blob: 43d5c3724f66656f9a18803acd3746798c9ca513 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkMatrix.h"
#include "src/core/SkImageFilterTypes.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkMatrixPriv.h"
// Both [I]Vectors and Sk[I]Sizes are transformed as non-positioned values, i.e. go through
// mapVectors() not mapPoints().
static SkIVector map_as_vector(int32_t x, int32_t y, const SkMatrix& matrix) {
SkVector v = SkVector::Make(SkIntToScalar(x), SkIntToScalar(y));
matrix.mapVectors(&v, 1);
return SkIVector::Make(SkScalarRoundToInt(v.fX), SkScalarRoundToInt(v.fY));
}
static SkVector map_as_vector(SkScalar x, SkScalar y, const SkMatrix& matrix) {
SkVector v = SkVector::Make(x, y);
matrix.mapVectors(&v, 1);
return v;
}
namespace skif {
Mapping Mapping::DecomposeCTM(const SkMatrix& ctm, const SkImageFilter* filter,
const skif::ParameterSpace<SkPoint>& representativePoint) {
SkMatrix remainder, layer;
SkSize scale;
if (ctm.isScaleTranslate() || as_IFB(filter)->canHandleComplexCTM()) {
// It doesn't matter what type of matrix ctm is, we can have layer space be equivalent to
// device space.
remainder = SkMatrix::I();
layer = ctm;
} else if (ctm.decomposeScale(&scale, &remainder)) {
// This case implies some amount of sampling post-filtering, either due to skew or rotation
// in the original matrix. As such, keep the layer matrix as simple as possible.
layer = SkMatrix::Scale(scale.fWidth, scale.fHeight);
} else {
// Perspective, which has a non-uniform scaling effect on the filter. Pick a single scale
// factor that best matches where the filter will be evaluated.
SkScalar scale = SkMatrixPriv::DifferentialAreaScale(ctm, SkPoint(representativePoint));
if (SkScalarIsFinite(scale)) {
// Now take the sqrt to go from an area scale factor to a scaling per X and Y
// FIXME: It would be nice to be able to choose a non-uniform scale.
scale = SkScalarSqrt(scale);
} else {
// The representative point was behind the W = 0 plane, so don't factor out any scale.
scale = 1.f;
}
remainder = ctm;
remainder.preScale(SkScalarInvert(scale), SkScalarInvert(scale));
layer = SkMatrix::Scale(scale, scale);
}
return Mapping(remainder, layer);
}
// Instantiate map specializations for the 6 geometric types used during filtering
template<>
SkIRect Mapping::map<SkIRect>(const SkIRect& geom, const SkMatrix& matrix) {
return matrix.mapRect(SkRect::Make(geom)).roundOut();
}
template<>
SkRect Mapping::map<SkRect>(const SkRect& geom, const SkMatrix& matrix) {
return matrix.mapRect(geom);
}
template<>
SkIPoint Mapping::map<SkIPoint>(const SkIPoint& geom, const SkMatrix& matrix) {
SkPoint p = SkPoint::Make(SkIntToScalar(geom.fX), SkIntToScalar(geom.fY));
matrix.mapPoints(&p, 1);
return SkIPoint::Make(SkScalarRoundToInt(p.fX), SkScalarRoundToInt(p.fY));
}
template<>
SkPoint Mapping::map<SkPoint>(const SkPoint& geom, const SkMatrix& matrix) {
SkPoint p;
matrix.mapPoints(&p, &geom, 1);
return p;
}
template<>
IVector Mapping::map<IVector>(const IVector& geom, const SkMatrix& matrix) {
return IVector(map_as_vector(geom.fX, geom.fY, matrix));
}
template<>
Vector Mapping::map<Vector>(const Vector& geom, const SkMatrix& matrix) {
return Vector(map_as_vector(geom.fX, geom.fY, matrix));
}
template<>
SkISize Mapping::map<SkISize>(const SkISize& geom, const SkMatrix& matrix) {
SkIVector v = map_as_vector(geom.fWidth, geom.fHeight, matrix);
return SkISize::Make(v.fX, v.fY);
}
template<>
SkSize Mapping::map<SkSize>(const SkSize& geom, const SkMatrix& matrix) {
SkVector v = map_as_vector(geom.fWidth, geom.fHeight, matrix);
return SkSize::Make(v.fX, v.fY);
}
} // end namespace skif