blob: 9cb1a3071dd6f3bed9912123b77dd9b7eefb229e [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkArithmeticImageFilter.h"
#include "SkCanvas.h"
#include "SkColorSpaceXformer.h"
#include "SkImageFilterPriv.h"
#include "SkNx.h"
#include "SkReadBuffer.h"
#include "SkSpecialImage.h"
#include "SkSpecialSurface.h"
#include "SkWriteBuffer.h"
#include "SkXfermodeImageFilter.h"
#if SK_SUPPORT_GPU
#include "GrClip.h"
#include "GrColorSpaceXform.h"
#include "GrContext.h"
#include "GrRenderTargetContext.h"
#include "GrTextureProxy.h"
#include "SkGr.h"
#include "effects/GrConstColorProcessor.h"
#include "effects/GrSkSLFP.h"
#include "effects/GrTextureDomain.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
GR_FP_SRC_STRING SKSL_ARITHMETIC_SRC = R"(
in uniform half4 k;
layout(key) const in bool enforcePMColor;
in fragmentProcessor child;
void main(int x, int y, inout half4 color) {
half4 dst = process(child);
color = saturate(k.x * color * dst + k.y * color + k.z * dst + k.w);
if (enforcePMColor) {
color.rgb = min(color.rgb, color.a);
}
}
)";
#endif
class ArithmeticImageFilterImpl : public SkImageFilter {
public:
ArithmeticImageFilterImpl(float k1, float k2, float k3, float k4, bool enforcePMColor,
sk_sp<SkImageFilter> inputs[2], const CropRect* cropRect)
: INHERITED(inputs, 2, cropRect), fK{k1, k2, k3, k4}, fEnforcePMColor(enforcePMColor) {}
protected:
sk_sp<SkSpecialImage> onFilterImage(SkSpecialImage* source, const Context&,
SkIPoint* offset) const override;
SkIRect onFilterBounds(const SkIRect&, const SkMatrix& ctm,
MapDirection, const SkIRect* inputRect) const override;
#if SK_SUPPORT_GPU
sk_sp<SkSpecialImage> filterImageGPU(SkSpecialImage* source,
sk_sp<SkSpecialImage> background,
const SkIPoint& backgroundOffset,
sk_sp<SkSpecialImage> foreground,
const SkIPoint& foregroundOffset,
const SkIRect& bounds,
const OutputProperties& outputProperties) const;
#endif
void flatten(SkWriteBuffer& buffer) const override {
this->INHERITED::flatten(buffer);
for (int i = 0; i < 4; ++i) {
buffer.writeScalar(fK[i]);
}
buffer.writeBool(fEnforcePMColor);
}
void drawForeground(SkCanvas* canvas, SkSpecialImage*, const SkIRect&) const;
sk_sp<SkImageFilter> onMakeColorSpace(SkColorSpaceXformer*) const override;
private:
SK_FLATTENABLE_HOOKS(ArithmeticImageFilterImpl)
bool affectsTransparentBlack() const override { return !SkScalarNearlyZero(fK[3]); }
const float fK[4];
const bool fEnforcePMColor;
friend class ::SkArithmeticImageFilter;
typedef SkImageFilter INHERITED;
};
sk_sp<SkFlattenable> ArithmeticImageFilterImpl::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 2);
float k[4];
for (int i = 0; i < 4; ++i) {
k[i] = buffer.readScalar();
}
const bool enforcePMColor = buffer.readBool();
if (!buffer.isValid()) {
return nullptr;
}
return SkArithmeticImageFilter::Make(k[0], k[1], k[2], k[3], enforcePMColor, common.getInput(0),
common.getInput(1), &common.cropRect());
}
static Sk4f pin(float min, const Sk4f& val, float max) {
return Sk4f::Max(min, Sk4f::Min(val, max));
}
template <bool EnforcePMColor>
void arith_span(const float k[], SkPMColor dst[], const SkPMColor src[], int count) {
const Sk4f k1 = k[0] * (1/255.0f),
k2 = k[1],
k3 = k[2],
k4 = k[3] * 255.0f + 0.5f;
for (int i = 0; i < count; i++) {
Sk4f s = SkNx_cast<float>(Sk4b::Load(src+i)),
d = SkNx_cast<float>(Sk4b::Load(dst+i)),
