blob: bf9b690854bc0ad9e421ad040332b5641c3f9382 [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCanvas.h"
#include "SkArenaAlloc.h"
#include "SkBitmapDevice.h"
#include "SkCanvasPriv.h"
#include "SkClipOpPriv.h"
#include "SkClipStack.h"
#include "SkColorFilter.h"
#include "SkDraw.h"
#include "SkDrawLooper.h"
#include "SkGlyphRun.h"
#include "SkImage.h"
#include "SkImageFilter.h"
#include "SkImageFilterCache.h"
#include "SkImage_Base.h"
#include "SkLatticeIter.h"
#include "SkMSAN.h"
#include "SkMakeUnique.h"
#include "SkMatrixUtils.h"
#include "SkNoDrawCanvas.h"
#include "SkNx.h"
#include "SkPaintPriv.h"
#include "SkPatchUtils.h"
#include "SkPathEffect.h"
#include "SkPicture.h"
#include "SkRRect.h"
#include "SkRasterClip.h"
#include "SkRasterHandleAllocator.h"
#include "SkSpecialImage.h"
#include "SkStrikeCache.h"
#include "SkString.h"
#include "SkSurface_Base.h"
#include "SkTLazy.h"
#include "SkTextBlob.h"
#include "SkTextFormatParams.h"
#include "SkTo.h"
#include "SkTraceEvent.h"
#include "SkVertices.h"
#include <new>
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "SkGr.h"
#endif
#define RETURN_ON_NULL(ptr) do { if (nullptr == (ptr)) return; } while (0)
#define RETURN_ON_FALSE(pred) do { if (!(pred)) return; } while (0)
///////////////////////////////////////////////////////////////////////////////////////////////////
/*
* Return true if the drawing this rect would hit every pixels in the canvas.
*
* Returns false if
* - rect does not contain the canvas' bounds
* - paint is not fill
* - paint would blur or otherwise change the coverage of the rect
*/
bool SkCanvas::wouldOverwriteEntireSurface(const SkRect* rect, const SkPaint* paint,
ShaderOverrideOpacity overrideOpacity) const {
static_assert((int)SkPaintPriv::kNone_ShaderOverrideOpacity ==
(int)kNone_ShaderOverrideOpacity,
"need_matching_enums0");
static_assert((int)SkPaintPriv::kOpaque_ShaderOverrideOpacity ==
(int)kOpaque_ShaderOverrideOpacity,
"need_matching_enums1");
static_assert((int)SkPaintPriv::kNotOpaque_ShaderOverrideOpacity ==
(int)kNotOpaque_ShaderOverrideOpacity,
"need_matching_enums2");
const SkISize size = this->getBaseLayerSize();
const SkRect bounds = SkRect::MakeIWH(size.width(), size.height());
// if we're clipped at all, we can't overwrite the entire surface
{
SkBaseDevice* base = this->getDevice();
SkBaseDevice* top = this->getTopDevice();
if (base != top) {
return false; // we're in a saveLayer, so conservatively don't assume we'll overwrite
}
if (!base->clipIsWideOpen()) {
return false;
}
}
if (rect) {
if (!this->getTotalMatrix().isScaleTranslate()) {
return false; // conservative
}
SkRect devRect;
this->getTotalMatrix().mapRectScaleTranslate(&devRect, *rect);
if (!devRect.contains(bounds)) {
return false;
}
}
if (paint) {
SkPaint::Style paintStyle = paint->getStyle();
if (!(paintStyle == SkPaint::kFill_Style ||
paintStyle == SkPaint::kStrokeAndFill_Style)) {
return false;
}
if (paint->getMaskFilter() || paint->getLooper()
|| paint->getPathEffect() || paint->getImageFilter()) {
return false; // conservative
}
}
return SkPaintPriv::Overwrites(paint, (SkPaintPriv::ShaderOverrideOpacity)overrideOpacity);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
// experimental for faster tiled drawing...
//#define SK_TRACE_SAVERESTORE
#ifdef SK_TRACE_SAVERESTORE
static int gLayerCounter;
static void inc_layer() { ++gLayerCounter; printf("----- inc layer %d\n", gLayerCounter); }
static void dec_layer() { --gLayerCounter; printf("----- dec layer %d\n", gLayerCounter); }
static int gRecCounter;
static void inc_rec() { ++gRecCounter; printf("----- inc rec %d\n", gRecCounter); }
static void dec_rec() { --gRecCounter; printf("----- dec rec %d\n", gRecCounter); }
static int gCanvasCounter;
static void inc_canvas() { ++gCanvasCounter; printf("----- inc canvas %d\n", gCanvasCounter); }
static void dec_canvas() { --gCanvasCounter; printf("----- dec canvas %d\n", gCanvasCounter); }
#else
#define inc_layer()
#define dec_layer()
#define inc_rec()
#define dec_rec()
#define inc_canvas()
#define dec_canvas()
#endif
typedef SkTLazy<SkPaint> SkLazyPaint;
void SkCanvas::predrawNotify(bool willOverwritesEntireSurface) {
if (fSurfaceBase) {
fSurfaceBase->aboutToDraw(willOverwritesEntireSurface
? SkSurface::kDiscard_ContentChangeMode
: SkSurface::kRetain_ContentChangeMode);
}
}
void SkCanvas::predrawNotify(const SkRect* rect, const SkPaint* paint,
ShaderOverrideOpacity overrideOpacity) {
if (fSurfaceBase) {
SkSurface::ContentChangeMode mode = SkSurface::kRetain_ContentChangeMode;
// Since willOverwriteAllPixels() may not be complete free to call, we only do so if
// there is an outstanding snapshot, since w/o that, there will be no copy-on-write
// and therefore we don't care which mode we're in.
//
if (fSurfaceBase->outstandingImageSnapshot()) {
if (this->wouldOverwriteEntireSurface(rect, paint, overrideOpacity)) {
mode = SkSurface::kDiscard_ContentChangeMode;
}
}
fSurfaceBase->aboutToDraw(mode);
}
}
///////////////////////////////////////////////////////////////////////////////
/* This is the record we keep for each SkBaseDevice that the user installs.
The clip/matrix/proc are fields that reflect the top of the save/restore
stack. Whenever the canvas changes, it marks a dirty flag, and then before
these are used (assuming we're not on a layer) we rebuild these cache
values: they reflect the top of the save stack, but translated and clipped
by the device's XY offset and bitmap-bounds.
*/
struct DeviceCM {
DeviceCM* fNext;
sk_sp<SkBaseDevice> fDevice;
SkRasterClip fClip;
std::unique_ptr<const SkPaint> fPaint; // may be null (in the future)
SkMatrix fStashedMatrix; // original CTM; used by imagefilter in saveLayer
sk_sp<SkImage> fClipImage;
SkMatrix fClipMatrix;
DeviceCM(sk_sp<SkBaseDevice> device, const SkPaint* paint, const SkMatrix& stashed,
const SkImage* clipImage, const SkMatrix* clipMatrix)
: fNext(nullptr)
, fDevice(std::move(device))
, fPaint(paint ? skstd::make_unique<SkPaint>(*paint) : nullptr)
, fStashedMatrix(stashed)
, fClipImage(sk_ref_sp(const_cast<SkImage*>(clipImage)))
, fClipMatrix(clipMatrix ? *clipMatrix : SkMatrix::I())
{}
void reset(const SkIRect& bounds) {
SkASSERT(!fPaint);
SkASSERT(!fNext);
SkASSERT(fDevice);
fClip.setRect(bounds);
}
};
namespace {
// Encapsulate state needed to restore from saveBehind()
struct BackImage {
sk_sp<SkSpecialImage> fImage;
SkIPoint fLoc;
};
}
/* This is the record we keep for each save/restore level in the stack.
Since a level optionally copies the matrix and/or stack, we have pointers
for these fields. If the value is copied for this level, the copy is
stored in the ...Storage field, and the pointer points to that. If the
value is not copied for this level, we ignore ...Storage, and just point
at the corresponding value in the previous level in the stack.
*/
class SkCanvas::MCRec {
public:
DeviceCM* fLayer;
/* If there are any layers in the stack, this points to the top-most
one that is at or below this level in the stack (so we know what
bitmap/device to draw into from this level. This value is NOT
reference counted, since the real owner is either our fLayer field,
or a previous one in a lower level.)
*/
DeviceCM* fTopLayer;
std::unique_ptr<BackImage> fBackImage;
SkConservativeClip fRasterClip;
SkMatrix fMatrix;
int fDeferredSaveCount;
MCRec() {
fLayer = nullptr;
fTopLayer = nullptr;
fMatrix.reset();
fDeferredSaveCount = 0;
// don't bother initializing fNext
inc_rec();
}
MCRec(const MCRec& prev) : fRasterClip(prev.fRasterClip), fMatrix(prev.fMatrix) {
fLayer = nullptr;
fTopLayer = prev.fTopLayer;
fDeferredSaveCount = 0;
// don't bother initializing fNext
inc_rec();
}
~MCRec() {
delete fLayer;
dec_rec();
}
void reset(const SkIRect& bounds) {
SkASSERT(fLayer);
SkASSERT(fDeferredSaveCount == 0);
fMatrix.reset();
fRasterClip.setRect(bounds);
fLayer->reset(bounds);
}
};
class SkDrawIter {
public:
SkDrawIter(SkCanvas* canvas)
: fDevice(nullptr), fCurrLayer(canvas->fMCRec->fTopLayer), fPaint(nullptr)
{}
bool next() {
const DeviceCM* rec = fCurrLayer;
if (rec && rec->fDevice) {
fDevice = rec->fDevice.get();
fPaint = rec->fPaint.get();
fCurrLayer = rec->fNext;
// fCurrLayer may be nullptr now
return true;
}
return false;
}
int getX() const { return fDevice->getOrigin().x(); }
int getY() const { return fDevice->getOrigin().y(); }
const SkPaint* getPaint() const { return fPaint; }
SkBaseDevice* fDevice;
private:
const DeviceCM* fCurrLayer;
const SkPaint* fPaint; // May be null.
};
#define FOR_EACH_TOP_DEVICE( code ) \
do { \
DeviceCM* layer = fMCRec->fTopLayer; \
while (layer) { \
SkBaseDevice* device = layer->fDevice.get(); \
if (device) { \
code; \
} \
layer = layer->fNext; \
} \
} while (0)
/////////////////////////////////////////////////////////////////////////////
static SkPaint* set_if_needed(SkLazyPaint* lazy, const SkPaint& orig) {
return lazy->isValid() ? lazy->get() : lazy->set(orig);
}
/**
* If the paint has an imagefilter, but it can be simplified to just a colorfilter, return that
* colorfilter, else return nullptr.
