blob: f42b5b5045e2016a61452c35cf826d7243ed0a9d [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrOp_DEFINED
#define GrOp_DEFINED
#include "include/core/SkMatrix.h"
#include "include/core/SkRect.h"
#include "include/core/SkString.h"
#include "include/gpu/GrGpuResource.h"
#include "src/gpu/GrNonAtomicRef.h"
#include "src/gpu/GrTracing.h"
#include "src/gpu/GrXferProcessor.h"
#include <atomic>
#include <new>
class GrCaps;
class GrOpFlushState;
class GrOpsRenderPass;
/**
* GrOp is the base class for all Ganesh deferred GPU operations. To facilitate reordering and to
* minimize draw calls, Ganesh does not generate geometry inline with draw calls. Instead, it
* captures the arguments to the draw and then generates the geometry when flushing. This gives GrOp
* subclasses complete freedom to decide how/when to combine in order to produce fewer draw calls
* and minimize state changes.
*
* Ops of the same subclass may be merged or chained using combineIfPossible. When two ops merge,
* one takes on the union of the data and the other is left empty. The merged op becomes responsible
* for drawing the data from both the original ops. When ops are chained each op maintains its own
* data but they are linked in a list and the head op becomes responsible for executing the work for
* the chain.
*
* It is required that chainability is transitive. Moreover, if op A is able to merge with B then
* it must be the case that any op that can chain with A will either merge or chain with any op
* that can chain to B.
*
* The bounds of the op must contain all the vertices in device space *irrespective* of the clip.
* The bounds are used in determining which clip elements must be applied and thus the bounds cannot
* in turn depend upon the clip.
*/
#define GR_OP_SPEW 0
#if GR_OP_SPEW
#define GrOP_SPEW(code) code
#define GrOP_INFO(...) SkDebugf(__VA_ARGS__)
#else
#define GrOP_SPEW(code)
#define GrOP_INFO(...)
#endif
// Print out op information at flush time
#define GR_FLUSH_TIME_OP_SPEW 0
// A helper macro to generate a class static id
#define DEFINE_OP_CLASS_ID \
static uint32_t ClassID() { \
static uint32_t kClassID = GenOpClassID(); \
return kClassID; \
}
class GrOp : private SkNoncopyable {
public:
virtual ~GrOp() = default;
virtual const char* name() const = 0;
using VisitProxyFunc = std::function<void(GrTextureProxy*, GrMipMapped)>;
virtual void visitProxies(const VisitProxyFunc&) const {
// This default implementation assumes the op has no proxies
}
enum class CombineResult {
/**
* The op that combineIfPossible was called on now represents its own work plus that of
* the passed op. The passed op should be destroyed without being flushed. Currently it
* is not legal to merge an op passed to combineIfPossible() the passed op is already in a
* chain (though the op on which combineIfPossible() was called may be).
*/
kMerged,
/**
* The caller *may* (but is not required) to chain these ops together. If they are chained
* then prepare() and execute() will be called on the head op but not the other ops in the
* chain. The head op will prepare and execute on behalf of all the ops in the chain.
*/
kMayChain,
/**
* The ops cannot be combined.
*/
kCannotCombine
};
CombineResult combineIfPossible(GrOp* that, const GrCaps& caps);
const SkRect& bounds() const {
SkASSERT(kUninitialized_BoundsFlag != fBoundsFlags);
return fBounds;
}
void setClippedBounds(const SkRect& clippedBounds) {
fBounds = clippedBounds;
// The clipped bounds already incorporate any effect of the bounds flags.
fBoundsFlags = 0;
}
bool hasAABloat() const {
SkASSERT(fBoundsFlags != kUninitialized_BoundsFlag);
return SkToBool(fBoundsFlags & kAABloat_BoundsFlag);
}
bool hasZeroArea() const {
SkASSERT(fBoundsFlags != kUninitialized_BoundsFlag);
return SkToBool(fBoundsFlags & kZeroArea_BoundsFlag);
}
#ifdef SK_DEBUG
// All GrOp-derived classes should be allocated in and deleted from a GrMemoryPool
void* operator new(size_t size);
void operator delete(void* target);
void* operator new(size_t size, void* placement) {
return ::operator new(size, placement);
}
void operator delete(void* target, void* placement) {
::operator delete(target, placement);
}
#endif
/**
* Helper for safely down-casting to a GrOp subclass
*/
template <typename T> const T& cast() const {
SkASSERT(T::ClassID() == this->classID());
return *static_cast<const T*>(this);
}
template <typename T> T* cast() {
SkASSERT(T::ClassID() == this->classID());
return static_cast<T*>(this);
}
uint32_t classID() const { SkASSERT(kIllegalOpID != fClassID); return fClassID; }
// We lazily initialize the uniqueID because currently the only user is GrAuditTrail
uint32_t uniqueID() const {
if (kIllegalOpID == fUniqueID) {
fUniqueID = GenOpID();
}
return fUniqueID;
}
/**
* This can optionally be called before 'prepare' (but after sorting). Each op that overrides
* onPrePrepare must be prepared to handle both cases (when onPrePrepare has been called
* ahead of time and when it has not been called).
*/
void prePrepare() { this->onPrePrepare(); }
/**
* Called prior to executing. The op should perform any resource creation or data transfers
* necessary before execute() is called.
