blob: 9621e146e038d694b50f53e60cea719d0cfe3774 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrRenderTarget.h"
#include "src/gpu/GrShaderCaps.h"
#include "src/gpu/GrTexturePriv.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
#include "src/gpu/glsl/GrGLSLVarying.h"
#include "src/gpu/glsl/GrGLSLXferProcessor.h"
#include "src/sksl/SkSLCompiler.h"
const int GrGLSLProgramBuilder::kVarsPerBlock = 8;
GrGLSLProgramBuilder::GrGLSLProgramBuilder(GrRenderTarget* renderTarget,
const GrProgramInfo& programInfo,
const GrProgramDesc* desc)
: fVS(this)
, fGS(this)
, fFS(this)
, fStageIndex(-1)
, fRenderTarget(renderTarget)
, fProgramInfo(programInfo)
, fDesc(desc)
, fGeometryProcessor(nullptr)
, fXferProcessor(nullptr)
, fNumFragmentSamplers(0) {}
void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders,
uint32_t featureBit,
const char* extensionName) {
if (shaders & kVertex_GrShaderFlag) {
fVS.addFeature(featureBit, extensionName);
}
if (shaders & kGeometry_GrShaderFlag) {
SkASSERT(this->primitiveProcessor().willUseGeoShader());
fGS.addFeature(featureBit, extensionName);
}
if (shaders & kFragment_GrShaderFlag) {
fFS.addFeature(featureBit, extensionName);
}
}
bool GrGLSLProgramBuilder::emitAndInstallProcs() {
// First we loop over all of the installed processors and collect coord transforms. These will
// be sent to the GrGLSLPrimitiveProcessor in its emitCode function
SkString inputColor;
SkString inputCoverage;
this->emitAndInstallPrimProc(&inputColor, &inputCoverage);
this->emitAndInstallFragProcs(&inputColor, &inputCoverage);
this->emitAndInstallXferProc(inputColor, inputCoverage);
return this->checkSamplerCounts();
}
void GrGLSLProgramBuilder::emitAndInstallPrimProc(SkString* outputColor,
SkString* outputCoverage) {
const GrPrimitiveProcessor& proc = this->primitiveProcessor();
const GrTextureProxy* const* primProcProxies = this->primProcProxies();
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(outputColor, "outputColor");
this->nameExpression(outputCoverage, "outputCoverage");
SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid());
GrShaderFlags rtAdjustVisibility;
if (proc.willUseGeoShader()) {
rtAdjustVisibility = kGeometry_GrShaderFlag;
} else {
rtAdjustVisibility = kVertex_GrShaderFlag;
}
fUniformHandles.fRTAdjustmentUni = this->uniformHandler()->addUniform(
rtAdjustVisibility,
kFloat4_GrSLType,
SkSL::Compiler::RTADJUST_NAME);
const char* rtAdjustName =
this->uniformHandler()->getUniformCStr(fUniformHandles.fRTAdjustmentUni);
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name());
fFS.codeAppend(openBrace.c_str());
fVS.codeAppendf("// Primitive Processor %s\n", proc.name());
SkASSERT(!fGeometryProcessor);
fGeometryProcessor.reset(proc.createGLSLInstance(*this->shaderCaps()));
SkAutoSTMalloc<4, SamplerHandle> texSamplers(proc.numTextureSamplers());
for (int i = 0; i < proc.numTextureSamplers(); ++i) {
SkString name;
name.printf("TextureSampler_%d", i);
const auto& sampler = proc.textureSampler(i);
const GrTexture* texture = primProcProxies[i]->peekTexture();
SkASSERT(sampler.textureType() == texture->texturePriv().textureType());
texSamplers[i] = this->emitSampler(texture,
sampler.samplerState(),
sampler.swizzle(),
name.c_str());
}
GrGLSLPrimitiveProcessor::FPCoordTransformHandler transformHandler(this->pipeline(),
&fTransformedCoordVars);
GrGLSLGeometryProcessor::EmitArgs args(&fVS,
proc.willUseGeoShader() ? &fGS : nullptr,
&fFS,
this->varyingHandler(),
this->uniformHandler(),
this->shaderCaps(),
proc,
outputColor->c_str(),
outputCoverage->c_str(),
rtAdjustName,
texSamplers.get(),
&transformHandler);
fGeometryProcessor->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(proc);)
