blob: 86df7a02ec9961176f53851aa9ddc95a4becaeb3 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/effects/GrMatrixConvolutionEffect.h"
#include "include/gpu/GrTexture.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramDataManager.h"
#include "src/gpu/glsl/GrGLSLUniformHandler.h"
class GrGLMatrixConvolutionEffect : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
private:
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
UniformHandle fKernelUni;
UniformHandle fImageIncrementUni;
UniformHandle fKernelOffsetUni;
UniformHandle fGainUni;
UniformHandle fBiasUni;
GrTextureDomain::GLDomain fDomain;
typedef GrGLSLFragmentProcessor INHERITED;
};
void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>();
const GrTextureDomain& domain = mce.domain();
int kWidth = mce.kernelSize().width();
int kHeight = mce.kernelSize().height();
int arrayCount = (kWidth * kHeight + 3) / 4;
SkASSERT(4 * arrayCount >= kWidth * kHeight);
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
"ImageIncrement");
fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kHalf4_GrSLType,
"Kernel",
arrayCount);
fKernelOffsetUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
"KernelOffset");
fGainUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Gain");
fBiasUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Bias");
const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni);
const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
const char* kernel = uniformHandler->getUniformCStr(fKernelUni);
const char* gain = uniformHandler->getUniformCStr(fGainUni);
const char* bias = uniformHandler->getUniformCStr(fBiasUni);
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0].fVaryingPoint);
fragBuilder->codeAppend("half4 sum = half4(0, 0, 0, 0);");
fragBuilder->codeAppendf("float2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc);
fragBuilder->codeAppend("half4 c;");
const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" };
for (int y = 0; y < kHeight; y++) {
for (int x = 0; x < kWidth; x++) {
GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
int offset = y*kWidth + x;
fragBuilder->codeAppendf("half k = %s[%d]%s;", kernel, offset / 4,
kVecSuffix[offset & 0x3]);
SkString coord;
coord.printf("coord + half2(%d, %d) * %s", x, y, imgInc);
fDomain.sampleTexture(fragBuilder,
uniformHandler,
args.fShaderCaps,
domain,
"c",
coord,
args.fTexSamplers[0]);
if (!mce.convolveAlpha()) {
fragBuilder->codeAppend("c.rgb /= c.a;");
fragBuilder->codeAppend("c.rgb = saturate(c.rgb);");
}
fragBuilder->codeAppend("sum += c * k;");
}
}
if (mce.convolveAlpha()) {
fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.a = saturate(%s.a);", args.fOutputColor, args.fOutputColor);
fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);",
args.fOutputColor, args.fOutputColor, args.fOutputColor);
} else {
fDomain.sampleTexture(fragBuilder,
uniformHandler,
args.fShaderCaps,
domain,
"c",
coords2D,
args.fTexSamplers[0]);
fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
fragBuilder->codeAppendf("%s.rgb = saturate(sum.rgb * %s + %s);", args.fOutputColor, gain, bias);
fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
}
fragBuilder->codeAppendf("%s *= %s;\n", args.fOutputColor, args.fInputColor);
}
void GrGLMatrixConvolutionEffect::GenKey(const GrProcessor& processor,
const GrShaderCaps&, GrProcessorKeyBuilder* b) {
const GrMatrixConvolutionEffect& m = processor.cast<GrMatrixConvolutionEffect>();
SkASSERT(m.kernelSize().width() <= 0x7FFF && m.kernelSize().height() <= 0xFFFF);
uint32_t key = m.kernelSize().width() << 16 | m.kernelSize().height();
key |= m.convolveAlpha() ? 1U << 31 : 0;
b->add32(key);
b->add32(GrTextureDomain::GLDomain::DomainKey(m.domain()));
}
void GrGLMatrixConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& processor) {
const GrMatrixConvolutionEffect& conv = processor.cast<GrMatrixConvolutionEffect>();
GrTextureProxy* proxy = conv.textureSampler(0).proxy();
GrTexture* texture = proxy->peekTexture();
float imageIncrement[2];
float ySign = proxy->origin() == kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f;
imageIncrement[0] = 1.0f / texture->width();
imageIncrement[1] = ySign / texture->height();
pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
pdman.set2fv(fKernelOffsetUni, 1, conv.kernelOffset());
int kernelCount = conv.kernelSize().width() * conv.kernelSize().height();
int arrayCount = (kernelCount + 3) / 4;
SkASSERT(4 * arrayCount >= kernelCount);
pdman.set4fv(fKernelUni, arrayCount, conv.kernel());
pdman.set1f(fGainUni, conv.gain());
pdman.set1f(fBiasUni, conv.bias());
fDomain.setData(pdman, conv.domain(), proxy, conv.textureSampler(0).samplerState());
}
GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(sk_sp<GrTextureProxy> srcProxy,
const SkIRect& srcBounds,
const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
GrTextureDomain::Mode tileMode,
bool convolveAlpha)
// To advertise either the modulation or opaqueness optimizations we'd have to examine the
// parameters.
: INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
, fCoordTransform(srcProxy.get())
, fDomain(srcProxy.get(), GrTextureDomain::MakeTexelDomain(srcBounds, tileMode),
tileMode, tileMode)
, fTextureSampler(std::move(srcProxy))
, fKernelSize(kernelSize)
, fGain(SkScalarToFloat(gain))
, fBias(SkScalarToFloat(bias) / 255.0f)
, fConvolveAlpha(convolveAlpha) {
this->addCoordTransform(&fCoordTransform);
this->setTextureSamplerCnt(1);
for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) {
fKernel[i] = SkScalarToFloat(kernel[i]);
}
fKernelOffset[0] = static_cast<float>(kernelOffset.x());
fKernelOffset[1] = static_cast<float>(kernelOffset.y());
}
GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect& that)
: INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
, fCoordTransform(that.fCoordTransform)
, fDomain(that.fDomain)
, fTextureSampler(that.fTextureSampler)
, fKernelSize(that.fKernelSize)
, fGain(that.fGain)
, fBias(that.fBias)
, fConvolveAlpha(that.fConvolveAlpha) {
this->addCoordTransform(&fCoordTransform);
this->setTextureSamplerCnt(1);
memcpy(fKernel, that.fKernel, sizeof(float) * fKernelSize.width() * fKernelSize.height());
memcpy(fKernelOffset, that.fKernelOffset, sizeof(fKernelOffset));
}
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::clone() const {
return std::unique_ptr<GrFragmentProcessor>(new GrMatrixConvolutionEffect(*this));
}
void GrMatrixConvolutionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
GrGLMatrixConvolutionEffect::GenKey(*this, caps, b);
}
GrGLSLFragmentProcessor* GrMatrixConvolutionEffect::onCreateGLSLInstance() const {
return new GrGLMatrixConvolutionEffect;
}
bool GrMatrixConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
const GrMatrixConvolutionEffect& s = sBase.cast<GrMatrixConvolutionEffect>();
return fKernelSize == s.kernelSize() &&
!memcmp(fKernel, s.kernel(),
fKernelSize.width() * fKernelSize.height() * sizeof(float)) &&
fGain == s.gain() &&
fBias == s.bias() &&
!memcmp(fKernelOffset, s.kernelOffset(), sizeof(fKernelOffset)) &&
fConvolveAlpha == s.convolveAlpha() &&
fDomain == s.domain();
}
static void fill_in_1D_gaussian_kernel_with_stride(float* kernel, int size, int stride,
float twoSigmaSqrd) {
SkASSERT(!SkScalarNearlyZero(twoSigmaSqrd, SK_ScalarNearlyZero));
const float sigmaDenom = 1.0f / twoSigmaSqrd;
const int radius = size / 2;
float sum = 0.0f;
for (int i = 0; i < size; ++i) {
float term = static_cast<float>(i - radius);
// Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
// is dropped here, since we renormalize the kernel below.
kernel[i * stride] = sk_float_exp(-term * term * sigmaDenom);
sum += kernel[i * stride];
}
// Normalize the kernel
float scale = 1.0f / sum;
for (int i = 0; i < size; ++i) {
kernel[i * stride] *= scale;
}
}
static void fill_in_2D_gaussian_kernel(float* kernel, int width, int height,
SkScalar sigmaX, SkScalar sigmaY) {
SkASSERT(width * height <= MAX_KERNEL_SIZE);
const float twoSigmaSqrdX = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaX));
const float twoSigmaSqrdY = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaY));
// TODO: in all of these degenerate cases we're uploading (and using) a whole lot of zeros.
