blob: 8443e6127c5a44bb093a6da68e85d891d8887aa1 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrFragmentProcessor.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrProcessorAnalysis.h"
#include "src/gpu/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/effects/generated/GrClampFragmentProcessor.h"
#include "src/gpu/effects/generated/GrConstColorProcessor.h"
#include "src/gpu/effects/generated/GrOverrideInputFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramDataManager.h"
#include "src/gpu/glsl/GrGLSLUniformHandler.h"
bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
if (this->classID() != that.classID()) {
return false;
}
if (this->usesVaryingCoordsDirectly() != that.usesVaryingCoordsDirectly()) {
return false;
}
if (!this->onIsEqual(that)) {
return false;
}
if (this->numChildProcessors() != that.numChildProcessors()) {
return false;
}
for (int i = 0; i < this->numChildProcessors(); ++i) {
auto thisChild = this->childProcessor(i),
thatChild = that .childProcessor(i);
if (SkToBool(thisChild) != SkToBool(thatChild)) {
return false;
}
if (thisChild && !thisChild->isEqual(*thatChild)) {
return false;
}
}
return true;
}
void GrFragmentProcessor::visitProxies(const GrOp::VisitProxyFunc& func) const {
this->visitTextureEffects([&func](const GrTextureEffect& te) {
func(te.view().proxy(), te.samplerState().mipmapped());
});
}
void GrFragmentProcessor::visitTextureEffects(
const std::function<void(const GrTextureEffect&)>& func) const {
if (auto* te = this->asTextureEffect()) {
func(*te);
}
for (auto& child : fChildProcessors) {
if (child) {
child->visitTextureEffects(func);
}
}
}
GrTextureEffect* GrFragmentProcessor::asTextureEffect() {
if (this->classID() == kGrTextureEffect_ClassID) {
return static_cast<GrTextureEffect*>(this);
}
return nullptr;
}
const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const {
if (this->classID() == kGrTextureEffect_ClassID) {
return static_cast<const GrTextureEffect*>(this);
}
return nullptr;
}
#if GR_TEST_UTILS
static void recursive_dump_tree_info(const GrFragmentProcessor& fp,
SkString indent,
SkString* text) {
for (int index = 0; index < fp.numChildProcessors(); ++index) {
text->appendf("\n%s(#%d) -> ", indent.c_str(), index);
if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) {
text->append(childFP->dumpInfo());
indent.append("\t");
recursive_dump_tree_info(*childFP, indent, text);
} else {
text->append("null");
}
}
}
SkString GrFragmentProcessor::dumpTreeInfo() const {
SkString text = this->dumpInfo();
recursive_dump_tree_info(*this, SkString("\t"), &text);
text.append("\n");
return text;
}
#endif
GrGLSLFragmentProcessor* GrFragmentProcessor::createGLSLInstance() const {
GrGLSLFragmentProcessor* glFragProc = this->onCreateGLSLInstance();
glFragProc->fChildProcessors.push_back_n(fChildProcessors.count());
for (int i = 0; i < fChildProcessors.count(); ++i) {
glFragProc->fChildProcessors[i] =
fChildProcessors[i] ? fChildProcessors[i]->createGLSLInstance() : nullptr;
}
return glFragProc;
}
void GrFragmentProcessor::addAndPushFlagToChildren(PrivateFlags flag) {
// This propagates down, so if we've already marked it, all our children should have it too
if (!(fFlags & flag)) {
fFlags |= flag;
for (auto& child : fChildProcessors) {
if (child) {
child->addAndPushFlagToChildren(flag);
}
}
}
#ifdef SK_DEBUG
for (auto& child : fChildProcessors) {
SkASSERT(!child || (child->fFlags & flag));
}
#endif
}
int GrFragmentProcessor::numNonNullChildProcessors() const {
return std::count_if(fChildProcessors.begin(), fChildProcessors.end(),
[](const auto& c) { return c != nullptr; });
}
#ifdef SK_DEBUG
bool GrFragmentProcessor::isInstantiated() const {
bool result = true;
this->visitTextureEffects([&result](const GrTextureEffect& te) {
if (!te.texture()) {
result = false;
}
});
return result;
}
#endif
void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child,
SkSL::SampleUsage sampleUsage) {
if (!child) {
fChildProcessors.push_back(nullptr);
return;
}
// The child should not have been attached to another FP already and not had any sampling
// strategy set on it.
