| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/codegen/SkSLSPIRVCodeGenerator.h" |
| |
| #include "include/core/SkSpan.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkOpts_spi.h" |
| #include "include/private/SkSLIRNode.h" |
| #include "include/private/SkSLProgramElement.h" |
| #include "include/private/SkSLStatement.h" |
| #include "include/private/SkSLSymbol.h" |
| #include "include/private/SkTArray.h" |
| #include "include/sksl/DSLCore.h" |
| #include "include/sksl/DSLExpression.h" |
| #include "include/sksl/DSLType.h" |
| #include "include/sksl/DSLVar.h" |
| #include "include/sksl/SkSLErrorReporter.h" |
| #include "include/sksl/SkSLOperator.h" |
| #include "include/sksl/SkSLPosition.h" |
| #include "src/sksl/GLSL.std.450.h" |
| #include "src/sksl/SkSLAnalysis.h" |
| #include "src/sksl/SkSLBuiltinTypes.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/SkSLConstantFolder.h" |
| #include "src/sksl/SkSLContext.h" |
| #include "src/sksl/SkSLIntrinsicList.h" |
| #include "src/sksl/SkSLModifiersPool.h" |
| #include "src/sksl/SkSLOutputStream.h" |
| #include "src/sksl/SkSLPool.h" |
| #include "src/sksl/SkSLProgramSettings.h" |
| #include "src/sksl/SkSLThreadContext.h" |
| #include "src/sksl/SkSLUtil.h" |
| #include "src/sksl/analysis/SkSLProgramUsage.h" |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| #include "src/sksl/ir/SkSLBlock.h" |
| #include "src/sksl/ir/SkSLConstructor.h" |
| #include "src/sksl/ir/SkSLConstructorArrayCast.h" |
| #include "src/sksl/ir/SkSLConstructorCompound.h" |
| #include "src/sksl/ir/SkSLConstructorCompoundCast.h" |
| #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h" |
| #include "src/sksl/ir/SkSLConstructorMatrixResize.h" |
| #include "src/sksl/ir/SkSLConstructorScalarCast.h" |
| #include "src/sksl/ir/SkSLConstructorSplat.h" |
| #include "src/sksl/ir/SkSLDoStatement.h" |
| #include "src/sksl/ir/SkSLExpression.h" |
| #include "src/sksl/ir/SkSLExpressionStatement.h" |
| #include "src/sksl/ir/SkSLExtension.h" |
| #include "src/sksl/ir/SkSLField.h" |
| #include "src/sksl/ir/SkSLFieldAccess.h" |
| #include "src/sksl/ir/SkSLForStatement.h" |
| #include "src/sksl/ir/SkSLFunctionCall.h" |
| #include "src/sksl/ir/SkSLFunctionDeclaration.h" |
| #include "src/sksl/ir/SkSLFunctionDefinition.h" |
| #include "src/sksl/ir/SkSLIfStatement.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLInterfaceBlock.h" |
| #include "src/sksl/ir/SkSLLiteral.h" |
| #include "src/sksl/ir/SkSLPostfixExpression.h" |
| #include "src/sksl/ir/SkSLPrefixExpression.h" |
| #include "src/sksl/ir/SkSLProgram.h" |
| #include "src/sksl/ir/SkSLReturnStatement.h" |
| #include "src/sksl/ir/SkSLSetting.h" |
| #include "src/sksl/ir/SkSLSwitchCase.h" |
| #include "src/sksl/ir/SkSLSwitchStatement.h" |
| #include "src/sksl/ir/SkSLSwizzle.h" |
| #include "src/sksl/ir/SkSLTernaryExpression.h" |
| #include "src/sksl/ir/SkSLVarDeclarations.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| #include <cmath> |
| #include <cstring> |
| #include <set> |
| #include <string> |
| #include <utility> |
| |
| #define kLast_Capability SpvCapabilityMultiViewport |
| |
| constexpr int DEVICE_FRAGCOORDS_BUILTIN = -1000; |
| constexpr int DEVICE_CLOCKWISE_BUILTIN = -1001; |
| |
| namespace SkSL { |
| |
| // Equality and hash operators for Instructions. |
| bool SPIRVCodeGenerator::Instruction::operator==(const SPIRVCodeGenerator::Instruction& that) const { |
| return fOp == that.fOp && |
| fResultKind == that.fResultKind && |
| fWords == that.fWords; |
| } |
| |
| struct SPIRVCodeGenerator::Instruction::Hash { |