r = pin(0, k1*s*d + k2*s + k3*d + k4, 255);
if (EnforcePMColor) {
Sk4f a = SkNx_shuffle<3,3,3,3>(r);
r = Sk4f::Min(a, r);
}
SkNx_cast<uint8_t>(r).store(dst+i);
}
}
// apply mode to src==transparent (0)
template<bool EnforcePMColor> void arith_transparent(const float k[], SkPMColor dst[], int count) {
const Sk4f k3 = k[2],
k4 = k[3] * 255.0f + 0.5f;
for (int i = 0; i < count; i++) {
Sk4f d = SkNx_cast<float>(Sk4b::Load(dst+i)),
r = pin(0, k3*d + k4, 255);
if (EnforcePMColor) {
Sk4f a = SkNx_shuffle<3,3,3,3>(r);
r = Sk4f::Min(a, r);
}
SkNx_cast<uint8_t>(r).store(dst+i);
}
}
static bool intersect(SkPixmap* dst, SkPixmap* src, int srcDx, int srcDy) {
SkIRect dstR = SkIRect::MakeWH(dst->width(), dst->height());
SkIRect srcR = SkIRect::MakeXYWH(srcDx, srcDy, src->width(), src->height());
SkIRect sect;
if (!sect.intersect(dstR, srcR)) {
return false;
}
*dst = SkPixmap(dst->info().makeWH(sect.width(), sect.height()),
dst->addr(sect.fLeft, sect.fTop),
dst->rowBytes());
*src = SkPixmap(src->info().makeWH(sect.width(), sect.height()),
src->addr(SkTMax(0, -srcDx), SkTMax(0, -srcDy)),
src->rowBytes());
return true;
}
sk_sp<SkSpecialImage> ArithmeticImageFilterImpl::onFilterImage(SkSpecialImage* source,
const Context& ctx,
SkIPoint* offset) const {
SkIPoint backgroundOffset = SkIPoint::Make(0, 0);
sk_sp<SkSpecialImage> background(this->filterInput(0, source, ctx, &backgroundOffset));
SkIPoint foregroundOffset = SkIPoint::Make(0, 0);
sk_sp<SkSpecialImage> foreground(this->filterInput(1, source, ctx, &foregroundOffset));
SkIRect foregroundBounds = SkIRect::EmptyIRect();
if (foreground) {
foregroundBounds = SkIRect::MakeXYWH(foregroundOffset.x(), foregroundOffset.y(),
foreground->width(), foreground->height());
}
SkIRect srcBounds = SkIRect::EmptyIRect();
if (background) {
srcBounds = SkIRect::MakeXYWH(backgroundOffset.x(), backgroundOffset.y(),
background->width(), background->height());
}
srcBounds.join(foregroundBounds);
if (srcBounds.isEmpty()) {
return nullptr;
}
SkIRect bounds;
if (!this->applyCropRect(ctx, srcBounds, &bounds)) {
return nullptr;
}
offset->fX = bounds.left();
offset->fY = bounds.top();
#if SK_SUPPORT_GPU
if (source->isTextureBacked()) {
return this->filterImageGPU(source, background, backgroundOffset, foreground,
foregroundOffset, bounds, ctx.outputProperties());
}
#endif
sk_sp<SkSpecialSurface> surf(source->makeSurface(ctx.outputProperties(), bounds.size()));
if (!surf) {
return nullptr;
}
SkCanvas* canvas = surf->getCanvas();
SkASSERT(canvas);
canvas->clear(0x0); // can't count on background to fully clear the background
canvas->translate(SkIntToScalar(-bounds.left()), SkIntToScalar(-bounds.top()));
if (background) {
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
background->draw(canvas, SkIntToScalar(backgroundOffset.fX),
SkIntToScalar(backgroundOffset.fY), &paint);
}
this->drawForeground(canvas, foreground.get(), foregroundBounds);
return surf->makeImageSnapshot();
}
SkIRect ArithmeticImageFilterImpl::onFilterBounds(const SkIRect& src,
const SkMatrix& ctm,
MapDirection dir,
const SkIRect* inputRect) const {
if (kReverse_MapDirection == dir) {
return SkImageFilter::onFilterBounds(src, ctm, dir, inputRect);
}
SkASSERT(2 == this->countInputs());
// result(i1,i2) = k1*i1*i2 + k2*i1 + k3*i2 + k4
// Note that background (getInput(0)) is i2, and foreground (getInput(1)) is i1.