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitAndInstallFragProcs(SkString* color, SkString* coverage) {
int transformedCoordVarsIdx = 0;
SkString** inOut = &color;
SkSTArray<8, std::unique_ptr<GrGLSLFragmentProcessor>> glslFragmentProcessors;
for (int i = 0; i < this->pipeline().numFragmentProcessors(); ++i) {
if (i == this->pipeline().numColorFragmentProcessors()) {
inOut = &coverage;
}
SkString output;
const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i);
output = this->emitAndInstallFragProc(fp, i, transformedCoordVarsIdx, **inOut, output,
&glslFragmentProcessors);
GrFragmentProcessor::Iter iter(&fp);
while (const GrFragmentProcessor* fp = iter.next()) {
transformedCoordVarsIdx += fp->numCoordTransforms();
}
**inOut = output;
}
fFragmentProcessorCnt = glslFragmentProcessors.count();
fFragmentProcessors.reset(new std::unique_ptr<GrGLSLFragmentProcessor>[fFragmentProcessorCnt]);
for (int i = 0; i < fFragmentProcessorCnt; ++i) {
fFragmentProcessors[i] = std::move(glslFragmentProcessors[i]);
}
}
// TODO Processors cannot output zeros because an empty string is all 1s
// the fix is to allow effects to take the SkString directly
SkString GrGLSLProgramBuilder::emitAndInstallFragProc(
const GrFragmentProcessor& fp,
int index,
int transformedCoordVarsIdx,
const SkString& input,
SkString output,
SkTArray<std::unique_ptr<GrGLSLFragmentProcessor>>* glslFragmentProcessors) {
SkASSERT(input.size());
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(&output, "output");
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name());
fFS.codeAppend(openBrace.c_str());
GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance();
SkSTArray<4, SamplerHandle> texSamplers;
GrFragmentProcessor::Iter fpIter(&fp);
int samplerIdx = 0;
while (const auto* subFP = fpIter.next()) {
for (int i = 0; i < subFP->numTextureSamplers(); ++i) {
SkString name;
name.printf("TextureSampler_%d", samplerIdx++);
const auto& sampler = subFP->textureSampler(i);
texSamplers.emplace_back(this->emitSampler(sampler.peekTexture(),
sampler.samplerState(),
sampler.swizzle(),
name.c_str()));
}
}
const GrGLSLPrimitiveProcessor::TransformVar* coordVars = fTransformedCoordVars.begin() +
transformedCoordVarsIdx;
GrGLSLFragmentProcessor::TransformedCoordVars coords(&fp, coordVars);
GrGLSLFragmentProcessor::TextureSamplers textureSamplers(&fp, texSamplers.begin());
GrGLSLFragmentProcessor::EmitArgs args(&fFS,
this->uniformHandler(),
this->shaderCaps(),
fp,
output.c_str(),
input.c_str(),
coords,
textureSamplers);
fragProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(fp);)
glslFragmentProcessors->emplace_back(fragProc);
fFS.codeAppend("}");
return output;
}
void GrGLSLProgramBuilder::emitAndInstallXferProc(const SkString& colorIn,
const SkString& coverageIn) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
SkASSERT(!fXferProcessor);
const GrXferProcessor& xp = this->pipeline().getXferProcessor();
fXferProcessor.reset(xp.createGLSLInstance());
// Enable dual source secondary output if we have one
if (xp.hasSecondaryOutput()) {
fFS.enableSecondaryOutput();
}
if (this->shaderCaps()->mustDeclareFragmentShaderOutput()) {
fFS.enableCustomOutput();
}
SkString openBrace;
openBrace.printf("{ // Xfer Processor: %s\n", xp.name());
fFS.codeAppend(openBrace.c_str());
SamplerHandle dstTextureSamplerHandle;
GrSurfaceOrigin dstTextureOrigin = kTopLeft_GrSurfaceOrigin;
if (GrTexture* dstTexture = this->pipeline().peekDstTexture()) {
// GrProcessor::TextureSampler sampler(dstTexture);
SkASSERT(this->pipeline().dstTextureProxy());
const GrSwizzle& swizzle = this->pipeline().dstTextureProxy()->textureSwizzle();
dstTextureSamplerHandle =
this->emitSampler(dstTexture, GrSamplerState(), swizzle, "DstTextureSampler");