*/
static sk_sp<SkColorFilter> image_to_color_filter(const SkPaint& paint) {
SkImageFilter* imgf = paint.getImageFilter();
if (!imgf) {
return nullptr;
}
SkColorFilter* imgCFPtr;
if (!imgf->asAColorFilter(&imgCFPtr)) {
return nullptr;
}
sk_sp<SkColorFilter> imgCF(imgCFPtr);
SkColorFilter* paintCF = paint.getColorFilter();
if (nullptr == paintCF) {
// there is no existing paint colorfilter, so we can just return the imagefilter's
return imgCF;
}
// The paint has both a colorfilter(paintCF) and an imagefilter-which-is-a-colorfilter(imgCF)
// and we need to combine them into a single colorfilter.
return imgCF->makeComposed(sk_ref_sp(paintCF));
}
/**
* There are many bounds in skia. A circle's bounds is just its center extended by its radius.
* However, if we stroke a circle, then the "bounds" of that is larger, since it will now draw
* outside of its raw-bounds by 1/2 the stroke width. SkPaint has lots of optional
* effects/attributes that can modify the effective bounds of a given primitive -- maskfilters,
* patheffects, stroking, etc. This function takes a raw bounds and a paint, and returns the
* conservative "effective" bounds based on the settings in the paint... with one exception. This
* function does *not* look at the imagefilter, which can also modify the effective bounds. It is
* deliberately ignored.
*/
static const SkRect& apply_paint_to_bounds_sans_imagefilter(const SkPaint& paint,
const SkRect& rawBounds,
SkRect* storage) {
SkPaint tmpUnfiltered(paint);
tmpUnfiltered.setImageFilter(nullptr);
if (tmpUnfiltered.canComputeFastBounds()) {
return tmpUnfiltered.computeFastBounds(rawBounds, storage);
} else {
return rawBounds;
}
}
class AutoDrawLooper {
public:
// "rawBounds" is the original bounds of the primitive about to be drawn, unmodified by the
// paint. It's used to determine the size of the offscreen layer for filters.
// If null, the clip will be used instead.
AutoDrawLooper(SkCanvas* canvas, const SkPaint& paint, bool skipLayerForImageFilter = false,
const SkRect* rawBounds = nullptr) : fOrigPaint(paint) {
fCanvas = canvas;
fPaint = &fOrigPaint;
fSaveCount = canvas->getSaveCount();
fTempLayerForImageFilter = false;
fDone = false;
auto simplifiedCF = image_to_color_filter(fOrigPaint);
if (simplifiedCF) {
SkPaint* paint = set_if_needed(&fLazyPaintInit, fOrigPaint);
paint->setColorFilter(std::move(simplifiedCF));
paint->setImageFilter(nullptr);
fPaint = paint;
}
if (!skipLayerForImageFilter && fPaint->getImageFilter()) {
/**
* We implement ImageFilters for a given draw by creating a layer, then applying the
* imagefilter to the pixels of that layer (its backing surface/image), and then
* we call restore() to xfer that layer to the main canvas.
*
* 1. SaveLayer (with a paint containing the current imagefilter and xfermode)
* 2. Generate the src pixels:
* Remove the imagefilter and the xfermode from the paint that we (AutoDrawLooper)
* return (fPaint). We then draw the primitive (using srcover) into a cleared
* buffer/surface.
* 3. Restore the layer created in #1
* The imagefilter is passed the buffer/surface from the layer (now filled with the
* src pixels of the primitive). It returns a new "filtered" buffer, which we
* draw onto the previous layer using the xfermode from the original paint.
*/
SkPaint tmp;
tmp.setImageFilter(fPaint->refImageFilter());
tmp.setBlendMode(fPaint->getBlendMode());
SkRect storage;
if (rawBounds) {
// Make rawBounds include all paint outsets except for those due to image filters.
rawBounds = &apply_paint_to_bounds_sans_imagefilter(*fPaint, *rawBounds, &storage);
}
(void)canvas->internalSaveLayer(SkCanvas::SaveLayerRec(rawBounds, &tmp),
SkCanvas::kFullLayer_SaveLayerStrategy);
fTempLayerForImageFilter = true;
// we remove the imagefilter/xfermode inside doNext()
}
if (SkDrawLooper* looper = paint.getLooper()) {
fLooperContext = looper->makeContext(canvas, &fAlloc);
fIsSimple = false;
} else {
fLooperContext = nullptr;
// can we be marked as simple?
fIsSimple = !fTempLayerForImageFilter;
}
}
~AutoDrawLooper() {
if (fTempLayerForImageFilter) {
fCanvas->internalRestore();
}
SkASSERT(fCanvas->getSaveCount() == fSaveCount);
}
const SkPaint& paint() const {
SkASSERT(fPaint);
SkASSERT(fPaint->getDrawLooper() == nullptr); // we should have cleared this
return *fPaint;
}
bool next() {
if (fDone) {
return false;
} else if (fIsSimple) {
fDone = true;
return !fPaint->nothingToDraw();
} else {
return this->doNext();
}
}
private:
SkLazyPaint fLazyPaintInit; // base paint storage in case we need to modify it
SkLazyPaint fLazyPaintPerLooper; // per-draw-looper storage, so the looper can modify it
SkCanvas* fCanvas;
const SkPaint& fOrigPaint;
const SkPaint* fPaint;
int fSaveCount;
bool fTempLayerForImageFilter;
bool fDone;
bool fIsSimple;
SkDrawLooper::Context* fLooperContext;
SkSTArenaAlloc<48> fAlloc;
bool doNext();
};
bool AutoDrawLooper::doNext() {
fPaint = nullptr;
SkASSERT(!fIsSimple);
SkASSERT(fLooperContext || fTempLayerForImageFilter);
SkPaint* paint = fLazyPaintPerLooper.set(fLazyPaintInit.isValid() ?
*fLazyPaintInit.get() : fOrigPaint);
// never want our downstream clients (i.e. devices) to see loopers
paint->setDrawLooper(nullptr);
if (fTempLayerForImageFilter) {
paint->setImageFilter(nullptr);
paint->setBlendMode(SkBlendMode::kSrcOver);
}
if (fLooperContext && !fLooperContext->next(fCanvas, paint)) {
fDone = true;
return false;
}
fPaint = paint;
// if we only came in here for the imagefilter, mark us as done
if (!fLooperContext) {
fDone = true;
}
return true;
}
////////// macros to place around the internal draw calls //////////////////
#define LOOPER_BEGIN_DRAWBITMAP(paint, skipLayerForFilter, bounds) \
this->predrawNotify(); \
AutoDrawLooper looper(this, paint, skipLayerForFilter, bounds); \
while (looper.next()) { \
SkDrawIter iter(this);
#define LOOPER_BEGIN_DRAWDEVICE(paint) \
this->predrawNotify(); \
AutoDrawLooper looper(this, paint, true); \
while (looper.next()) { \
SkDrawIter iter(this);
#define LOOPER_BEGIN(paint, bounds) \
this->predrawNotify(); \
AutoDrawLooper looper(this, paint, false, bounds); \
while (looper.next()) { \
SkDrawIter iter(this);
#define LOOPER_BEGIN_CHECK_COMPLETE_OVERWRITE(paint, bounds, auxOpaque) \
this->predrawNotify(bounds, &paint, auxOpaque); \
AutoDrawLooper looper(this, paint, false, bounds); \
while (looper.next()) { \
SkDrawIter iter(this);
#define LOOPER_END }
////////////////////////////////////////////////////////////////////////////
static inline SkRect qr_clip_bounds(const SkIRect& bounds) {
if (bounds.isEmpty()) {
return SkRect::MakeEmpty();
}
// Expand bounds out by 1 in case we are anti-aliasing. We store the
// bounds as floats to enable a faster quick reject implementation.
SkRect dst;
SkNx_cast<float>(Sk4i::Load(&bounds.fLeft) + Sk4i(-1,-1,1,1)).store(&dst.fLeft);
return dst;
}
void SkCanvas::resetForNextPicture(const SkIRect& bounds) {
this->restoreToCount(1);
fMCRec->reset(bounds);
// We're peering through a lot of structs here. Only at this scope do we
// know that the device is a SkNoPixelsDevice.