| uint32_t operator()(const SPIRVCodeGenerator::Instruction& key) const { |
| uint32_t hash = key.fResultKind; |
| hash = SkOpts::hash_fn(&key.fOp, sizeof(key.fOp), hash); |
| hash = SkOpts::hash_fn(key.fWords.data(), key.fWords.size() * sizeof(int32_t), hash); |
| return hash; |
| } |
| }; |
| |
| // This class is used to pass values and result placeholder slots to writeInstruction. |
| struct SPIRVCodeGenerator::Word { |
| enum Kind { |
| kNone, // intended for use as a sentinel, not part of any Instruction |
| kSpvId, |
| kNumber, |
| kDefaultPrecisionResult, |
| kRelaxedPrecisionResult, |
| kUniqueResult, |
| kKeyedResult, |
| }; |
| |
| Word(SpvId id) : fValue(id), fKind(Kind::kSpvId) {} |
| Word(int32_t val, Kind kind) : fValue(val), fKind(kind) {} |
| |
| static Word Number(int32_t val) { |
| return Word{val, Kind::kNumber}; |
| } |
| |
| static Word Result(const Type& type) { |
| return (type.hasPrecision() && !type.highPrecision()) ? RelaxedResult() : Result(); |
| } |
| |
| static Word RelaxedResult() { |
| return Word{(int32_t)NA, kRelaxedPrecisionResult}; |
| } |
| |
| static Word UniqueResult() { |
| return Word{(int32_t)NA, kUniqueResult}; |
| } |
| |
| static Word Result() { |
| return Word{(int32_t)NA, kDefaultPrecisionResult}; |
| } |
| |
| // Unlike a Result (where the result ID is always deduplicated to its first instruction) or a |
| // UniqueResult (which always produces a new instruction), a KeyedResult allows an instruction |
| // to be deduplicated among those that share the same `key`. |
| static Word KeyedResult(int32_t key) { return Word{key, Kind::kKeyedResult}; } |
| |
| bool isResult() const { return fKind >= Kind::kDefaultPrecisionResult; } |
| |
| int32_t fValue; |
| Kind fKind; |
| }; |
| |
| // Skia's magic number is 31 and goes in the top 16 bits. We can use the lower bits to version the |
| // sksl generator if we want. |
| // https://github.com/KhronosGroup/SPIRV-Headers/blob/master/include/spirv/spir-v.xml#L84 |
| static const int32_t SKSL_MAGIC = 0x001F0000; |
| |
| SPIRVCodeGenerator::Intrinsic SPIRVCodeGenerator::getIntrinsic(IntrinsicKind ik) const { |
| |
| #define ALL_GLSL(x) Intrinsic{kGLSL_STD_450_IntrinsicOpcodeKind, GLSLstd450 ## x, \ |
| GLSLstd450 ## x, GLSLstd450 ## x, GLSLstd450 ## x} |
| #define BY_TYPE_GLSL(ifFloat, ifInt, ifUInt) Intrinsic{kGLSL_STD_450_IntrinsicOpcodeKind, \ |
| GLSLstd450 ## ifFloat, \ |
| GLSLstd450 ## ifInt, \ |
| GLSLstd450 ## ifUInt, \ |
| SpvOpUndef} |
| #define ALL_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ |
| SpvOp ## x, SpvOp ## x, SpvOp ## x, SpvOp ## x} |
| #define BOOL_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ |
| SpvOpUndef, SpvOpUndef, SpvOpUndef, SpvOp ## x} |
| #define FLOAT_SPIRV(x) Intrinsic{kSPIRV_IntrinsicOpcodeKind, \ |
| SpvOp ## x, SpvOpUndef, SpvOpUndef, SpvOpUndef} |
| #define SPECIAL(x) Intrinsic{kSpecial_IntrinsicOpcodeKind, k ## x ## _SpecialIntrinsic, \ |
| k ## x ## _SpecialIntrinsic, k ## x ## _SpecialIntrinsic, \ |
| k ## x ## _SpecialIntrinsic} |
| |
| switch (ik) { |
| case k_round_IntrinsicKind: return ALL_GLSL(Round); |
| case k_roundEven_IntrinsicKind: return ALL_GLSL(RoundEven); |
| case k_trunc_IntrinsicKind: return ALL_GLSL(Trunc); |
| case k_abs_IntrinsicKind: return BY_TYPE_GLSL(FAbs, SAbs, SAbs); |
| case k_sign_IntrinsicKind: return BY_TYPE_GLSL(FSign, SSign, SSign); |
| case k_floor_IntrinsicKind: return ALL_GLSL(Floor); |
| case k_ceil_IntrinsicKind: return ALL_GLSL(Ceil); |
| case k_fract_IntrinsicKind: return ALL_GLSL(Fract); |
| case k_radians_IntrinsicKind: return ALL_GLSL(Radians); |