SkASSERT(!child->fParent && !child->sampleUsage().isSampled() &&
!child->isSampledWithExplicitCoords() && !child->hasPerspectiveTransform());
// If a child is sampled directly (sample(child)), and with a single uniform matrix, we need to
// treat it as if it were sampled with multiple matrices (eg variable).
bool variableMatrix = sampleUsage.hasVariableMatrix() ||
(sampleUsage.fPassThrough && sampleUsage.hasUniformMatrix());
// Configure child's sampling state first
child->fUsage = sampleUsage;
// When an FP is sampled using variable matrix expressions, it is effectively being sampled
// explicitly, except that the call site will automatically evaluate the matrix expression to
// produce the float2 passed into this FP.
if (sampleUsage.fExplicitCoords || variableMatrix) {
child->addAndPushFlagToChildren(kSampledWithExplicitCoords_Flag);
}
// Push perspective matrix type to children
if (sampleUsage.fHasPerspective) {
child->addAndPushFlagToChildren(kNetTransformHasPerspective_Flag);
}
// If the child is sampled with a variable matrix expression, auto-generated code in
// invokeChildWithMatrix() for this FP will refer to the local coordinates.
if (variableMatrix) {
this->setUsesSampleCoordsDirectly();
}
// If the child is not sampled explicitly and not already accessing sample coords directly
// (through reference or variable matrix expansion), then mark that this FP tree relies on
// coordinates at a lower level. If the child is sampled with explicit coordinates and
// there isn't any other direct reference to the sample coords, we halt the upwards propagation
// because it means this FP is determining coordinates on its own.
if (!child->isSampledWithExplicitCoords()) {
if ((child->fFlags & kUsesSampleCoordsDirectly_Flag ||
child->fFlags & kUsesSampleCoordsIndirectly_Flag)) {
fFlags |= kUsesSampleCoordsIndirectly_Flag;
}
}
fRequestedFeatures |= child->fRequestedFeatures;
// Record that the child is attached to us; this FP is the source of any uniform data needed
// to evaluate the child sample matrix.
child->fParent = this;
fChildProcessors.push_back(std::move(child));
// Validate: our sample strategy comes from a parent we shouldn't have yet.
SkASSERT(!this->isSampledWithExplicitCoords() && !this->hasPerspectiveTransform() &&
!fUsage.isSampled() && !fParent);
}
void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) {
for (int i = 0; i < src.numChildProcessors(); ++i) {
if (auto fp = src.childProcessor(i)) {
this->registerChild(fp->clone(), fp->sampleUsage());
} else {
this->registerChild(nullptr);
}
}
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulChildByInputAlpha(
std::unique_ptr<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
return GrBlendFragmentProcessor::Make(/*src=*/nullptr, std::move(fp), SkBlendMode::kDstIn);
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha(
std::unique_ptr<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
return GrBlendFragmentProcessor::Make(/*src=*/nullptr, std::move(fp), SkBlendMode::kSrcIn);
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateAlpha(
std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
auto colorFP = GrConstColorProcessor::Make(color);
return GrBlendFragmentProcessor::Make(
std::move(colorFP), std::move(inputFP), SkBlendMode::kSrcIn,
GrBlendFragmentProcessor::BlendBehavior::kSkModeBehavior);
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA(
std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
auto colorFP = GrConstColorProcessor::Make(color);
return GrBlendFragmentProcessor::Make(
std::move(colorFP), std::move(inputFP), SkBlendMode::kModulate,
GrBlendFragmentProcessor::BlendBehavior::kSkModeBehavior);
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampPremulOutput(
std::unique_ptr<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
return GrClampFragmentProcessor::Make(std::move(fp), /*clampToPremul=*/true);
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(
std::unique_ptr<GrFragmentProcessor> fp, const GrSwizzle& swizzle) {
class SwizzleFragmentProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
const GrSwizzle& swizzle) {
return std::unique_ptr<GrFragmentProcessor>(
new SwizzleFragmentProcessor(std::move(fp), swizzle));
}
const char* name() const override { return "Swizzle"; }
const GrSwizzle& swizzle() const { return fSwizzle; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return Make(this->childProcessor(0)->clone(), fSwizzle);
}
private:
SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp, const GrSwizzle& swizzle)
: INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get()))
, fSwizzle(swizzle) {
this->registerChild(std::move(fp));
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
SkString childColor = this->invokeChild(0, args);
const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
const GrSwizzle& swizzle = sfp.swizzle();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("return %s.%s;",
childColor.c_str(), swizzle.asString().c_str());
}
};
return new GLFP;
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
b->add32(fSwizzle.asKey());
}
bool onIsEqual(const GrFragmentProcessor& other) const override {
const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
return fSwizzle == sfp.fSwizzle;
}
SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
return fSwizzle.applyTo(input);
}
GrSwizzle fSwizzle;
using INHERITED = GrFragmentProcessor;
};
if (!fp) {
return nullptr;
}
if (GrSwizzle::RGBA() == swizzle) {