dstTextureOrigin = this->pipeline().dstTextureProxy()->origin();
SkASSERT(dstTexture->texturePriv().textureType() != GrTextureType::kExternal);
}
SkString finalInColor = colorIn.size() ? colorIn : SkString("float4(1)");
GrGLSLXferProcessor::EmitArgs args(&fFS,
this->uniformHandler(),
this->shaderCaps(),
xp,
finalInColor.c_str(),
coverageIn.size() ? coverageIn.c_str() : "float4(1)",
fFS.getPrimaryColorOutputName(),
fFS.getSecondaryColorOutputName(),
dstTextureSamplerHandle,
dstTextureOrigin,
this->header().fOutputSwizzle);
fXferProcessor->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(xp);)
fFS.codeAppend("}");
}
GrGLSLProgramBuilder::SamplerHandle GrGLSLProgramBuilder::emitSampler(const GrTexture* texture,
const GrSamplerState& state,
const GrSwizzle& swizzle,
const char* name) {
++fNumFragmentSamplers;
return this->uniformHandler()->addSampler(texture, state, swizzle, name, this->shaderCaps());
}
bool GrGLSLProgramBuilder::checkSamplerCounts() {
const GrShaderCaps& shaderCaps = *this->shaderCaps();
if (fNumFragmentSamplers > shaderCaps.maxFragmentSamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n");
return false;
}
return true;
}
#ifdef SK_DEBUG
void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) {
SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly);
SkASSERT(fFS.fUsedProcessorFeaturesThisStage_DebugOnly == gp.requestedFeatures());
}
void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) {
SkASSERT(!fFS.fHasReadDstColorThisStage_DebugOnly);
SkASSERT(fFS.fUsedProcessorFeaturesThisStage_DebugOnly == fp.requestedFeatures());
}
void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) {
SkASSERT(xp.willReadDstColor() == fFS.fHasReadDstColorThisStage_DebugOnly);
SkASSERT(fFS.fUsedProcessorFeaturesThisStage_DebugOnly == xp.requestedFeatures());
}
#endif
void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) {
if ('\0' == prefix) {
*out = name;
} else {
out->printf("%c%s", prefix, name);
}
if (mangle) {
if (out->endsWith('_')) {
// Names containing "__" are reserved.
out->append("x");
}
out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str());
}
}
void GrGLSLProgramBuilder::nameExpression(SkString* output, const char* baseName) {
// create var to hold stage result. If we already have a valid output name, just use that
// otherwise create a new mangled one. This name is only valid if we are reordering stages
// and have to tell stage exactly where to put its output.
SkString outName;
if (output->size()) {
outName = output->c_str();
} else {
this->nameVariable(&outName, '\0', baseName);
}
fFS.codeAppendf("half4 %s;", outName.c_str());
*output = outName;
}
void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
this->uniformHandler()->appendUniformDecls(visibility, out);
}
void GrGLSLProgramBuilder::addRTWidthUniform(const char* name) {
SkASSERT(!fUniformHandles.fRTWidthUni.isValid());
GrGLSLUniformHandler* uniformHandler = this->uniformHandler();
fUniformHandles.fRTWidthUni =
uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, kHalf_GrSLType, name,
false, 0, nullptr);
}
void GrGLSLProgramBuilder::addRTHeightUniform(const char* name) {
SkASSERT(!fUniformHandles.fRTHeightUni.isValid());
GrGLSLUniformHandler* uniformHandler = this->uniformHandler();
fUniformHandles.fRTHeightUni =
uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag, kHalf_GrSLType, name,
false, 0, nullptr);
}
void GrGLSLProgramBuilder::finalizeShaders() {
this->varyingHandler()->finalize();
fVS.finalize(kVertex_GrShaderFlag);
if (this->primitiveProcessor().willUseGeoShader()) {
SkASSERT(this->shaderCaps()->geometryShaderSupport());
fGS.finalize(kGeometry_GrShaderFlag);
}
fFS.finalize(kFragment_GrShaderFlag);
}