| case k_degrees_IntrinsicKind: return ALL_GLSL(Degrees); |
| case k_sin_IntrinsicKind: return ALL_GLSL(Sin); |
| case k_cos_IntrinsicKind: return ALL_GLSL(Cos); |
| case k_tan_IntrinsicKind: return ALL_GLSL(Tan); |
| case k_asin_IntrinsicKind: return ALL_GLSL(Asin); |
| case k_acos_IntrinsicKind: return ALL_GLSL(Acos); |
| case k_atan_IntrinsicKind: return SPECIAL(Atan); |
| case k_sinh_IntrinsicKind: return ALL_GLSL(Sinh); |
| case k_cosh_IntrinsicKind: return ALL_GLSL(Cosh); |
| case k_tanh_IntrinsicKind: return ALL_GLSL(Tanh); |
| case k_asinh_IntrinsicKind: return ALL_GLSL(Asinh); |
| case k_acosh_IntrinsicKind: return ALL_GLSL(Acosh); |
| case k_atanh_IntrinsicKind: return ALL_GLSL(Atanh); |
| case k_pow_IntrinsicKind: return ALL_GLSL(Pow); |
| case k_exp_IntrinsicKind: return ALL_GLSL(Exp); |
| case k_log_IntrinsicKind: return ALL_GLSL(Log); |
| case k_exp2_IntrinsicKind: return ALL_GLSL(Exp2); |
| case k_log2_IntrinsicKind: return ALL_GLSL(Log2); |
| case k_sqrt_IntrinsicKind: return ALL_GLSL(Sqrt); |
| case k_inverse_IntrinsicKind: return ALL_GLSL(MatrixInverse); |
| case k_outerProduct_IntrinsicKind: return ALL_SPIRV(OuterProduct); |
| case k_transpose_IntrinsicKind: return ALL_SPIRV(Transpose); |
| case k_isinf_IntrinsicKind: return ALL_SPIRV(IsInf); |
| case k_isnan_IntrinsicKind: return ALL_SPIRV(IsNan); |
| case k_inversesqrt_IntrinsicKind: return ALL_GLSL(InverseSqrt); |
| case k_determinant_IntrinsicKind: return ALL_GLSL(Determinant); |
| case k_matrixCompMult_IntrinsicKind: return SPECIAL(MatrixCompMult); |
| case k_matrixInverse_IntrinsicKind: return ALL_GLSL(MatrixInverse); |
| case k_mod_IntrinsicKind: return SPECIAL(Mod); |
| case k_modf_IntrinsicKind: return ALL_GLSL(Modf); |
| case k_min_IntrinsicKind: return SPECIAL(Min); |
| case k_max_IntrinsicKind: return SPECIAL(Max); |
| case k_clamp_IntrinsicKind: return SPECIAL(Clamp); |
| case k_saturate_IntrinsicKind: return SPECIAL(Saturate); |
| case k_dot_IntrinsicKind: return FLOAT_SPIRV(Dot); |
| case k_mix_IntrinsicKind: return SPECIAL(Mix); |
| case k_step_IntrinsicKind: return SPECIAL(Step); |
| case k_smoothstep_IntrinsicKind: return SPECIAL(SmoothStep); |
| case k_fma_IntrinsicKind: return ALL_GLSL(Fma); |
| case k_frexp_IntrinsicKind: return ALL_GLSL(Frexp); |
| case k_ldexp_IntrinsicKind: return ALL_GLSL(Ldexp); |
| |
| #define PACK(type) case k_pack##type##_IntrinsicKind: return ALL_GLSL(Pack##type); \ |
| case k_unpack##type##_IntrinsicKind: return ALL_GLSL(Unpack##type) |
| PACK(Snorm4x8); |
| PACK(Unorm4x8); |
| PACK(Snorm2x16); |
| PACK(Unorm2x16); |
| PACK(Half2x16); |
| PACK(Double2x32); |
| #undef PACK |
| |
| case k_length_IntrinsicKind: return ALL_GLSL(Length); |
| case k_distance_IntrinsicKind: return ALL_GLSL(Distance); |
| case k_cross_IntrinsicKind: return ALL_GLSL(Cross); |
| case k_normalize_IntrinsicKind: return ALL_GLSL(Normalize); |
| case k_faceforward_IntrinsicKind: return ALL_GLSL(FaceForward); |
| case k_reflect_IntrinsicKind: return ALL_GLSL(Reflect); |
| case k_refract_IntrinsicKind: return ALL_GLSL(Refract); |
| case k_bitCount_IntrinsicKind: return ALL_SPIRV(BitCount); |
| case k_findLSB_IntrinsicKind: return ALL_GLSL(FindILsb); |
| case k_findMSB_IntrinsicKind: return BY_TYPE_GLSL(FindSMsb, FindSMsb, FindUMsb); |
| case k_dFdx_IntrinsicKind: return FLOAT_SPIRV(DPdx); |
| case k_dFdy_IntrinsicKind: return SPECIAL(DFdy); |
| case k_fwidth_IntrinsicKind: return FLOAT_SPIRV(Fwidth); |
| case k_makeSampler2D_IntrinsicKind: return SPECIAL(SampledImage); |
| |
| case k_sample_IntrinsicKind: return SPECIAL(Texture); |
| case k_sampleGrad_IntrinsicKind: return SPECIAL(TextureGrad); |