return fp;
}
return SwizzleFragmentProcessor::Make(std::move(fp), swizzle);
}
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeInputPremulAndMulByOutput(
std::unique_ptr<GrFragmentProcessor> fp) {
class PremulFragmentProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(
std::unique_ptr<GrFragmentProcessor> processor) {
return std::unique_ptr<GrFragmentProcessor>(
new PremulFragmentProcessor(std::move(processor)));
}
const char* name() const override { return "Premultiply"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return Make(this->childProcessor(0)->clone());
}
private:
PremulFragmentProcessor(std::unique_ptr<GrFragmentProcessor> processor)
: INHERITED(kPremulFragmentProcessor_ClassID, OptFlags(processor.get())) {
this->registerChild(std::move(processor));
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString temp = this->invokeChild(/*childIndex=*/0, "half4(1)", args);
fragBuilder->codeAppendf("half4 color = %s;", temp.c_str());
fragBuilder->codeAppendf("color.rgb *= %s.rgb;", args.fInputColor);
fragBuilder->codeAppendf("return color * %s.a;", args.fInputColor);
}
};
return new GLFP;
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
static OptimizationFlags OptFlags(const GrFragmentProcessor* inner) {
OptimizationFlags flags = kNone_OptimizationFlags;
if (inner->preservesOpaqueInput()) {
flags |= kPreservesOpaqueInput_OptimizationFlag;
}
if (inner->hasConstantOutputForConstantInput()) {
flags |= kConstantOutputForConstantInput_OptimizationFlag;
}
return flags;
}
SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
SkPMColor4f childColor = ConstantOutputForConstantInput(this->childProcessor(0),
SK_PMColor4fWHITE);
SkPMColor4f premulInput = SkColor4f{ input.fR, input.fG, input.fB, input.fA }.premul();
return premulInput * childColor;
}
using INHERITED = GrFragmentProcessor;
};
if (!fp) {
return nullptr;
}
return PremulFragmentProcessor::Make(std::move(fp));
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(
std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color, bool useUniform) {
if (!fp) {
return nullptr;
}
return GrOverrideInputFragmentProcessor::Make(std::move(fp), color, useUniform);
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose(
std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) {
class ComposeProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f,
std::unique_ptr<GrFragmentProcessor> g) {
return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f),
std::move(g)));
}
const char* name() const override { return "Compose"; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this));
}
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
SkString result = this->invokeChild(0, args);
result = this->invokeChild(1, result.c_str(), args);
args.fFragBuilder->codeAppendf("return %s;", result.c_str());
}
};
return new GLFP;
}
ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f,
std::unique_ptr<GrFragmentProcessor> g)
: INHERITED(kSeriesFragmentProcessor_ClassID,
f->optimizationFlags() & g->optimizationFlags()) {
this->registerChild(std::move(f));
this->registerChild(std::move(g));
}
ComposeProcessor(const ComposeProcessor& that)
: INHERITED(kSeriesFragmentProcessor_ClassID, that.optimizationFlags()) {
this->cloneAndRegisterAllChildProcessors(that);
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override {
SkPMColor4f color = inColor;
color = ConstantOutputForConstantInput(this->childProcessor(0), color);
color = ConstantOutputForConstantInput(this->childProcessor(1), color);
return color;
}
using INHERITED = GrFragmentProcessor;
};
// Allow either of the composed functions to be null.
if (f == nullptr) {
return g;
}
if (g == nullptr) {
return f;
}
// Run an optimization pass on this composition.
GrProcessorAnalysisColor inputColor;
inputColor.setToUnknown();
std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(f), std::move(g)};
GrColorFragmentProcessorAnalysis info(inputColor, series, SK_ARRAY_COUNT(series));
SkPMColor4f knownColor;
int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
switch (leadingFPsToEliminate) {
default:
// We shouldn't eliminate more than we started with.
SkASSERT(leadingFPsToEliminate <= 2);
[[fallthrough]];
case 0:
// Compose the two processors as requested.
return ComposeProcessor::Make(std::move(series[0]), std::move(series[1]));
case 1:
// Replace the first processor with a constant color.
return ComposeProcessor::Make(GrConstColorProcessor::Make(knownColor),
std::move(series[1]));
case 2:
// Replace the entire composition with a constant color.
return GrConstColorProcessor::Make(knownColor);
}
}
//////////////////////////////////////////////////////////////////////////////
GrFragmentProcessor::CIter::CIter(const GrPaint& paint) {
if (paint.hasCoverageFragmentProcessor()) {
fFPStack.push_back(paint.getCoverageFragmentProcessor());
}
if (paint.hasColorFragmentProcessor()) {
fFPStack.push_back(paint.getColorFragmentProcessor());
}
}
GrFragmentProcessor::CIter::CIter(const GrPipeline& pipeline) {
for (int i = pipeline.numFragmentProcessors() - 1; i >= 0; --i) {
fFPStack.push_back(&pipeline.getFragmentProcessor(i));
}
}
GrFragmentProcessor::CIter& GrFragmentProcessor::CIter::operator++() {
SkASSERT(!fFPStack.empty());
const GrFragmentProcessor* back = fFPStack.back();
fFPStack.pop_back();
for (int i = back->numChildProcessors() - 1; i >= 0; --i) {
if (auto child = back->childProcessor(i)) {
fFPStack.push_back(child);
}
}
return *this;
}