static_cast<SkNoPixelsDevice*>(fMCRec->fLayer->fDevice.get())->resetForNextPicture(bounds);
fDeviceClipBounds = qr_clip_bounds(bounds);
fIsScaleTranslate = true;
}
void SkCanvas::init(sk_sp<SkBaseDevice> device) {
fAllowSimplifyClip = false;
fSaveCount = 1;
fMCRec = (MCRec*)fMCStack.push_back();
new (fMCRec) MCRec;
fMCRec->fRasterClip.setDeviceClipRestriction(&fClipRestrictionRect);
fIsScaleTranslate = true;
SkASSERT(sizeof(DeviceCM) <= sizeof(fDeviceCMStorage));
fMCRec->fLayer = (DeviceCM*)fDeviceCMStorage;
new (fDeviceCMStorage) DeviceCM(device, nullptr, fMCRec->fMatrix, nullptr, nullptr);
fMCRec->fTopLayer = fMCRec->fLayer;
fSurfaceBase = nullptr;
if (device) {
// The root device and the canvas should always have the same pixel geometry
SkASSERT(fProps.pixelGeometry() == device->surfaceProps().pixelGeometry());
fMCRec->fRasterClip.setRect(device->getGlobalBounds());
fDeviceClipBounds = qr_clip_bounds(device->getGlobalBounds());
device->androidFramework_setDeviceClipRestriction(&fClipRestrictionRect);
}
fScratchGlyphRunBuilder = skstd::make_unique<SkGlyphRunBuilder>();
}
SkCanvas::SkCanvas()
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(SkSurfaceProps::kLegacyFontHost_InitType)
{
inc_canvas();
this->init(nullptr);
}
SkCanvas::SkCanvas(int width, int height, const SkSurfaceProps* props)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(SkSurfacePropsCopyOrDefault(props))
{
inc_canvas();
this->init(sk_make_sp<SkNoPixelsDevice>(
SkIRect::MakeWH(SkTMax(width, 0), SkTMax(height, 0)), fProps));
}
SkCanvas::SkCanvas(const SkIRect& bounds)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(SkSurfaceProps::kLegacyFontHost_InitType)
{
inc_canvas();
SkIRect r = bounds.isEmpty() ? SkIRect::MakeEmpty() : bounds;
this->init(sk_make_sp<SkNoPixelsDevice>(r, fProps));
}
SkCanvas::SkCanvas(sk_sp<SkBaseDevice> device)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(device->surfaceProps())
{
inc_canvas();
this->init(device);
}
SkCanvas::SkCanvas(const SkBitmap& bitmap, const SkSurfaceProps& props)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(props)
{
inc_canvas();
sk_sp<SkBaseDevice> device(new SkBitmapDevice(bitmap, fProps, nullptr, nullptr));
this->init(device);
}
SkCanvas::SkCanvas(const SkBitmap& bitmap, std::unique_ptr<SkRasterHandleAllocator> alloc,
SkRasterHandleAllocator::Handle hndl)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(SkSurfaceProps::kLegacyFontHost_InitType)
, fAllocator(std::move(alloc))
{
inc_canvas();
sk_sp<SkBaseDevice> device(new SkBitmapDevice(bitmap, fProps, hndl, nullptr));
this->init(device);
}
SkCanvas::SkCanvas(const SkBitmap& bitmap) : SkCanvas(bitmap, nullptr, nullptr) {}
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
SkCanvas::SkCanvas(const SkBitmap& bitmap, ColorBehavior)
: fMCStack(sizeof(MCRec), fMCRecStorage, sizeof(fMCRecStorage))
, fProps(SkSurfaceProps::kLegacyFontHost_InitType)
, fAllocator(nullptr)
{
inc_canvas();
SkBitmap tmp(bitmap);
*const_cast<SkImageInfo*>(&tmp.info()) = tmp.info().makeColorSpace(nullptr);
sk_sp<SkBaseDevice> device(new SkBitmapDevice(tmp, fProps, nullptr, nullptr));
this->init(device);
}
#endif
SkCanvas::~SkCanvas() {
// free up the contents of our deque
this->restoreToCount(1); // restore everything but the last
this->internalRestore(); // restore the last, since we're going away
dec_canvas();
}
///////////////////////////////////////////////////////////////////////////////
void SkCanvas::flush() {
this->onFlush();
}
void SkCanvas::onFlush() {
SkBaseDevice* device = this->getDevice();
if (device) {
device->flush();
}
}
SkISize SkCanvas::getBaseLayerSize() const {
SkBaseDevice* d = this->getDevice();
return d ? SkISize::Make(d->width(), d->height()) : SkISize::Make(0, 0);
}
SkIRect SkCanvas::getTopLayerBounds() const {
SkBaseDevice* d = this->getTopDevice();
if (!d) {
return SkIRect::MakeEmpty();
}
return SkIRect::MakeXYWH(d->getOrigin().x(), d->getOrigin().y(), d->width(), d->height());
}
SkBaseDevice* SkCanvas::getDevice() const {
// return root device
MCRec* rec = (MCRec*) fMCStack.front();
SkASSERT(rec && rec->fLayer);
return rec->fLayer->fDevice.get();
}
SkBaseDevice* SkCanvas::getTopDevice() const {
return fMCRec->fTopLayer->fDevice.get();
}
bool SkCanvas::readPixels(const SkPixmap& pm, int x, int y) {
SkBaseDevice* device = this->getDevice();
return device && pm.addr() && device->readPixels(pm, x, y);
}
bool SkCanvas::readPixels(const SkImageInfo& dstInfo, void* dstP, size_t rowBytes, int x, int y) {
return this->readPixels({ dstInfo, dstP, rowBytes}, x, y);
}
bool SkCanvas::readPixels(const SkBitmap& bm, int x, int y) {
SkPixmap pm;
return bm.peekPixels(&pm) && this->readPixels(pm, x, y);
}
bool SkCanvas::writePixels(const SkBitmap& bitmap, int x, int y) {
SkPixmap pm;
if (bitmap.peekPixels(&pm)) {
return this->writePixels(pm.info(), pm.addr(), pm.rowBytes(), x, y);
}
return false;
}
bool SkCanvas::writePixels(const SkImageInfo& srcInfo, const void* pixels, size_t rowBytes,
int x, int y) {
SkBaseDevice* device = this->getDevice();
if (!device) {
return false;
}
// This check gives us an early out and prevents generation ID churn on the surface.
// This is purely optional: it is a subset of the checks performed by SkWritePixelsRec.
SkIRect srcRect = SkIRect::MakeXYWH(x, y, srcInfo.width(), srcInfo.height());
if (!srcRect.intersect(0, 0, device->width(), device->height())) {
return false;
}
// Tell our owning surface to bump its generation ID.
const bool completeOverwrite =
srcRect.size() == SkISize::Make(device->width(), device->height());
this->predrawNotify(completeOverwrite);
// This can still fail, most notably in the case of a invalid color type or alpha type
// conversion. We could pull those checks into this function and avoid the unnecessary
// generation ID bump. But then we would be performing those checks twice, since they
// are also necessary at the bitmap/pixmap entry points.
return device->writePixels({srcInfo, pixels, rowBytes}, x, y);
}
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::checkForDeferredSave() {
if (fMCRec->fDeferredSaveCount > 0) {
this->doSave();
}
}
int SkCanvas::getSaveCount() const {
#ifdef SK_DEBUG
int count = 0;
SkDeque::Iter iter(fMCStack, SkDeque::Iter::kFront_IterStart);
for (;;) {
const MCRec* rec = (const MCRec*)iter.next();
if (!rec) {
break;
}
count += 1 + rec->fDeferredSaveCount;
}
SkASSERT(count == fSaveCount);
#endif
return fSaveCount;
}
int SkCanvas::save() {
fSaveCount += 1;
fMCRec->fDeferredSaveCount += 1;
return this->getSaveCount() - 1; // return our prev value
}
void SkCanvas::doSave() {
this->willSave();
SkASSERT(fMCRec->fDeferredSaveCount > 0);
fMCRec->fDeferredSaveCount -= 1;
this->internalSave();
}
void SkCanvas::restore() {
if (fMCRec->fDeferredSaveCount > 0) {
SkASSERT(fSaveCount > 1);
fSaveCount -= 1;
fMCRec->fDeferredSaveCount -= 1;
} else {
// check for underflow
if (fMCStack.count() > 1) {
this->willRestore();
SkASSERT(fSaveCount > 1);
fSaveCount -= 1;
this->internalRestore();
this->didRestore();
}
}
}
void SkCanvas::restoreToCount(int count) {
// sanity check
if (count < 1) {
count = 1;
}
int n = this->getSaveCount() - count;
for (int i = 0; i < n; ++i) {
this->restore();
}
}
void SkCanvas::internalSave() {
MCRec* newTop = (MCRec*)fMCStack.push_back();
new (newTop) MCRec(*fMCRec); // balanced in restore()
fMCRec = newTop;
FOR_EACH_TOP_DEVICE(device->save());
}
bool SkCanvas::BoundsAffectsClip(SaveLayerFlags saveLayerFlags) {
return !(saveLayerFlags & SkCanvasPriv::kDontClipToLayer_SaveLayerFlag);
}
bool SkCanvas::clipRectBounds(const SkRect* bounds, SaveLayerFlags saveLayerFlags,
SkIRect* intersection, const SkImageFilter* imageFilter) {
SkIRect clipBounds = this->getDeviceClipBounds();
if (clipBounds.isEmpty()) {
return false;
}
const SkMatrix& ctm = fMCRec->fMatrix; // this->getTotalMatrix()
if (imageFilter && bounds && !imageFilter->canComputeFastBounds()) {
// If the image filter DAG affects transparent black then we will need to render
// out to the clip bounds
bounds = nullptr;
}
SkIRect inputSaveLayerBounds;
if (bounds) {
SkRect r;
ctm.mapRect(&r, *bounds);
r.roundOut(&inputSaveLayerBounds);
} else { // no user bounds, so just use the clip
inputSaveLayerBounds = clipBounds;
}
if (imageFilter) {
// expand the clip bounds by the image filter DAG to include extra content that might
// be required by the image filters.
clipBounds = imageFilter->filterBounds(clipBounds, ctm,
SkImageFilter::kReverse_MapDirection,
&inputSaveLayerBounds);
}
SkIRect clippedSaveLayerBounds;
if (bounds) {
// For better or for worse, user bounds currently act as a hard clip on the layer's
// extent (i.e., they implement the CSS filter-effects 'filter region' feature).
clippedSaveLayerBounds = inputSaveLayerBounds;
} else {
// If there are no user bounds, we don't want to artificially restrict the resulting
// layer bounds, so allow the expanded clip bounds free reign.
clippedSaveLayerBounds = clipBounds;
}
// early exit if the layer's bounds are clipped out
if (!clippedSaveLayerBounds.intersect(clipBounds)) {
if (BoundsAffectsClip(saveLayerFlags)) {
fMCRec->fTopLayer->fDevice->clipRegion(SkRegion(), SkClipOp::kIntersect); // empty
fMCRec->fRasterClip.setEmpty();
fDeviceClipBounds.setEmpty();
}
return false;
}
SkASSERT(!clippedSaveLayerBounds.isEmpty());
if (BoundsAffectsClip(saveLayerFlags)) {
// Simplify the current clips since they will be applied properly during restore()
fMCRec->fRasterClip.setRect(clippedSaveLayerBounds);
fDeviceClipBounds = qr_clip_bounds(clippedSaveLayerBounds);
}
if (intersection) {
*intersection = clippedSaveLayerBounds;
}
return true;
}
int SkCanvas::saveLayer(const SkRect* bounds, const SkPaint* paint) {
return this->saveLayer(SaveLayerRec(bounds, paint, 0));
}
int SkCanvas::saveLayer(const SaveLayerRec& rec) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (rec.fPaint && rec.fPaint->nothingToDraw()) {
// no need for the layer (or any of the draws until the matching restore()
this->save();
this->clipRect({0,0,0,0});
} else {
SaveLayerStrategy strategy = this->getSaveLayerStrategy(rec);
fSaveCount += 1;
this->internalSaveLayer(rec, strategy);
}
return this->getSaveCount() - 1;
}
int SkCanvas::only_axis_aligned_saveBehind(const SkRect* bounds) {
if (bounds && !this->getLocalClipBounds().intersects(*bounds)) {
// Assuming clips never expand, if the request bounds is outside of the current clip
// there is no need to copy/restore the area, so just devolve back to a regular save.
this->save();
} else {
bool doTheWork = this->onDoSaveBehind(bounds);
fSaveCount += 1;
this->internalSave();
if (doTheWork) {
this->internalSaveBehind(bounds);
}
}
return this->getSaveCount() - 1;
}
void SkCanvas::DrawDeviceWithFilter(SkBaseDevice* src, const SkImageFilter* filter,
SkBaseDevice* dst, const SkIPoint& dstOrigin,
const SkMatrix& ctm) {
SkDraw draw;
SkRasterClip rc;
rc.setRect(SkIRect::MakeWH(dst->width(), dst->height()));
if (!dst->accessPixels(&draw.fDst)) {
draw.fDst.reset(dst->imageInfo(), nullptr, 0);
}
draw.fMatrix = &SkMatrix::I();
draw.fRC = &rc;
SkPaint p;
if (filter) {
p.setImageFilter(filter->makeWithLocalMatrix(ctm));
}
int x = src->getOrigin().x() - dstOrigin.x();
int y = src->getOrigin().y() - dstOrigin.y();
auto special = src->snapSpecial();
if (special) {
dst->drawSpecial(special.get(), x, y, p, nullptr, SkMatrix::I());
}
}
static SkImageInfo make_layer_info(const SkImageInfo& prev, int w, int h, const SkPaint* paint) {
// Need to force L32 for now if we have an image filter.