| case k_sampleLod_IntrinsicKind: return SPECIAL(TextureLod); |
| case k_subpassLoad_IntrinsicKind: return SPECIAL(SubpassLoad); |
| |
| case k_floatBitsToInt_IntrinsicKind: return ALL_SPIRV(Bitcast); |
| case k_floatBitsToUint_IntrinsicKind: return ALL_SPIRV(Bitcast); |
| case k_intBitsToFloat_IntrinsicKind: return ALL_SPIRV(Bitcast); |
| case k_uintBitsToFloat_IntrinsicKind: return ALL_SPIRV(Bitcast); |
| |
| case k_any_IntrinsicKind: return BOOL_SPIRV(Any); |
| case k_all_IntrinsicKind: return BOOL_SPIRV(All); |
| case k_not_IntrinsicKind: return BOOL_SPIRV(LogicalNot); |
| |
| case k_equal_IntrinsicKind: |
| return Intrinsic{kSPIRV_IntrinsicOpcodeKind, |
| SpvOpFOrdEqual, |
| SpvOpIEqual, |
| SpvOpIEqual, |
| SpvOpLogicalEqual}; |
| case k_notEqual_IntrinsicKind: |
| return Intrinsic{kSPIRV_IntrinsicOpcodeKind, |
| SpvOpFUnordNotEqual, |
| SpvOpINotEqual, |
| SpvOpINotEqual, |
| SpvOpLogicalNotEqual}; |
| case k_lessThan_IntrinsicKind: |
| return Intrinsic{kSPIRV_IntrinsicOpcodeKind, |
| SpvOpFOrdLessThan, |
| SpvOpSLessThan, |
| SpvOpULessThan, |
| SpvOpUndef}; |
| case k_lessThanEqual_IntrinsicKind: |
| return Intrinsic{kSPIRV_IntrinsicOpcodeKind, |
| SpvOpFOrdLessThanEqual, |
| SpvOpSLessThanEqual, |
| SpvOpULessThanEqual, |
| SpvOpUndef}; |
| case k_greaterThan_IntrinsicKind: |
| return Intrinsic{kSPIRV_IntrinsicOpcodeKind, |
| SpvOpFOrdGreaterThan, |
| SpvOpSGreaterThan, |
| SpvOpUGreaterThan, |
| SpvOpUndef}; |
| case k_greaterThanEqual_IntrinsicKind: |
| return Intrinsic{kSPIRV_IntrinsicOpcodeKind, |
| SpvOpFOrdGreaterThanEqual, |
| SpvOpSGreaterThanEqual, |
| SpvOpUGreaterThanEqual, |
| SpvOpUndef}; |
| default: |
| return Intrinsic{kInvalid_IntrinsicOpcodeKind, 0, 0, 0, 0}; |
| } |
| } |
| |
| void SPIRVCodeGenerator::writeWord(int32_t word, OutputStream& out) { |
| out.write((const char*) &word, sizeof(word)); |
| } |
| |
| static bool is_float(const Type& type) { |
| return (type.isScalar() || type.isVector() || type.isMatrix()) && |
| type.componentType().isFloat(); |
| } |
| |
| static bool is_signed(const Type& type) { |
| return (type.isScalar() || type.isVector()) && type.componentType().isSigned(); |
| } |
| |
| static bool is_unsigned(const Type& type) { |
| return (type.isScalar() || type.isVector()) && type.componentType().isUnsigned(); |
| } |
| |
| static bool is_bool(const Type& type) { |
| return (type.isScalar() || type.isVector()) && type.componentType().isBoolean(); |
| } |
| |
| template <typename T> |
| static T pick_by_type(const Type& type, T ifFloat, T ifInt, T ifUInt, T ifBool) { |
| if (is_float(type)) { |
| return ifFloat; |
| } |
| if (is_signed(type)) { |
| return ifInt; |
| } |
| if (is_unsigned(type)) { |
| return ifUInt; |
| } |
| if (is_bool(type)) { |
| return ifBool; |
| } |
| SkDEBUGFAIL("unrecognized type"); |
| return ifFloat; |
| } |
| |
| static bool is_out(const Modifiers& m) { |
| return (m.fFlags & Modifiers::kOut_Flag) != 0; |
| } |
| |
| static bool is_in(const Modifiers& m) { |
| switch (m.fFlags & (Modifiers::kOut_Flag | Modifiers::kIn_Flag)) { |
| case Modifiers::kOut_Flag: // out |
| return false; |
| |
| case 0: // implicit in |
| case Modifiers::kIn_Flag: // explicit in |
| case Modifiers::kOut_Flag | Modifiers::kIn_Flag: // inout |
| return true; |
| |
| default: SkUNREACHABLE; |
| } |
| } |
| |
| static bool is_control_flow_op(SpvOp_ op) { |
| switch (op) { |
| case SpvOpReturn: |
| case SpvOpReturnValue: |
| case SpvOpKill: |
| case SpvOpSwitch: |
| case SpvOpBranch: |
| case SpvOpBranchConditional: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool is_globally_reachable_op(SpvOp_ op) { |