*/
void prepare(GrOpFlushState* state) { this->onPrepare(state); }
/** Issues the op's commands to GrGpu. */
void execute(GrOpFlushState* state, const SkRect& chainBounds) {
TRACE_EVENT0("skia.gpu", name());
this->onExecute(state, chainBounds);
}
/** Used for spewing information about ops when debugging. */
#ifdef SK_DEBUG
virtual SkString dumpInfo() const {
SkString string;
string.appendf("OpBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n",
fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
return string;
}
#else
SkString dumpInfo() const { return SkString("<Op information unavailable>"); }
#endif
/**
* A helper for iterating over an op chain in a range for loop that also downcasts to a GrOp
* subclass. E.g.:
* for (MyOpSubClass& op : ChainRange<MyOpSubClass>(this)) {
* // ...
* }
*/
template <typename OpSubclass = GrOp> class ChainRange {
private:
class Iter {
public:
explicit Iter(const OpSubclass* head) : fCurr(head) {}
inline Iter& operator++() {
return *this = Iter(static_cast<const OpSubclass*>(fCurr->nextInChain()));
}
const OpSubclass& operator*() const { return *fCurr; }
bool operator!=(const Iter& that) const { return fCurr != that.fCurr; }
private:
const OpSubclass* fCurr;
};
const OpSubclass* fHead;
public:
explicit ChainRange(const OpSubclass* head) : fHead(head) {}
Iter begin() { return Iter(fHead); }
Iter end() { return Iter(nullptr); }
};
/**
* Concatenates two op chains. This op must be a tail and the passed op must be a head. The ops
* must be of the same subclass.
*/
void chainConcat(std::unique_ptr<GrOp>);
/** Returns true if this is the head of a chain (including a length 1 chain). */
bool isChainHead() const { return !fPrevInChain; }
/** Returns true if this is the tail of a chain (including a length 1 chain). */
bool isChainTail() const { return !fNextInChain; }
/** The next op in the chain. */
GrOp* nextInChain() const { return fNextInChain.get(); }
/** The previous op in the chain. */
GrOp* prevInChain() const { return fPrevInChain; }
/**
* Cuts the chain after this op. The returned op is the op that was previously next in the
* chain or null if this was already a tail.
*/
std::unique_ptr<GrOp> cutChain();
SkDEBUGCODE(void validateChain(GrOp* expectedTail = nullptr) const);
#ifdef SK_DEBUG
virtual void validate() const {}
#endif
protected:
GrOp(uint32_t classID);
/**
* Indicates that the op will produce geometry that extends beyond its bounds for the
* purpose of ensuring that the fragment shader runs on partially covered pixels for
* non-MSAA antialiasing.
*/
enum class HasAABloat : bool {
kNo = false,
kYes = true
};
/**
* Indicates that the geometry being drawn in a hairline stroke. A point that is drawn in device
* space is also considered a hairline.
*/
enum class IsHairline : bool {
kNo = false,
kYes = true
};
void setBounds(const SkRect& newBounds, HasAABloat aabloat, IsHairline zeroArea) {
fBounds = newBounds;
this->setBoundsFlags(aabloat, zeroArea);
}
void setTransformedBounds(const SkRect& srcBounds, const SkMatrix& m,
HasAABloat aabloat, IsHairline zeroArea) {
m.mapRect(&fBounds, srcBounds);
this->setBoundsFlags(aabloat, zeroArea);
}
void makeFullScreen(GrSurfaceProxy* proxy) {
this->setBounds(SkRect::MakeIWH(proxy->width(), proxy->height()),
HasAABloat::kNo, IsHairline::kNo);
}
static uint32_t GenOpClassID() { return GenID(&gCurrOpClassID); }
private:
void joinBounds(const GrOp& that) {
if (that.hasAABloat()) {
fBoundsFlags |= kAABloat_BoundsFlag;
}
if (that.hasZeroArea()) {
fBoundsFlags |= kZeroArea_BoundsFlag;
}
return fBounds.joinPossiblyEmptyRect(that.fBounds);
}
virtual CombineResult onCombineIfPossible(GrOp*, const GrCaps&) {
return CombineResult::kCannotCombine;
}
virtual void onPrePrepare() {} // Only GrMeshDrawOp currently overrides this virtual
virtual void onPrepare(GrOpFlushState*) = 0;
// If this op is chained then chainBounds is the union of the bounds of all ops in the chain.
// Otherwise, this op's bounds.
virtual void onExecute(GrOpFlushState*, const SkRect& chainBounds) = 0;
static uint32_t GenID(std::atomic<uint32_t>* idCounter) {
uint32_t id = (*idCounter)++;
if (id == 0) {
SK_ABORT("This should never wrap as it should only be called once for each GrOp "
"subclass.");
}
return id;
}
void setBoundsFlags(HasAABloat aabloat, IsHairline zeroArea) {
fBoundsFlags = 0;
fBoundsFlags |= (HasAABloat::kYes == aabloat) ? kAABloat_BoundsFlag : 0;
fBoundsFlags |= (IsHairline ::kYes == zeroArea) ? kZeroArea_BoundsFlag : 0;
}
enum {
kIllegalOpID = 0,
};
enum BoundsFlags {
kAABloat_BoundsFlag = 0x1,
kZeroArea_BoundsFlag = 0x2,
SkDEBUGCODE(kUninitialized_BoundsFlag = 0x4)
};
std::unique_ptr<GrOp> fNextInChain;
GrOp* fPrevInChain = nullptr;
const uint16_t fClassID;
uint16_t fBoundsFlags;
static uint32_t GenOpID() { return GenID(&gCurrOpUniqueID); }
mutable uint32_t fUniqueID = SK_InvalidUniqueID;
SkRect fBounds;
static std::atomic<uint32_t> gCurrOpUniqueID;
static std::atomic<uint32_t> gCurrOpClassID;
};
#endif