// If filters ever support other colortypes, e.g. sRGB or F16, we can remove this check.
if (paint && paint->getImageFilter()) {
return SkImageInfo::MakeN32Premul(w, h);
}
SkColorType ct = prev.colorType();
if (prev.bytesPerPixel() <= 4) {
// "Upgrade" A8, G8, 565, 4444, 1010102, 101010x, and 888x to 8888,
// ensuring plenty of alpha bits for the layer, perhaps losing some color bits in return.
ct = kN32_SkColorType;
}
return SkImageInfo::Make(w, h, ct, kPremul_SkAlphaType, prev.refColorSpace());
}
void SkCanvas::internalSaveLayer(const SaveLayerRec& rec, SaveLayerStrategy strategy) {
TRACE_EVENT0("skia", TRACE_FUNC);
const SkRect* bounds = rec.fBounds;
const SkPaint* paint = rec.fPaint;
SaveLayerFlags saveLayerFlags = rec.fSaveLayerFlags;
SkLazyPaint lazyP;
SkImageFilter* imageFilter = paint ? paint->getImageFilter() : nullptr;
SkMatrix stashedMatrix = fMCRec->fMatrix;
MCRec* modifiedRec = nullptr;
SkMatrix remainder;
SkSize scale;
/*
* ImageFilters (so far) do not correctly handle matrices (CTM) that contain rotation/skew/etc.
* but they do handle scaling. To accommodate this, we do the following:
*
* 1. Stash off the current CTM
* 2. Decompose the CTM into SCALE and REMAINDER
* 3. Wack the CTM to be just SCALE, and wrap the imagefilter with a MatrixImageFilter that
* contains the REMAINDER
* 4. Proceed as usual, allowing the client to draw into the layer (now with a scale-only CTM)
* 5. During restore, we process the MatrixImageFilter, which applies REMAINDER to the output
* of the original imagefilter, and draw that (via drawSprite)
* 6. Unwack the CTM to its original state (i.e. stashedMatrix)
*
* Perhaps in the future we could augment #5 to apply REMAINDER as part of the draw (no longer
* a sprite operation) to avoid the extra buffer/overhead of MatrixImageFilter.
*/
if (imageFilter && !stashedMatrix.isScaleTranslate() && !imageFilter->canHandleComplexCTM() &&
stashedMatrix.decomposeScale(&scale, &remainder))
{
// We will restore the matrix (which we are overwriting here) in restore via fStashedMatrix
modifiedRec = fMCRec;
this->internalSetMatrix(SkMatrix::MakeScale(scale.width(), scale.height()));
SkPaint* p = lazyP.set(*paint);
p->setImageFilter(SkImageFilter::MakeMatrixFilter(remainder,
SkFilterQuality::kLow_SkFilterQuality,
sk_ref_sp(imageFilter)));
imageFilter = p->getImageFilter();
paint = p;
}
// do this before we create the layer. We don't call the public save() since
// that would invoke a possibly overridden virtual
this->internalSave();
SkIRect ir;
if (!this->clipRectBounds(bounds, saveLayerFlags, &ir, imageFilter)) {
if (modifiedRec) {
// In this case there will be no layer in which to stash the matrix so we need to
// revert the prior MCRec to its earlier state.
modifiedRec->fMatrix = stashedMatrix;
}
return;
}
// FIXME: do willSaveLayer() overriders returning kNoLayer_SaveLayerStrategy really care about
// the clipRectBounds() call above?
if (kNoLayer_SaveLayerStrategy == strategy) {
return;
}
SkPixelGeometry geo = fProps.pixelGeometry();
if (paint) {
// TODO: perhaps add a query to filters so we might preserve opaqueness...
if (paint->getImageFilter() || paint->getColorFilter()) {
geo = kUnknown_SkPixelGeometry;
}
}
SkBaseDevice* priorDevice = this->getTopDevice();
if (nullptr == priorDevice) { // Do we still need this check???
SkDebugf("Unable to find device for layer.");
return;
}
SkImageInfo info = make_layer_info(priorDevice->imageInfo(), ir.width(), ir.height(), paint);
sk_sp<SkBaseDevice> newDevice;
{
const bool preserveLCDText = kOpaque_SkAlphaType == info.alphaType();
const SkBaseDevice::TileUsage usage = SkBaseDevice::kNever_TileUsage;
const bool trackCoverage =
SkToBool(saveLayerFlags & kMaskAgainstCoverage_EXPERIMENTAL_DONT_USE_SaveLayerFlag);
const SkBaseDevice::CreateInfo createInfo = SkBaseDevice::CreateInfo(info, usage, geo,
preserveLCDText,
trackCoverage,
fAllocator.get());
newDevice.reset(priorDevice->onCreateDevice(createInfo, paint));
if (!newDevice) {
return;
}
}
DeviceCM* layer = new DeviceCM(newDevice, paint, stashedMatrix, rec.fClipMask, rec.fClipMatrix);
// only have a "next" if this new layer doesn't affect the clip (rare)
layer->fNext = BoundsAffectsClip(saveLayerFlags) ? nullptr : fMCRec->fTopLayer;
fMCRec->fLayer = layer;
fMCRec->fTopLayer = layer; // this field is NOT an owner of layer
if ((rec.fSaveLayerFlags & kInitWithPrevious_SaveLayerFlag) || rec.fBackdrop) {
DrawDeviceWithFilter(priorDevice, rec.fBackdrop, newDevice.get(), { ir.fLeft, ir.fTop },
fMCRec->fMatrix);
}
newDevice->setOrigin(fMCRec->fMatrix, ir.fLeft, ir.fTop);
newDevice->androidFramework_setDeviceClipRestriction(&fClipRestrictionRect);
if (layer->fNext) {
// need to punch a hole in the previous device, so we don't draw there, given that
// the new top-layer will allow drawing to happen "below" it.
SkRegion hole(ir);
do {
layer = layer->fNext;
layer->fDevice->clipRegion(hole, SkClipOp::kDifference);
} while (layer->fNext);
}
}
int SkCanvas::saveLayerAlpha(const SkRect* bounds, U8CPU alpha) {
if (0xFF == alpha) {
return this->saveLayer(bounds, nullptr);
} else {
SkPaint tmpPaint;
tmpPaint.setAlpha(alpha);
return this->saveLayer(bounds, &tmpPaint);
}
}
void SkCanvas::internalSaveBehind(const SkRect* localBounds) {
SkIRect devBounds;
if (localBounds) {
SkRect tmp;
fMCRec->fMatrix.mapRect(&tmp, *localBounds);
if (!devBounds.intersect(tmp.round(), this->getDeviceClipBounds())) {
devBounds.setEmpty();
}
} else {
devBounds = this->getDeviceClipBounds();
}
if (devBounds.isEmpty()) {
return;
}
SkBaseDevice* device = this->getTopDevice();
if (nullptr == device) { // Do we still need this check???
return;
}
// need the bounds relative to the device itself
devBounds.offset(-device->fOrigin.fX, -device->fOrigin.fY);
auto backImage = device->snapBackImage(devBounds);
if (!backImage) {
return;
}
// we really need the save, so we can wack the fMCRec
this->checkForDeferredSave();
fMCRec->fBackImage.reset(new BackImage{std::move(backImage), devBounds.topLeft()});
SkPaint paint;
paint.setBlendMode(SkBlendMode::kClear);
if (localBounds) {
this->drawRect(*localBounds, paint);
} else {
this->drawPaint(paint);
}
}
void SkCanvas::internalRestore() {
SkASSERT(fMCStack.count() != 0);
// reserve our layer (if any)
DeviceCM* layer = fMCRec->fLayer; // may be null
// now detach it from fMCRec so we can pop(). Gets freed after its drawn
fMCRec->fLayer = nullptr;
// move this out before we do the actual restore
auto backImage = std::move(fMCRec->fBackImage);
// now do the normal restore()
fMCRec->~MCRec(); // balanced in save()
fMCStack.pop_back();
fMCRec = (MCRec*)fMCStack.back();
if (fMCRec) {
FOR_EACH_TOP_DEVICE(device->restore(fMCRec->fMatrix));
}
if (backImage) {
SkPaint paint;
paint.setBlendMode(SkBlendMode::kDstOver);
const int x = backImage->fLoc.x();
const int y = backImage->fLoc.y();
this->getTopDevice()->drawSpecial(backImage->fImage.get(), x, y, paint,
nullptr, SkMatrix::I());
}
/* Time to draw the layer's offscreen. We can't call the public drawSprite,
since if we're being recorded, we don't want to record this (the
recorder will have already recorded the restore).