| switch (op) { |
| case SpvOpConstant: |
| case SpvOpConstantTrue: |
| case SpvOpConstantFalse: |
| case SpvOpConstantComposite: |
| case SpvOpTypeVoid: |
| case SpvOpTypeInt: |
| case SpvOpTypeFloat: |
| case SpvOpTypeBool: |
| case SpvOpTypeVector: |
| case SpvOpTypeMatrix: |
| case SpvOpTypeArray: |
| case SpvOpTypePointer: |
| case SpvOpTypeFunction: |
| case SpvOpTypeRuntimeArray: |
| case SpvOpTypeStruct: |
| case SpvOpTypeImage: |
| case SpvOpTypeSampledImage: |
| case SpvOpTypeSampler: |
| case SpvOpVariable: |
| case SpvOpFunction: |
| case SpvOpFunctionParameter: |
| case SpvOpFunctionEnd: |
| case SpvOpExecutionMode: |
| case SpvOpMemoryModel: |
| case SpvOpCapability: |
| case SpvOpExtInstImport: |
| case SpvOpEntryPoint: |
| case SpvOpSource: |
| case SpvOpSourceExtension: |
| case SpvOpName: |
| case SpvOpMemberName: |
| case SpvOpDecorate: |
| case SpvOpMemberDecorate: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| void SPIRVCodeGenerator::writeOpCode(SpvOp_ opCode, int length, OutputStream& out) { |
| SkASSERT(opCode != SpvOpLoad || &out != &fConstantBuffer); |
| SkASSERT(opCode != SpvOpUndef); |
| bool foundDeadCode = false; |
| if (is_control_flow_op(opCode)) { |
| // This instruction causes us to leave the current block. |
| foundDeadCode = (fCurrentBlock == 0); |
| fCurrentBlock = 0; |
| } else if (!is_globally_reachable_op(opCode)) { |
| foundDeadCode = (fCurrentBlock == 0); |
| } |
| |
| if (foundDeadCode) { |
| // We just encountered dead code--an instruction that don't have an associated block. |
| // Synthesize a label if this happens; this is necessary to satisfy the validator. |
| this->writeLabel(this->nextId(nullptr), kBranchlessBlock, out); |
| } |
| |
| this->writeWord((length << 16) | opCode, out); |
| } |
| |
| void SPIRVCodeGenerator::writeLabel(SpvId label, StraightLineLabelType, OutputStream& out) { |
| // The straight-line label type is not important; in any case, no caches are invalidated. |
| SkASSERT(!fCurrentBlock); |
| fCurrentBlock = label; |
| this->writeInstruction(SpvOpLabel, label, out); |
| } |
| |
| void SPIRVCodeGenerator::writeLabel(SpvId label, BranchingLabelType type, |
| ConditionalOpCounts ops, OutputStream& out) { |
| switch (type) { |
| case kBranchIsBelow: |
| case kBranchesOnBothSides: |
| // With a backward or bidirectional branch, we haven't seen the code between the label |
| // and the branch yet, so any stored value is potentially suspect. Without scanning |
| // ahead to check, the only safe option is to ditch the store cache entirely. |
| fStoreCache.reset(); |
| [[fallthrough]]; |
| |
| case kBranchIsAbove: |
| // With a forward branch, we can rely on stores that we had cached at the start of the |
| // statement/expression, if they haven't been touched yet. Anything newer than that is |
| // pruned. |
| this->pruneConditionalOps(ops); |
| break; |
| } |
| |
| // Emit the label. |
| this->writeLabel(label, kBranchlessBlock, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, OutputStream& out) { |
| this->writeOpCode(opCode, 1, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, OutputStream& out) { |
| this->writeOpCode(opCode, 2, out); |
| this->writeWord(word1, out); |
| } |
| |
| void SPIRVCodeGenerator::writeString(std::string_view s, OutputStream& out) { |
| out.write(s.data(), s.length()); |
| switch (s.length() % 4) { |
| case 1: |
| out.write8(0); |
| [[fallthrough]]; |
| case 2: |
| out.write8(0); |
| [[fallthrough]]; |
| case 3: |
| out.write8(0); |
| break; |
| default: |
| this->writeWord(0, out); |