auto i2 = this->getInput(0) ? this->getInput(0)->filterBounds(src, ctm, dir, nullptr) : src;
auto i1 = this->getInput(1) ? this->getInput(1)->filterBounds(src, ctm, dir, nullptr) : src;
// Arithmetic with non-zero k4 may influence the complete filter primitive
// region. [k4 > 0 => result(0,0) = k4 => result(i1,i2) >= k4]
if (!SkScalarNearlyZero(fK[3])) {
i1.join(i2);
return i1;
}
// If both K2 or K3 are non-zero, both i1 and i2 appear.
if (!SkScalarNearlyZero(fK[1]) && !SkScalarNearlyZero(fK[2])) {
i1.join(i2);
return i1;
}
// If k2 is non-zero, output can be produced whenever i1 is non-transparent.
// [k3 = k4 = 0 => result(i1,i2) = k1*i1*i2 + k2*i1 = (k1*i2 + k2)*i1]
if (!SkScalarNearlyZero(fK[1])) {
return i1;
}
// If k3 is non-zero, output can be produced whenever i2 is non-transparent.
// [k2 = k4 = 0 => result(i1,i2) = k1*i1*i2 + k3*i2 = (k1*i1 + k3)*i2]
if (!SkScalarNearlyZero(fK[2])) {
return i2;
}
// If just k1 is non-zero, output will only be produce where both inputs
// are non-transparent. Use intersection.
// [k1 > 0 and k2 = k3 = k4 = 0 => result(i1,i2) = k1*i1*i2]
if (!SkScalarNearlyZero(fK[0])) {
if (!i1.intersect(i2)) {
return SkIRect::MakeEmpty();
}
return i1;
}
// [k1 = k2 = k3 = k4 = 0 => result(i1,i2) = 0]
return SkIRect::MakeEmpty();
}
#if SK_SUPPORT_GPU
sk_sp<SkSpecialImage> ArithmeticImageFilterImpl::filterImageGPU(
SkSpecialImage* source,
sk_sp<SkSpecialImage> background,
const SkIPoint& backgroundOffset,
sk_sp<SkSpecialImage> foreground,
const SkIPoint& foregroundOffset,
const SkIRect& bounds,
const OutputProperties& outputProperties) const {
SkASSERT(source->isTextureBacked());
GrContext* context = source->getContext();
sk_sp<GrTextureProxy> backgroundProxy, foregroundProxy;
if (background) {
backgroundProxy = background->asTextureProxyRef(context);
}
if (foreground) {
foregroundProxy = foreground->asTextureProxyRef(context);
}
GrPaint paint;
std::unique_ptr<GrFragmentProcessor> bgFP;
if (backgroundProxy) {
SkIRect bgSubset = background->subset();
SkMatrix backgroundMatrix = SkMatrix::MakeTrans(
SkIntToScalar(bgSubset.left() - backgroundOffset.fX),
SkIntToScalar(bgSubset.top() - backgroundOffset.fY));
bgFP = GrTextureDomainEffect::Make(
std::move(backgroundProxy), backgroundMatrix,
GrTextureDomain::MakeTexelDomain(bgSubset, GrTextureDomain::kDecal_Mode),
GrTextureDomain::kDecal_Mode, GrSamplerState::Filter::kNearest);
bgFP = GrColorSpaceXformEffect::Make(std::move(bgFP), background->getColorSpace(),
background->alphaType(),
outputProperties.colorSpace());
} else {
bgFP = GrConstColorProcessor::Make(SK_PMColor4fTRANSPARENT,
GrConstColorProcessor::InputMode::kIgnore);
}
if (foregroundProxy) {
SkIRect fgSubset = foreground->subset();