*/
if (layer) {
if (fMCRec) {
const SkIPoint& origin = layer->fDevice->getOrigin();
layer->fDevice->setImmutable();
this->internalDrawDevice(layer->fDevice.get(), origin.x(), origin.y(),
layer->fPaint.get(),
layer->fClipImage.get(), layer->fClipMatrix);
// restore what we smashed in internalSaveLayer
this->internalSetMatrix(layer->fStashedMatrix);
// reset this, since internalDrawDevice will have set it to true
delete layer;
} else {
// we're at the root
SkASSERT(layer == (void*)fDeviceCMStorage);
layer->~DeviceCM();
// no need to update fMCRec, 'cause we're killing the canvas
}
}
if (fMCRec) {
fIsScaleTranslate = fMCRec->fMatrix.isScaleTranslate();
fDeviceClipBounds = qr_clip_bounds(fMCRec->fRasterClip.getBounds());
}
}
sk_sp<SkSurface> SkCanvas::makeSurface(const SkImageInfo& info, const SkSurfaceProps* props) {
if (nullptr == props) {
props = &fProps;
}
return this->onNewSurface(info, *props);
}
sk_sp<SkSurface> SkCanvas::onNewSurface(const SkImageInfo& info, const SkSurfaceProps& props) {
SkBaseDevice* dev = this->getDevice();
return dev ? dev->makeSurface(info, props) : nullptr;
}
SkImageInfo SkCanvas::imageInfo() const {
return this->onImageInfo();
}
SkImageInfo SkCanvas::onImageInfo() const {
SkBaseDevice* dev = this->getDevice();
if (dev) {
return dev->imageInfo();
} else {
return SkImageInfo::MakeUnknown(0, 0);
}
}
bool SkCanvas::getProps(SkSurfaceProps* props) const {
return this->onGetProps(props);
}
bool SkCanvas::onGetProps(SkSurfaceProps* props) const {
SkBaseDevice* dev = this->getDevice();
if (dev) {
if (props) {
*props = fProps;
}
return true;
} else {
return false;
}
}
bool SkCanvas::peekPixels(SkPixmap* pmap) {
return this->onPeekPixels(pmap);
}
bool SkCanvas::onPeekPixels(SkPixmap* pmap) {
SkBaseDevice* dev = this->getDevice();
return dev && dev->peekPixels(pmap);
}
void* SkCanvas::accessTopLayerPixels(SkImageInfo* info, size_t* rowBytes, SkIPoint* origin) {
SkPixmap pmap;
if (!this->onAccessTopLayerPixels(&pmap)) {
return nullptr;
}
if (info) {
*info = pmap.info();
}
if (rowBytes) {
*rowBytes = pmap.rowBytes();
}
if (origin) {
*origin = this->getTopDevice()->getOrigin();
}
return pmap.writable_addr();
}
bool SkCanvas::onAccessTopLayerPixels(SkPixmap* pmap) {
SkBaseDevice* dev = this->getTopDevice();
return dev && dev->accessPixels(pmap);
}
/////////////////////////////////////////////////////////////////////////////
void SkCanvas::internalDrawDevice(SkBaseDevice* srcDev, int x, int y, const SkPaint* paint,
SkImage* clipImage, const SkMatrix& clipMatrix) {
SkPaint tmp;
if (nullptr == paint) {
paint = &tmp;
}
LOOPER_BEGIN_DRAWDEVICE(*paint)
while (iter.next()) {
SkBaseDevice* dstDev = iter.fDevice;
paint = &looper.paint();
SkImageFilter* filter = paint->getImageFilter();
SkIPoint pos = { x - iter.getX(), y - iter.getY() };
if (filter || clipImage) {
sk_sp<SkSpecialImage> specialImage = srcDev->snapSpecial();
if (specialImage) {
dstDev->drawSpecial(specialImage.get(), pos.x(), pos.y(), *paint,
clipImage, clipMatrix);
}
} else {
dstDev->drawDevice(srcDev, pos.x(), pos.y(), *paint);
}
}
LOOPER_END
}
/////////////////////////////////////////////////////////////////////////////
void SkCanvas::translate(SkScalar dx, SkScalar dy) {
if (dx || dy) {
this->checkForDeferredSave();
fMCRec->fMatrix.preTranslate(dx,dy);
// Translate shouldn't affect the is-scale-translateness of the matrix.
SkASSERT(fIsScaleTranslate == fMCRec->fMatrix.isScaleTranslate());
FOR_EACH_TOP_DEVICE(device->setGlobalCTM(fMCRec->fMatrix));
this->didTranslate(dx,dy);
}
}
void SkCanvas::scale(SkScalar sx, SkScalar sy) {
SkMatrix m;
m.setScale(sx, sy);
this->concat(m);
}
void SkCanvas::rotate(SkScalar degrees) {
SkMatrix m;
m.setRotate(degrees);
this->concat(m);
}
void SkCanvas::rotate(SkScalar degrees, SkScalar px, SkScalar py) {
SkMatrix m;
m.setRotate(degrees, px, py);
this->concat(m);
}
void SkCanvas::skew(SkScalar sx, SkScalar sy) {
SkMatrix m;
m.setSkew(sx, sy);
this->concat(m);
}
void SkCanvas::concat(const SkMatrix& matrix) {
if (matrix.isIdentity()) {
return;
}
this->checkForDeferredSave();
fMCRec->fMatrix.preConcat(matrix);
fIsScaleTranslate = fMCRec->fMatrix.isScaleTranslate();
FOR_EACH_TOP_DEVICE(device->setGlobalCTM(fMCRec->fMatrix));
this->didConcat(matrix);
}
void SkCanvas::internalSetMatrix(const SkMatrix& matrix) {
fMCRec->fMatrix = matrix;
fIsScaleTranslate = matrix.isScaleTranslate();
FOR_EACH_TOP_DEVICE(device->setGlobalCTM(fMCRec->fMatrix));
}
void SkCanvas::setMatrix(const SkMatrix& matrix) {
this->checkForDeferredSave();
this->internalSetMatrix(matrix);
this->didSetMatrix(matrix);
}
void SkCanvas::resetMatrix() {
this->setMatrix(SkMatrix::I());
}
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::clipRect(const SkRect& rect, SkClipOp op, bool doAA) {
if (!rect.isFinite()) {
return;
}
this->checkForDeferredSave();
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
this->onClipRect(rect, op, edgeStyle);
}
void SkCanvas::onClipRect(const SkRect& rect, SkClipOp op, ClipEdgeStyle edgeStyle) {
const bool isAA = kSoft_ClipEdgeStyle == edgeStyle;
FOR_EACH_TOP_DEVICE(device->clipRect(rect, op, isAA));
AutoValidateClip avc(this);
fMCRec->fRasterClip.opRect(rect, fMCRec->fMatrix, this->getTopLayerBounds(), (SkRegion::Op)op,
isAA);
fDeviceClipBounds = qr_clip_bounds(fMCRec->fRasterClip.getBounds());
}
void SkCanvas::androidFramework_setDeviceClipRestriction(const SkIRect& rect) {
fClipRestrictionRect = rect;
if (fClipRestrictionRect.isEmpty()) {
// we notify the device, but we *dont* resolve deferred saves (since we're just
// removing the restriction if the rect is empty. how I hate this api.
FOR_EACH_TOP_DEVICE(device->androidFramework_setDeviceClipRestriction(&fClipRestrictionRect));
} else {
this->checkForDeferredSave();
FOR_EACH_TOP_DEVICE(device->androidFramework_setDeviceClipRestriction(&fClipRestrictionRect));
AutoValidateClip avc(this);
fMCRec->fRasterClip.opIRect(fClipRestrictionRect, SkRegion::kIntersect_Op);
fDeviceClipBounds = qr_clip_bounds(fMCRec->fRasterClip.getBounds());
}
}
void SkCanvas::clipRRect(const SkRRect& rrect, SkClipOp op, bool doAA) {
this->checkForDeferredSave();
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
if (rrect.isRect()) {
this->onClipRect(rrect.getBounds(), op, edgeStyle);
} else {
this->onClipRRect(rrect, op, edgeStyle);
}
}
void SkCanvas::onClipRRect(const SkRRect& rrect, SkClipOp op, ClipEdgeStyle edgeStyle) {
AutoValidateClip avc(this);
bool isAA = kSoft_ClipEdgeStyle == edgeStyle;
FOR_EACH_TOP_DEVICE(device->clipRRect(rrect, op, isAA));
fMCRec->fRasterClip.opRRect(rrect, fMCRec->fMatrix, this->getTopLayerBounds(), (SkRegion::Op)op,
isAA);
fDeviceClipBounds = qr_clip_bounds(fMCRec->fRasterClip.getBounds());
}
void SkCanvas::clipPath(const SkPath& path, SkClipOp op, bool doAA) {
this->checkForDeferredSave();
ClipEdgeStyle edgeStyle = doAA ? kSoft_ClipEdgeStyle : kHard_ClipEdgeStyle;
if (!path.isInverseFillType() && fMCRec->fMatrix.rectStaysRect()) {
SkRect r;
if (path.isRect(&r)) {
this->onClipRect(r, op, edgeStyle);
return;
}
SkRRect rrect;
if (path.isOval(&r)) {
rrect.setOval(r);
this->onClipRRect(rrect, op, edgeStyle);
return;
}
if (path.isRRect(&rrect)) {
this->onClipRRect(rrect, op, edgeStyle);
return;
}
}
this->onClipPath(path, op, edgeStyle);
}
void SkCanvas::onClipPath(const SkPath& path, SkClipOp op, ClipEdgeStyle edgeStyle) {
AutoValidateClip avc(this);
bool isAA = kSoft_ClipEdgeStyle == edgeStyle;
FOR_EACH_TOP_DEVICE(device->clipPath(path, op, isAA));
const SkPath* rasterClipPath = &path;
const SkMatrix* matrix = &fMCRec->fMatrix;
fMCRec->fRasterClip.opPath(*rasterClipPath, *matrix, this->getTopLayerBounds(),
(SkRegion::Op)op, isAA);
fDeviceClipBounds = qr_clip_bounds(fMCRec->fRasterClip.getBounds());
}
void SkCanvas::clipRegion(const SkRegion& rgn, SkClipOp op) {
this->checkForDeferredSave();
this->onClipRegion(rgn, op);
}
void SkCanvas::onClipRegion(const SkRegion& rgn, SkClipOp op) {
FOR_EACH_TOP_DEVICE(device->clipRegion(rgn, op));
AutoValidateClip avc(this);
fMCRec->fRasterClip.opRegion(rgn, (SkRegion::Op)op);
fDeviceClipBounds = qr_clip_bounds(fMCRec->fRasterClip.getBounds());
}
#ifdef SK_DEBUG
void SkCanvas::validateClip() const {
// construct clipRgn from the clipstack
const SkBaseDevice* device = this->getDevice();
if (!device) {
SkASSERT(this->isClipEmpty());
return;
}
}
#endif
bool SkCanvas::androidFramework_isClipAA() const {
bool containsAA = false;
FOR_EACH_TOP_DEVICE(containsAA |= device->onClipIsAA());
return containsAA;
}
class RgnAccumulator {
SkRegion* fRgn;
public:
RgnAccumulator(SkRegion* total) : fRgn(total) {}
void accumulate(SkBaseDevice* device, SkRegion* rgn) {
SkIPoint origin = device->getOrigin();
if (origin.x() | origin.y()) {
rgn->translate(origin.x(), origin.y());
}
fRgn->op(*rgn, SkRegion::kUnion_Op);
}
};
void SkCanvas::temporary_internal_getRgnClip(SkRegion* rgn) {
RgnAccumulator accum(rgn);
SkRegion tmp;
rgn->setEmpty();
FOR_EACH_TOP_DEVICE(device->onAsRgnClip(&tmp); accum.accumulate(device, &tmp));
}
///////////////////////////////////////////////////////////////////////////////
bool SkCanvas::isClipEmpty() const {
return fMCRec->fRasterClip.isEmpty();
// TODO: should we only use the conservative answer in a recording canvas?