| break; |
| } |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, std::string_view string, |
| OutputStream& out) { |
| this->writeOpCode(opCode, 1 + (string.length() + 4) / 4, out); |
| this->writeString(string, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, std::string_view string, |
| OutputStream& out) { |
| this->writeOpCode(opCode, 2 + (string.length() + 4) / 4, out); |
| this->writeWord(word1, out); |
| this->writeString(string, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, |
| std::string_view string, OutputStream& out) { |
| this->writeOpCode(opCode, 3 + (string.length() + 4) / 4, out); |
| this->writeWord(word1, out); |
| this->writeWord(word2, out); |
| this->writeString(string, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, |
| OutputStream& out) { |
| this->writeOpCode(opCode, 3, out); |
| this->writeWord(word1, out); |
| this->writeWord(word2, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, |
| int32_t word3, OutputStream& out) { |
| this->writeOpCode(opCode, 4, out); |
| this->writeWord(word1, out); |
| this->writeWord(word2, out); |
| this->writeWord(word3, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, |
| int32_t word3, int32_t word4, OutputStream& out) { |
| this->writeOpCode(opCode, 5, out); |
| this->writeWord(word1, out); |
| this->writeWord(word2, out); |
| this->writeWord(word3, out); |
| this->writeWord(word4, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, |
| int32_t word3, int32_t word4, int32_t word5, |
| OutputStream& out) { |
| this->writeOpCode(opCode, 6, out); |
| this->writeWord(word1, out); |
| this->writeWord(word2, out); |
| this->writeWord(word3, out); |
| this->writeWord(word4, out); |
| this->writeWord(word5, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, |
| int32_t word3, int32_t word4, int32_t word5, |
| int32_t word6, OutputStream& out) { |
| this->writeOpCode(opCode, 7, out); |
| this->writeWord(word1, out); |
| this->writeWord(word2, out); |
| this->writeWord(word3, out); |
| this->writeWord(word4, out); |
| this->writeWord(word5, out); |
| this->writeWord(word6, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, |
| int32_t word3, int32_t word4, int32_t word5, |
| int32_t word6, int32_t word7, OutputStream& out) { |
| this->writeOpCode(opCode, 8, out); |
| this->writeWord(word1, out); |
| this->writeWord(word2, out); |
| this->writeWord(word3, out); |
| this->writeWord(word4, out); |
| this->writeWord(word5, out); |
| this->writeWord(word6, out); |
| this->writeWord(word7, out); |
| } |
| |
| void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2, |
| int32_t word3, int32_t word4, int32_t word5, |
| int32_t word6, int32_t word7, int32_t word8, |
| OutputStream& out) { |
| this->writeOpCode(opCode, 9, out); |
| this->writeWord(word1, out); |
| this->writeWord(word2, out); |
| this->writeWord(word3, out); |
| this->writeWord(word4, out); |
| this->writeWord(word5, out); |
| this->writeWord(word6, out); |
| this->writeWord(word7, out); |
| this->writeWord(word8, out); |
| } |
| |
| SPIRVCodeGenerator::Instruction SPIRVCodeGenerator::BuildInstructionKey( |
| SpvOp_ opCode, const SkTArray<Word>& words) { |
| // Assemble a cache key for this instruction. |
| Instruction key; |
| key.fOp = opCode; |
| key.fWords.resize(words.size()); |
| key.fResultKind = Word::Kind::kNone; |
| |
| for (int index = 0; index < words.size(); ++index) { |
| const Word& word = words[index]; |
| key.fWords[index] = word.fValue; |
| if (word.isResult()) { |
| SkASSERT(key.fResultKind == Word::Kind::kNone); |
| key.fResultKind = word.fKind; |
| } |
| } |