if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) ||
SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) {
// In this case the 2D Gaussian degenerates to a 1D Gaussian (in X or Y) or a point
SkASSERT(3 == width || 3 == height);
memset(kernel, 0, width*height*sizeof(float));
if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) &&
SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) {
// A point
SkASSERT(3 == width && 3 == height);
kernel[4] = 1.0f;
} else if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero)) {
// A 1D Gaussian in Y
SkASSERT(3 == width);
// Down the middle column of the kernel with a stride of width
fill_in_1D_gaussian_kernel_with_stride(&kernel[1], height, width, twoSigmaSqrdY);
} else {
// A 1D Gaussian in X
SkASSERT(SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero));
SkASSERT(3 == height);
// Down the middle row of the kernel with a stride of 1
fill_in_1D_gaussian_kernel_with_stride(&kernel[width], width, 1, twoSigmaSqrdX);
}
return;
}
const float sigmaXDenom = 1.0f / twoSigmaSqrdX;
const float sigmaYDenom = 1.0f / twoSigmaSqrdY;
const int xRadius = width / 2;
const int yRadius = height / 2;
float sum = 0.0f;
for (int x = 0; x < width; x++) {
float xTerm = static_cast<float>(x - xRadius);
xTerm = xTerm * xTerm * sigmaXDenom;
for (int y = 0; y < height; y++) {
float yTerm = static_cast<float>(y - yRadius);
float xyTerm = sk_float_exp(-(xTerm + yTerm * yTerm * sigmaYDenom));
// Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
// is dropped here, since we renormalize the kernel below.
kernel[y * width + x] = xyTerm;
sum += xyTerm;
}
}
// Normalize the kernel
float scale = 1.0f / sum;
for (int i = 0; i < width * height; ++i) {
kernel[i] *= scale;
}
}
// Static function to create a 2D convolution
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::MakeGaussian(
sk_sp<GrTextureProxy> srcProxy,
const SkIRect& srcBounds,
const SkISize& kernelSize,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
GrTextureDomain::Mode tileMode,
bool convolveAlpha,
SkScalar sigmaX,
SkScalar sigmaY) {
float kernel[MAX_KERNEL_SIZE];
fill_in_2D_gaussian_kernel(kernel, kernelSize.width(), kernelSize.height(), sigmaX, sigmaY);
return std::unique_ptr<GrFragmentProcessor>(
new GrMatrixConvolutionEffect(std::move(srcProxy), srcBounds, kernelSize, kernel,
gain, bias, kernelOffset, tileMode, convolveAlpha));
}
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect);
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::TestCreate(GrProcessorTestData* d) {
int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx
: GrProcessorUnitTest::kAlphaTextureIdx;
sk_sp<GrTextureProxy> proxy = d->textureProxy(texIdx);
int width = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE);
int height = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE / width);
SkISize kernelSize = SkISize::Make(width, height);
std::unique_ptr<SkScalar[]> kernel(new SkScalar[width * height]);
for (int i = 0; i < width * height; i++) {
kernel.get()[i] = d->fRandom->nextSScalar1();
}
SkScalar gain = d->fRandom->nextSScalar1();
SkScalar bias = d->fRandom->nextSScalar1();
SkIPoint kernelOffset = SkIPoint::Make(d->fRandom->nextRangeU(0, kernelSize.width()),
d->fRandom->nextRangeU(0, kernelSize.height()));
SkIRect bounds = SkIRect::MakeXYWH(d->fRandom->nextRangeU(0, proxy->width()),
d->fRandom->nextRangeU(0, proxy->height()),
d->fRandom->nextRangeU(0, proxy->width()),
d->fRandom->nextRangeU(0, proxy->height()));
GrTextureDomain::Mode tileMode =
static_cast<GrTextureDomain::Mode>(d->fRandom->nextRangeU(0, 2));
bool convolveAlpha = d->fRandom->nextBool();
return GrMatrixConvolutionEffect::Make(std::move(proxy),
bounds,
kernelSize,
kernel.get(),
gain,
bias,
kernelOffset,
tileMode,
convolveAlpha);
}
#endif