#if 0
SkBaseDevice* dev = this->getTopDevice();
// if no device we return true
return !dev || dev->onGetClipType() == SkBaseDevice::kEmpty_ClipType;
#endif
}
bool SkCanvas::isClipRect() const {
SkBaseDevice* dev = this->getTopDevice();
// if no device we return false
return dev && dev->onGetClipType() == SkBaseDevice::kRect_ClipType;
}
static inline bool is_nan_or_clipped(const Sk4f& devRect, const Sk4f& devClip) {
#if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
__m128 lLtT = _mm_unpacklo_ps(devRect.fVec, devClip.fVec);
__m128 RrBb = _mm_unpackhi_ps(devClip.fVec, devRect.fVec);
__m128 mask = _mm_cmplt_ps(lLtT, RrBb);
return 0xF != _mm_movemask_ps(mask);
#elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON)
float32x4_t lLtT = vzipq_f32(devRect.fVec, devClip.fVec).val[0];
float32x4_t RrBb = vzipq_f32(devClip.fVec, devRect.fVec).val[1];
uint32x4_t mask = vcltq_f32(lLtT, RrBb);
return 0xFFFFFFFFFFFFFFFF != (uint64_t) vmovn_u32(mask);
#else
SkRect devRectAsRect;
SkRect devClipAsRect;
devRect.store(&devRectAsRect.fLeft);
devClip.store(&devClipAsRect.fLeft);
return !devRectAsRect.isFinite() || !devRectAsRect.intersect(devClipAsRect);
#endif
}
// It's important for this function to not be inlined. Otherwise the compiler will share code
// between the fast path and the slow path, resulting in two slow paths.
static SK_NEVER_INLINE bool quick_reject_slow_path(const SkRect& src, const SkRect& deviceClip,
const SkMatrix& matrix) {
SkRect deviceRect;
matrix.mapRect(&deviceRect, src);
return !deviceRect.isFinite() || !deviceRect.intersect(deviceClip);
}
bool SkCanvas::quickReject(const SkRect& src) const {
#ifdef SK_DEBUG
// Verify that fDeviceClipBounds are set properly.
SkRect tmp = qr_clip_bounds(fMCRec->fRasterClip.getBounds());
if (fMCRec->fRasterClip.isEmpty()) {
SkASSERT(fDeviceClipBounds.isEmpty());
} else {
SkASSERT(tmp == fDeviceClipBounds);
}
// Verify that fIsScaleTranslate is set properly.
SkASSERT(fIsScaleTranslate == fMCRec->fMatrix.isScaleTranslate());
#endif
if (!fIsScaleTranslate) {
return quick_reject_slow_path(src, fDeviceClipBounds, fMCRec->fMatrix);
}
// We inline the implementation of mapScaleTranslate() for the fast path.
float sx = fMCRec->fMatrix.getScaleX();
float sy = fMCRec->fMatrix.getScaleY();
float tx = fMCRec->fMatrix.getTranslateX();
float ty = fMCRec->fMatrix.getTranslateY();
Sk4f scale(sx, sy, sx, sy);
Sk4f trans(tx, ty, tx, ty);
// Apply matrix.
Sk4f ltrb = Sk4f::Load(&src.fLeft) * scale + trans;
// Make sure left < right, top < bottom.
Sk4f rblt(ltrb[2], ltrb[3], ltrb[0], ltrb[1]);
Sk4f min = Sk4f::Min(ltrb, rblt);
Sk4f max = Sk4f::Max(ltrb, rblt);
// We can extract either pair [0,1] or [2,3] from min and max and be correct, but on
// ARM this sequence generates the fastest (a single instruction).
Sk4f devRect = Sk4f(min[2], min[3], max[0], max[1]);
// Check if the device rect is NaN or outside the clip.
return is_nan_or_clipped(devRect, Sk4f::Load(&fDeviceClipBounds.fLeft));
}
bool SkCanvas::quickReject(const SkPath& path) const {
return path.isEmpty() || this->quickReject(path.getBounds());
}
SkRect SkCanvas::getLocalClipBounds() const {
SkIRect ibounds = this->getDeviceClipBounds();
if (ibounds.isEmpty()) {
return SkRect::MakeEmpty();
}
SkMatrix inverse;
// if we can't invert the CTM, we can't return local clip bounds
if (!fMCRec->fMatrix.invert(&inverse)) {
return SkRect::MakeEmpty();
}
SkRect bounds;
// adjust it outwards in case we are antialiasing
const int margin = 1;
SkRect r = SkRect::Make(ibounds.makeOutset(margin, margin));
inverse.mapRect(&bounds, r);
return bounds;
}
SkIRect SkCanvas::getDeviceClipBounds() const {
return fMCRec->fRasterClip.getBounds();
}
const SkMatrix& SkCanvas::getTotalMatrix() const {
return fMCRec->fMatrix;
}
GrRenderTargetContext* SkCanvas::internal_private_accessTopLayerRenderTargetContext() {
SkBaseDevice* dev = this->getTopDevice();
return dev ? dev->accessRenderTargetContext() : nullptr;
}
GrContext* SkCanvas::getGrContext() {
SkBaseDevice* device = this->getTopDevice();
return device ? device->context() : nullptr;
}
void SkCanvas::drawDRRect(const SkRRect& outer, const SkRRect& inner,
const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (outer.isEmpty()) {
return;
}
if (inner.isEmpty()) {
this->drawRRect(outer, paint);
return;
}
// We don't have this method (yet), but technically this is what we should
// be able to return ...
// if (!outer.contains(inner))) {
//
// For now at least check for containment of bounds
if (!outer.getBounds().contains(inner.getBounds())) {
return;
}
this->onDrawDRRect(outer, inner, paint);
}
void SkCanvas::drawPaint(const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawPaint(paint);
}
void SkCanvas::drawRect(const SkRect& r, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
// To avoid redundant logic in our culling code and various backends, we always sort rects
// before passing them along.
this->onDrawRect(r.makeSorted(), paint);
}
void SkCanvas::drawRegion(const SkRegion& region, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (region.isEmpty()) {
return;
}
if (region.isRect()) {
return this->drawIRect(region.getBounds(), paint);
}
this->onDrawRegion(region, paint);
}
void SkCanvas::drawOval(const SkRect& r, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
// To avoid redundant logic in our culling code and various backends, we always sort rects
// before passing them along.
this->onDrawOval(r.makeSorted(), paint);
}
void SkCanvas::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawRRect(rrect, paint);
}
void SkCanvas::drawPoints(PointMode mode, size_t count, const SkPoint pts[], const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawPoints(mode, count, pts, paint);
}
void SkCanvas::drawVertices(const sk_sp<SkVertices>& vertices, SkBlendMode mode,
const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(vertices);
// We expect fans to be converted to triangles when building or deserializing SkVertices.
SkASSERT(vertices->mode() != SkVertices::kTriangleFan_VertexMode);
this->onDrawVerticesObject(vertices.get(), nullptr, 0, mode, paint);
}
void SkCanvas::drawVertices(const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(vertices);
this->onDrawVerticesObject(vertices, nullptr, 0, mode, paint);
}
void SkCanvas::drawVertices(const sk_sp<SkVertices>& vertices, const SkVertices::Bone bones[],
int boneCount, SkBlendMode mode, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(vertices);
SkASSERT(boneCount <= 80);
this->onDrawVerticesObject(vertices.get(), bones, boneCount, mode, paint);
}
void SkCanvas::drawVertices(const SkVertices* vertices, const SkVertices::Bone bones[],
int boneCount, SkBlendMode mode, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(vertices);
SkASSERT(boneCount <= 80);
this->onDrawVerticesObject(vertices, bones, boneCount, mode, paint);
}
void SkCanvas::drawPath(const SkPath& path, const SkPaint& paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawPath(path, paint);
}
void SkCanvas::drawImage(const SkImage* image, SkScalar x, SkScalar y, const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(image);
this->onDrawImage(image, x, y, paint);
}
// Returns true if the rect can be "filled" : non-empty and finite
static bool fillable(const SkRect& r) {
SkScalar w = r.width();
SkScalar h = r.height();
return SkScalarIsFinite(w) && w > 0 && SkScalarIsFinite(h) && h > 0;
}
void SkCanvas::drawImageRect(const SkImage* image, const SkRect& src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(image);
if (!fillable(dst) || !fillable(src)) {
return;
}
this->onDrawImageRect(image, &src, dst, paint, constraint);
}
void SkCanvas::drawImageRect(const SkImage* image, const SkIRect& isrc, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
RETURN_ON_NULL(image);
this->drawImageRect(image, SkRect::Make(isrc), dst, paint, constraint);
}
void SkCanvas::drawImageRect(const SkImage* image, const SkRect& dst, const SkPaint* paint) {
RETURN_ON_NULL(image);
this->drawImageRect(image, SkRect::MakeIWH(image->width(), image->height()), dst, paint,
kFast_SrcRectConstraint);
}
namespace {
class LatticePaint : SkNoncopyable {
public:
LatticePaint(const SkPaint* origPaint) : fPaint(origPaint) {
if (!origPaint) {
return;
}
if (origPaint->getFilterQuality() > kLow_SkFilterQuality) {
fPaint.writable()->setFilterQuality(kLow_SkFilterQuality);
}
if (origPaint->getMaskFilter()) {
fPaint.writable()->setMaskFilter(nullptr);
}
if (origPaint->isAntiAlias()) {
fPaint.writable()->setAntiAlias(false);
}
}
const SkPaint* get() const {
return fPaint;
}
private:
SkTCopyOnFirstWrite<SkPaint> fPaint;
};
} // namespace
void SkCanvas::drawImageNine(const SkImage* image, const SkIRect& center, const SkRect& dst,
const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(image);
if (dst.isEmpty()) {
return;
}
if (SkLatticeIter::Valid(image->width(), image->height(), center)) {
LatticePaint latticePaint(paint);
this->onDrawImageNine(image, center, dst, latticePaint.get());
} else {
this->drawImageRect(image, dst, paint);
}
}
void SkCanvas::drawImageLattice(const SkImage* image, const Lattice& lattice, const SkRect& dst,
const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(image);
if (dst.isEmpty()) {
return;
}
SkIRect bounds;
Lattice latticePlusBounds = lattice;
if (!latticePlusBounds.fBounds) {
bounds = SkIRect::MakeWH(image->width(), image->height());
latticePlusBounds.fBounds = &bounds;
}
if (SkLatticeIter::Valid(image->width(), image->height(), latticePlusBounds)) {
LatticePaint latticePaint(paint);
this->onDrawImageLattice(image, latticePlusBounds, dst, latticePaint.get());
} else {
this->drawImageRect(image, dst, paint);
}
}
void SkCanvas::experimental_DrawImageSetV1(const ImageSetEntry imageSet[], int cnt,
SkFilterQuality filterQuality, SkBlendMode mode) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(imageSet);
RETURN_ON_FALSE(cnt);
this->onDrawImageSet(imageSet, cnt, filterQuality, mode);
}
void SkCanvas::experimental_DrawEdgeAARectV1(const SkRect& r, QuadAAFlags edgeAA, SkColor color,
SkBlendMode mode) {
TRACE_EVENT0("skia", TRACE_FUNC);
// To avoid redundant logic in our culling code and various backends, we always sort rects
// before passing them along.