| |
| return key; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, |
| const SkTArray<Word>& words, |
| OutputStream& out) { |
| // writeOpLoad and writeOpStore have dedicated code. |
| SkASSERT(opCode != SpvOpLoad); |
| SkASSERT(opCode != SpvOpStore); |
| |
| // If this instruction exists in our op cache, return the cached SpvId. |
| Instruction key = BuildInstructionKey(opCode, words); |
| if (SpvId* cachedOp = fOpCache.find(key)) { |
| return *cachedOp; |
| } |
| |
| SpvId result = NA; |
| Precision precision = Precision::kDefault; |
| |
| switch (key.fResultKind) { |
| case Word::Kind::kUniqueResult: |
| // The instruction returns a SpvId, but we do not want deduplication. |
| result = this->nextId(Precision::kDefault); |
| fSpvIdCache.set(result, key); |
| break; |
| |
| case Word::Kind::kNone: |
| // The instruction doesn't return a SpvId, but we can still cache and deduplicate it. |
| fOpCache.set(key, result); |
| break; |
| |
| case Word::Kind::kRelaxedPrecisionResult: |
| precision = Precision::kRelaxed; |
| [[fallthrough]]; |
| |
| case Word::Kind::kKeyedResult: |
| [[fallthrough]]; |
| |
| case Word::Kind::kDefaultPrecisionResult: |
| // Consume a new SpvId. |
| result = this->nextId(precision); |
| fOpCache.set(key, result); |
| fSpvIdCache.set(result, key); |
| |
| // Globally-reachable ops are not subject to the whims of flow control. |
| if (!is_globally_reachable_op(opCode)) { |
| fReachableOps.push_back(result); |
| } |
| break; |
| |
| default: |
| SkDEBUGFAIL("unexpected result kind"); |
| break; |
| } |
| |
| // Write the requested instruction. |
| this->writeOpCode(opCode, words.size() + 1, out); |
| for (const Word& word : words) { |
| if (word.isResult()) { |
| SkASSERT(result != NA); |
| this->writeWord(result, out); |
| } else { |
| this->writeWord(word.fValue, out); |
| } |
| } |
| |
| // Return the result. |
| return result; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeOpLoad(SpvId type, |
| Precision precision, |
| SpvId pointer, |
| OutputStream& out) { |
| // Look for this pointer in our load-cache. |
| if (SpvId* cachedOp = fStoreCache.find(pointer)) { |
| return *cachedOp; |
| } |
| |
| // Write the requested OpLoad instruction. |
| SpvId result = this->nextId(precision); |
| this->writeInstruction(SpvOpLoad, type, result, pointer, out); |
| return result; |
| } |
| |
| void SPIRVCodeGenerator::writeOpStore(SpvStorageClass_ storageClass, |
| SpvId pointer, |
| SpvId value, |
| OutputStream& out) { |
| // Write the uncached SpvOpStore directly. |
| this->writeInstruction(SpvOpStore, pointer, value, out); |
| |
| if (storageClass == SpvStorageClassFunction) { |
| // Insert a pointer-to-SpvId mapping into the load cache. A writeOpLoad to this pointer will |
| // return the cached value as-is. |
| fStoreCache.set(pointer, value); |
| fStoreOps.push_back(pointer); |
| } |
| } |
| |
| SpvId SPIRVCodeGenerator::writeOpConstantTrue(const Type& type) { |
| return this->writeInstruction(SpvOpConstantTrue, |
| Words{this->getType(type), Word::Result()}, |
| fConstantBuffer); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeOpConstantFalse(const Type& type) { |
| return this->writeInstruction(SpvOpConstantFalse, |
| Words{this->getType(type), Word::Result()}, |
| fConstantBuffer); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeOpConstant(const Type& type, int32_t valueBits) { |
| return this->writeInstruction( |
| SpvOpConstant, |
| Words{this->getType(type), Word::Result(), Word::Number(valueBits)}, |
| fConstantBuffer); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeOpConstantComposite(const Type& type, |