SkMatrix foregroundMatrix = SkMatrix::MakeTrans(
SkIntToScalar(fgSubset.left() - foregroundOffset.fX),
SkIntToScalar(fgSubset.top() - foregroundOffset.fY));
auto foregroundFP = GrTextureDomainEffect::Make(
std::move(foregroundProxy), foregroundMatrix,
GrTextureDomain::MakeTexelDomain(fgSubset, GrTextureDomain::kDecal_Mode),
GrTextureDomain::kDecal_Mode, GrSamplerState::Filter::kNearest);
foregroundFP = GrColorSpaceXformEffect::Make(std::move(foregroundFP),
foreground->getColorSpace(),
foreground->alphaType(),
outputProperties.colorSpace());
paint.addColorFragmentProcessor(std::move(foregroundFP));
static int arithmeticIndex = GrSkSLFP::NewIndex();
ArithmeticFPInputs inputs;
static_assert(sizeof(inputs.k) == sizeof(fK), "struct size mismatch");
memcpy(inputs.k, fK, sizeof(inputs.k));
inputs.enforcePMColor = fEnforcePMColor;
std::unique_ptr<GrFragmentProcessor> xferFP = GrSkSLFP::Make(context,
arithmeticIndex,
"Arithmetic",
SKSL_ARITHMETIC_SRC,
&inputs,
sizeof(inputs));
if (xferFP) {
((GrSkSLFP&) *xferFP).addChild(std::move(bgFP));
paint.addColorFragmentProcessor(std::move(xferFP));
}
} else {
paint.addColorFragmentProcessor(std::move(bgFP));
}
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
SkColorType colorType = outputProperties.colorType();
GrBackendFormat format =
context->priv().caps()->getBackendFormatFromColorType(colorType);
sk_sp<GrRenderTargetContext> renderTargetContext(
context->priv().makeDeferredRenderTargetContext(
format, SkBackingFit::kApprox, bounds.width(), bounds.height(),
SkColorType2GrPixelConfig(colorType),
sk_ref_sp(outputProperties.colorSpace())));
if (!renderTargetContext) {
return nullptr;
}
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(-bounds.left()), SkIntToScalar(-bounds.top()));
renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, matrix,
SkRect::Make(bounds));
return SkSpecialImage::MakeDeferredFromGpu(
context,
SkIRect::MakeWH(bounds.width(), bounds.height()),
kNeedNewImageUniqueID_SpecialImage,
renderTargetContext->asTextureProxyRef(),
renderTargetContext->colorSpaceInfo().refColorSpace());
}
#endif
void ArithmeticImageFilterImpl::drawForeground(SkCanvas* canvas, SkSpecialImage* img,
const SkIRect& fgBounds) const {
SkPixmap dst;
if (!canvas->peekPixels(&dst)) {
return;
}
const SkMatrix& ctm = canvas->getTotalMatrix();
SkASSERT(ctm.getType() <= SkMatrix::kTranslate_Mask);
const int dx = SkScalarRoundToInt(ctm.getTranslateX());
const int dy = SkScalarRoundToInt(ctm.getTranslateY());
// be sure to perform this offset using SkIRect, since it saturates to avoid overflows
const SkIRect fgoffset = fgBounds.makeOffset(dx, dy);
if (img) {
SkBitmap srcBM;
SkPixmap src;
if (!img->getROPixels(&srcBM)) {