this->onDrawEdgeAARect(r.makeSorted(), edgeAA, color, mode);
}
void SkCanvas::drawBitmap(const SkBitmap& bitmap, SkScalar dx, SkScalar dy, const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (bitmap.drawsNothing()) {
return;
}
this->onDrawBitmap(bitmap, dx, dy, paint);
}
void SkCanvas::drawBitmapRect(const SkBitmap& bitmap, const SkRect& src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (bitmap.drawsNothing() || dst.isEmpty() || src.isEmpty()) {
return;
}
this->onDrawBitmapRect(bitmap, &src, dst, paint, constraint);
}
void SkCanvas::drawBitmapRect(const SkBitmap& bitmap, const SkIRect& isrc, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
this->drawBitmapRect(bitmap, SkRect::Make(isrc), dst, paint, constraint);
}
void SkCanvas::drawBitmapRect(const SkBitmap& bitmap, const SkRect& dst, const SkPaint* paint,
SrcRectConstraint constraint) {
this->drawBitmapRect(bitmap, SkRect::MakeIWH(bitmap.width(), bitmap.height()), dst, paint,
constraint);
}
void SkCanvas::drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst,
const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (bitmap.drawsNothing() || dst.isEmpty()) {
return;
}
if (SkLatticeIter::Valid(bitmap.width(), bitmap.height(), center)) {
LatticePaint latticePaint(paint);
this->onDrawBitmapNine(bitmap, center, dst, latticePaint.get());
} else {
this->drawBitmapRect(bitmap, dst, paint);
}
}
void SkCanvas::drawBitmapLattice(const SkBitmap& bitmap, const Lattice& lattice, const SkRect& dst,
const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (bitmap.drawsNothing() || dst.isEmpty()) {
return;
}
SkIRect bounds;
Lattice latticePlusBounds = lattice;
if (!latticePlusBounds.fBounds) {
bounds = SkIRect::MakeWH(bitmap.width(), bitmap.height());
latticePlusBounds.fBounds = &bounds;
}
if (SkLatticeIter::Valid(bitmap.width(), bitmap.height(), latticePlusBounds)) {
LatticePaint latticePaint(paint);
this->onDrawBitmapLattice(bitmap, latticePlusBounds, dst, latticePaint.get());
} else {
this->drawBitmapRect(bitmap, dst, paint);
}
}
void SkCanvas::drawAtlas(const SkImage* atlas, const SkRSXform xform[], const SkRect tex[],
const SkColor colors[], int count, SkBlendMode mode,
const SkRect* cull, const SkPaint* paint) {
TRACE_EVENT0("skia", TRACE_FUNC);
RETURN_ON_NULL(atlas);
if (count <= 0) {
return;
}
SkASSERT(atlas);
SkASSERT(tex);
this->onDrawAtlas(atlas, xform, tex, colors, count, mode, cull, paint);
}
void SkCanvas::drawAnnotation(const SkRect& rect, const char key[], SkData* value) {
TRACE_EVENT0("skia", TRACE_FUNC);
if (key) {
this->onDrawAnnotation(rect, key, value);
}
}
void SkCanvas::legacy_drawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
if (src) {
this->drawImageRect(image, *src, dst, paint, constraint);
} else {
this->drawImageRect(image, SkRect::MakeIWH(image->width(), image->height()),
dst, paint, constraint);
}
}
void SkCanvas::legacy_drawBitmapRect(const SkBitmap& bitmap, const SkRect* src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
if (src) {
this->drawBitmapRect(bitmap, *src, dst, paint, constraint);
} else {
this->drawBitmapRect(bitmap, SkRect::MakeIWH(bitmap.width(), bitmap.height()),
dst, paint, constraint);
}
}
void SkCanvas::private_draw_shadow_rec(const SkPath& path, const SkDrawShadowRec& rec) {
TRACE_EVENT0("skia", TRACE_FUNC);
this->onDrawShadowRec(path, rec);
}
void SkCanvas::onDrawShadowRec(const SkPath& path, const SkDrawShadowRec& rec) {
SkPaint paint;
const SkRect& pathBounds = path.getBounds();
LOOPER_BEGIN(paint, &pathBounds)
while (iter.next()) {
iter.fDevice->drawShadow(path, rec);
}
LOOPER_END
}
//////////////////////////////////////////////////////////////////////////////
// These are the virtual drawing methods
//////////////////////////////////////////////////////////////////////////////
void SkCanvas::onDiscard() {
if (fSurfaceBase) {
fSurfaceBase->aboutToDraw(SkSurface::kDiscard_ContentChangeMode);
}
}
void SkCanvas::onDrawPaint(const SkPaint& paint) {
this->internalDrawPaint(paint);
}
void SkCanvas::internalDrawPaint(const SkPaint& paint) {
LOOPER_BEGIN_CHECK_COMPLETE_OVERWRITE(paint, nullptr, false)
while (iter.next()) {
iter.fDevice->drawPaint(looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawPoints(PointMode mode, size_t count, const SkPoint pts[],
const SkPaint& paint) {
if ((long)count <= 0) {
return;
}
SkRect r;
const SkRect* bounds = nullptr;
if (paint.canComputeFastBounds()) {
// special-case 2 points (common for drawing a single line)
if (2 == count) {
r.set(pts[0], pts[1]);
} else {
r.set(pts, SkToInt(count));
}
if (!r.isFinite()) {
return;
}
SkRect storage;
if (this->quickReject(paint.computeFastStrokeBounds(r, &storage))) {
return;
}
bounds = &r;
}
SkASSERT(pts != nullptr);
LOOPER_BEGIN(paint, bounds)
while (iter.next()) {
iter.fDevice->drawPoints(mode, count, pts, looper.paint());
}
LOOPER_END
}
static bool needs_autodrawlooper(SkCanvas* canvas, const SkPaint& paint) {
return ((intptr_t)paint.getImageFilter() |
(intptr_t)paint.getLooper() ) != 0;
}
void SkCanvas::onDrawRect(const SkRect& r, const SkPaint& paint) {
SkASSERT(r.isSorted());
if (paint.canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint.computeFastBounds(r, &storage))) {
return;
}
}
if (needs_autodrawlooper(this, paint)) {
LOOPER_BEGIN_CHECK_COMPLETE_OVERWRITE(paint, &r, false)
while (iter.next()) {
iter.fDevice->drawRect(r, looper.paint());
}
LOOPER_END
} else if (!paint.nothingToDraw()) {
this->predrawNotify(&r, &paint, false);
SkDrawIter iter(this);
while (iter.next()) {
iter.fDevice->drawRect(r, paint);
}
}
}
void SkCanvas::onDrawEdgeAARect(const SkRect& r, QuadAAFlags edgeAA, SkColor color,
SkBlendMode mode) {
SkASSERT(r.isSorted());
SkPaint paint;
LOOPER_BEGIN(paint, nullptr)
while (iter.next()) {
iter.fDevice->drawEdgeAARect(r, edgeAA, color, mode);
}
LOOPER_END
}
void SkCanvas::onDrawRegion(const SkRegion& region, const SkPaint& paint) {
SkRect regionRect = SkRect::Make(region.getBounds());
if (paint.canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint.computeFastBounds(regionRect, &storage))) {
return;
}
}
LOOPER_BEGIN(paint, &regionRect)
while (iter.next()) {
iter.fDevice->drawRegion(region, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawOval(const SkRect& oval, const SkPaint& paint) {
SkASSERT(oval.isSorted());
if (paint.canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint.computeFastBounds(oval, &storage))) {
return;
}
}
LOOPER_BEGIN(paint, &oval)
while (iter.next()) {
iter.fDevice->drawOval(oval, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawArc(const SkRect& oval, SkScalar startAngle,
SkScalar sweepAngle, bool useCenter,
const SkPaint& paint) {
SkASSERT(oval.isSorted());
if (paint.canComputeFastBounds()) {
SkRect storage;
// Note we're using the entire oval as the bounds.
