 meaning that gauss[0..4] are the factors, but a 6th
// element was used to calculate them.
int n = 1;
// The recurrence relation below is from "Numerical Recipes" 3rd Edition.
// Equation 6.5.16 p.282
while (gauss[n] > kGoodEnough) {
b[n+1] = -(2*n/var) * b[n] + b[n-1];
gauss[n+1] = b[n+1] / d;
n += 1;
}
normalize(n, gauss);
return n;
}
SkGaussFilter::SkGaussFilter(double sigma) {
SkASSERT(0 <= sigma && sigma < 2);
fN = calculate_bessel_factors(sigma, fBasis);
}