return;
}
if (!srcBM.peekPixels(&src)) {
return;
}
auto proc = fEnforcePMColor ? arith_span<true> : arith_span<false>;
SkPixmap tmpDst = dst;
if (intersect(&tmpDst, &src, fgoffset.fLeft, fgoffset.fTop)) {
for (int y = 0; y < tmpDst.height(); ++y) {
proc(fK, tmpDst.writable_addr32(0, y), src.addr32(0, y), tmpDst.width());
}
}
}
// Now apply the mode with transparent-color to the outside of the fg image
SkRegion outside(SkIRect::MakeWH(dst.width(), dst.height()));
outside.op(fgoffset, SkRegion::kDifference_Op);
auto proc = fEnforcePMColor ? arith_transparent<true> : arith_transparent<false>;
for (SkRegion::Iterator iter(outside); !iter.done(); iter.next()) {
const SkIRect r = iter.rect();
for (int y = r.fTop; y < r.fBottom; ++y) {
proc(fK, dst.writable_addr32(r.fLeft, y), r.width());
}
}
}
sk_sp<SkImageFilter> ArithmeticImageFilterImpl::onMakeColorSpace(SkColorSpaceXformer* xformer)
const {
SkASSERT(2 == this->countInputs());
auto background = xformer->apply(this->getInput(0));
auto foreground = xformer->apply(this->getInput(1));
if (background.get() != this->getInput(0) || foreground.get() != this->getInput(1)) {
return SkArithmeticImageFilter::Make(fK[0], fK[1], fK[2], fK[3], fEnforcePMColor,
std::move(background), std::move(foreground),
getCropRectIfSet());
}
return this->refMe();
}
sk_sp<SkImageFilter> SkArithmeticImageFilter::Make(float k1, float k2, float k3, float k4,
bool enforcePMColor,
sk_sp<SkImageFilter> background,
sk_sp<SkImageFilter> foreground,
const SkImageFilter::CropRect* crop) {
if (!SkScalarIsFinite(k1) || !SkScalarIsFinite(k2) || !SkScalarIsFinite(k3) ||
!SkScalarIsFinite(k4)) {
return nullptr;
}
// are we nearly some other "std" mode?
int mode = -1; // illegal mode
if (SkScalarNearlyZero(k1) && SkScalarNearlyEqual(k2, SK_Scalar1) && SkScalarNearlyZero(k3) &&
SkScalarNearlyZero(k4)) {
mode = (int)SkBlendMode::kSrc;
} else if (SkScalarNearlyZero(k1) && SkScalarNearlyZero(k2) &&
SkScalarNearlyEqual(k3, SK_Scalar1) && SkScalarNearlyZero(k4)) {
mode = (int)SkBlendMode::kDst;
} else if (SkScalarNearlyZero(k1) && SkScalarNearlyZero(k2) && SkScalarNearlyZero(k3) &&
SkScalarNearlyZero(k4)) {
mode = (int)SkBlendMode::kClear;
}
if (mode >= 0) {
return SkXfermodeImageFilter::Make((SkBlendMode)mode, std::move(background),
std::move(foreground), crop);
}
sk_sp<SkImageFilter> inputs[2] = {std::move(background), std::move(foreground)};
return sk_sp<SkImageFilter>(
new ArithmeticImageFilterImpl(k1, k2, k3, k4, enforcePMColor, inputs, crop));
}
///////////////////////////////////////////////////////////////////////////////////////////////////
void SkArithmeticImageFilter::RegisterFlattenables() {
SK_REGISTER_FLATTENABLE(ArithmeticImageFilterImpl);
}