if (this->quickReject(paint.computeFastBounds(oval, &storage))) {
return;
}
}
LOOPER_BEGIN(paint, &oval)
while (iter.next()) {
iter.fDevice->drawArc(oval, startAngle, sweepAngle, useCenter, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawRRect(const SkRRect& rrect, const SkPaint& paint) {
if (paint.canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint.computeFastBounds(rrect.getBounds(), &storage))) {
return;
}
}
if (rrect.isRect()) {
// call the non-virtual version
this->SkCanvas::drawRect(rrect.getBounds(), paint);
return;
} else if (rrect.isOval()) {
// call the non-virtual version
this->SkCanvas::drawOval(rrect.getBounds(), paint);
return;
}
LOOPER_BEGIN(paint, &rrect.getBounds())
while (iter.next()) {
iter.fDevice->drawRRect(rrect, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) {
if (paint.canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint.computeFastBounds(outer.getBounds(), &storage))) {
return;
}
}
LOOPER_BEGIN(paint, &outer.getBounds())
while (iter.next()) {
iter.fDevice->drawDRRect(outer, inner, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawPath(const SkPath& path, const SkPaint& paint) {
if (!path.isFinite()) {
return;
}
const SkRect& pathBounds = path.getBounds();
if (!path.isInverseFillType() && paint.canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint.computeFastBounds(pathBounds, &storage))) {
return;
}
}
if (pathBounds.width() <= 0 && pathBounds.height() <= 0) {
if (path.isInverseFillType()) {
this->internalDrawPaint(paint);
return;
}
}
LOOPER_BEGIN(paint, &pathBounds)
while (iter.next()) {
iter.fDevice->drawPath(path, looper.paint());
}
LOOPER_END
}
bool SkCanvas::canDrawBitmapAsSprite(SkScalar x, SkScalar y, int w, int h, const SkPaint& paint) {
if (!paint.getImageFilter()) {
return false;
}
const SkMatrix& ctm = this->getTotalMatrix();
if (!SkTreatAsSprite(ctm, SkISize::Make(w, h), paint)) {
return false;
}
// Currently we can only use the filterSprite code if we are clipped to the bitmap's bounds.
// Once we can filter and the filter will return a result larger than itself, we should be
// able to remove this constraint.
// skbug.com/4526
//
SkPoint pt;
ctm.mapXY(x, y, &pt);
SkIRect ir = SkIRect::MakeXYWH(SkScalarRoundToInt(pt.x()), SkScalarRoundToInt(pt.y()), w, h);
return ir.contains(fMCRec->fRasterClip.getBounds());
}
// Given storage for a real paint, and an optional paint parameter, clean-up the param (if non-null)
// given the drawing semantics for drawImage/bitmap (skbug.com/7804) and return it, or the original
// null.
static const SkPaint* init_image_paint(SkPaint* real, const SkPaint* paintParam) {
if (paintParam) {
*real = *paintParam;
real->setStyle(SkPaint::kFill_Style);
real->setPathEffect(nullptr);
paintParam = real;
}
return paintParam;
}
void SkCanvas::onDrawImage(const SkImage* image, SkScalar x, SkScalar y, const SkPaint* paint) {
SkPaint realPaint;
paint = init_image_paint(&realPaint, paint);
SkRect bounds = SkRect::MakeXYWH(x, y,
SkIntToScalar(image->width()), SkIntToScalar(image->height()));
if (nullptr == paint || paint->canComputeFastBounds()) {
SkRect tmp = bounds;
if (paint) {
paint->computeFastBounds(tmp, &tmp);
}
if (this->quickReject(tmp)) {
return;
}
}
// At this point we need a real paint object. If the caller passed null, then we should
// use realPaint (in its default state). If the caller did pass a paint, then we have copied
// (and modified) it in realPaint. Thus either way, "realPaint" is what we want to use.
paint = &realPaint;
sk_sp<SkSpecialImage> special;
bool drawAsSprite = this->canDrawBitmapAsSprite(x, y, image->width(), image->height(),
*paint);
if (drawAsSprite && paint->getImageFilter()) {
special = this->getDevice()->makeSpecial(image);
if (!special) {
drawAsSprite = false;
}
}
LOOPER_BEGIN_DRAWBITMAP(*paint, drawAsSprite, &bounds)
while (iter.next()) {
const SkPaint& pnt = looper.paint();
if (special) {
SkPoint pt;
iter.fDevice->ctm().mapXY(x, y, &pt);
iter.fDevice->drawSpecial(special.get(),
SkScalarRoundToInt(pt.fX),
SkScalarRoundToInt(pt.fY), pnt,
nullptr, SkMatrix::I());
} else {
iter.fDevice->drawImage(image, x, y, pnt);
}
}
LOOPER_END
}
void SkCanvas::onDrawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
SkPaint realPaint;
paint = init_image_paint(&realPaint, paint);
if (nullptr == paint || paint->canComputeFastBounds()) {
SkRect storage = dst;
if (paint) {
paint->computeFastBounds(dst, &storage);
}
if (this->quickReject(storage)) {
return;
}
}
paint = &realPaint;
LOOPER_BEGIN_CHECK_COMPLETE_OVERWRITE(*paint, &dst, image->isOpaque())
while (iter.next()) {
iter.fDevice->drawImageRect(image, src, dst, looper.paint(), constraint);
}
LOOPER_END
}
void SkCanvas::onDrawBitmap(const SkBitmap& bitmap, SkScalar x, SkScalar y, const SkPaint* paint) {
SkDEBUGCODE(bitmap.validate();)
if (bitmap.drawsNothing()) {
return;
}
SkPaint realPaint;
init_image_paint(&realPaint, paint);
paint = &realPaint;
SkRect bounds;
bitmap.getBounds(&bounds);
bounds.offset(x, y);
bool canFastBounds = paint->canComputeFastBounds();
if (canFastBounds) {
SkRect storage;
if (this->quickReject(paint->computeFastBounds(bounds, &storage))) {
return;
}
}
sk_sp<SkSpecialImage> special;
bool drawAsSprite = canFastBounds && this->canDrawBitmapAsSprite(x, y, bitmap.width(),
bitmap.height(), *paint);
if (drawAsSprite && paint->getImageFilter()) {
special = this->getDevice()->makeSpecial(bitmap);
if (!special) {
drawAsSprite = false;
}
}
LOOPER_BEGIN_DRAWBITMAP(*paint, drawAsSprite, &bounds)
while (iter.next()) {
const SkPaint& pnt = looper.paint();
if (special) {
SkPoint pt;
iter.fDevice->ctm().mapXY(x, y, &pt);
iter.fDevice->drawSpecial(special.get(),
SkScalarRoundToInt(pt.fX),
SkScalarRoundToInt(pt.fY), pnt,
nullptr, SkMatrix::I());
} else {
iter.fDevice->drawBitmap(bitmap, x, y, looper.paint());
}
}
LOOPER_END
}
// this one is non-virtual, so it can be called safely by other canvas apis
void SkCanvas::internalDrawBitmapRect(const SkBitmap& bitmap, const SkRect* src,
const SkRect& dst, const SkPaint* paint,
SrcRectConstraint constraint) {
if (bitmap.drawsNothing() || dst.isEmpty()) {
return;
}
if (nullptr == paint || paint->canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint ? paint->computeFastBounds(dst, &storage) : dst)) {
return;
}
}
SkLazyPaint lazy;
if (nullptr == paint) {
paint = lazy.init();
}
LOOPER_BEGIN_CHECK_COMPLETE_OVERWRITE(*paint, &dst, bitmap.isOpaque())
while (iter.next()) {
iter.fDevice->drawBitmapRect(bitmap, src, dst, looper.paint(), constraint);
}
LOOPER_END
}
void SkCanvas::onDrawBitmapRect(const SkBitmap& bitmap, const SkRect* src, const SkRect& dst,
const SkPaint* paint, SrcRectConstraint constraint) {
SkDEBUGCODE(bitmap.validate();)
this->internalDrawBitmapRect(bitmap, src, dst, paint, constraint);
}
void SkCanvas::onDrawImageNine(const SkImage* image, const SkIRect& center, const SkRect& dst,
const SkPaint* paint) {
SkPaint realPaint;
paint = init_image_paint(&realPaint, paint);
if (nullptr == paint || paint->canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint ? paint->computeFastBounds(dst, &storage) : dst)) {
return;
}
}
paint = &realPaint;
LOOPER_BEGIN(*paint, &dst)
while (iter.next()) {
iter.fDevice->drawImageNine(image, center, dst, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawBitmapNine(const SkBitmap& bitmap, const SkIRect& center, const SkRect& dst,
const SkPaint* paint) {
SkDEBUGCODE(bitmap.validate();)
SkPaint realPaint;
paint = init_image_paint(&realPaint, paint);
if (nullptr == paint || paint->canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint ? paint->computeFastBounds(dst, &storage) : dst)) {
return;
}
}
paint = &realPaint;
LOOPER_BEGIN(*paint, &dst)
while (iter.next()) {
iter.fDevice->drawBitmapNine(bitmap, center, dst, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawImageLattice(const SkImage* image, const Lattice& lattice, const SkRect& dst,
const SkPaint* paint) {
SkPaint realPaint;
paint = init_image_paint(&realPaint, paint);
if (nullptr == paint || paint->canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint ? paint->computeFastBounds(dst, &storage) : dst)) {
return;
}
}
paint = &realPaint;
LOOPER_BEGIN(*paint, &dst)
while (iter.next()) {
iter.fDevice->drawImageLattice(image, lattice, dst, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawImageSet(const ImageSetEntry imageSet[], int count,
SkFilterQuality filterQuality, SkBlendMode mode) {
SkPaint paint;
LOOPER_BEGIN(paint, nullptr)
while (iter.next()) {
iter.fDevice->drawImageSet(imageSet, count, filterQuality, mode);
}
LOOPER_END
}
void SkCanvas::onDrawBitmapLattice(const SkBitmap& bitmap, const Lattice& lattice,
const SkRect& dst, const SkPaint* paint) {
SkPaint realPaint;
paint = init_image_paint(&realPaint, paint);
if (nullptr == paint || paint->canComputeFastBounds()) {
SkRect storage;
if (this->quickReject(paint ? paint->computeFastBounds(dst, &storage) : dst)) {
return;
}
}
paint = &realPaint;
LOOPER_BEGIN(*paint, &dst)
while (iter.next()) {
iter.fDevice->drawBitmapLattice(bitmap, lattice, dst, looper.paint());
}
LOOPER_END
}
void SkCanvas::onDrawTextBlob(const SkTextBlob* blob, SkScalar x, SkScalar y,
const SkPaint& paint) {
SkRect storage;
const SkRect* bounds =