| const SkTArray<SpvId>& values) { |
| SkASSERT(values.size() == (type.isStruct() ? (int)type.fields().size() : type.columns())); |
| |
| Words words; |
| words.push_back(this->getType(type)); |
| words.push_back(Word::Result()); |
| for (SpvId value : values) { |
| words.push_back(value); |
| } |
| return this->writeInstruction(SpvOpConstantComposite, words, fConstantBuffer); |
| } |
| |
| bool SPIRVCodeGenerator::toConstants(SpvId value, SkTArray<SpvId>* constants) { |
| Instruction* instr = fSpvIdCache.find(value); |
| if (!instr) { |
| return false; |
| } |
| switch (instr->fOp) { |
| case SpvOpConstant: |
| case SpvOpConstantTrue: |
| case SpvOpConstantFalse: |
| constants->push_back(value); |
| return true; |
| |
| case SpvOpConstantComposite: // OpConstantComposite ResultType ResultID Constituents... |
| // Start at word 2 to skip past ResultType and ResultID. |
| for (int i = 2; i < instr->fWords.size(); ++i) { |
| if (!this->toConstants(instr->fWords[i], constants)) { |
| return false; |
| } |
| } |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| bool SPIRVCodeGenerator::toConstants(SkSpan<const SpvId> values, SkTArray<SpvId>* constants) { |
| for (SpvId value : values) { |
| if (!this->toConstants(value, constants)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeOpCompositeConstruct(const Type& type, |
| const SkTArray<SpvId>& values, |
| OutputStream& out) { |
| // If this is a vector composed entirely of literals, write a constant-composite instead. |
| if (type.isVector()) { |
| SkSTArray<4, SpvId> constants; |
| if (this->toConstants(SkSpan(values), &constants)) { |
| // Create a vector from literals. |
| return this->writeOpConstantComposite(type, constants); |
| } |
| } |
| |
| // If this is a matrix composed entirely of literals, constant-composite them instead. |
| if (type.isMatrix()) { |
| SkSTArray<16, SpvId> constants; |
| if (this->toConstants(SkSpan(values), &constants)) { |
| // Create each matrix column. |
| SkASSERT(type.isMatrix()); |
| const Type& vecType = type.componentType().toCompound(fContext, |
| /*columns=*/type.rows(), |
| /*rows=*/1); |
| SkSTArray<4, SpvId> columnIDs; |
| for (int index=0; index < type.columns(); ++index) { |
| SkSTArray<4, SpvId> columnConstants(&constants[index * type.rows()], |
| type.rows()); |
| columnIDs.push_back(this->writeOpConstantComposite(vecType, columnConstants)); |
| } |
| // Compose the matrix from its columns. |
| return this->writeOpConstantComposite(type, columnIDs); |
| } |
| } |
| |
| Words words; |
| words.push_back(this->getType(type)); |
| words.push_back(Word::Result(type)); |
| for (SpvId value : values) { |
| words.push_back(value); |
| } |
| |
| return this->writeInstruction(SpvOpCompositeConstruct, words, out); |
| } |
| |
| SPIRVCodeGenerator::Instruction* SPIRVCodeGenerator::resultTypeForInstruction( |
| const Instruction& instr) { |
| // This list should contain every op that we cache that has a result and result-type. |
| // (If one is missing, we will not find some optimization opportunities.) |
| // Generally, the result type of an op is in the 0th word, but I'm not sure if this is |
| // universally true, so it's configurable on a per-op basis. |
| int resultTypeWord; |
| switch (instr.fOp) { |
| case SpvOpConstant: |
| case SpvOpConstantTrue: |
| case SpvOpConstantFalse: |
| case SpvOpConstantComposite: |
| case SpvOpCompositeConstruct: |
| case SpvOpCompositeExtract: |
| case SpvOpLoad: |
| resultTypeWord = 0; |
| break; |
| |
| default: |
| return nullptr; |
| } |
| |
| Instruction* typeInstr = fSpvIdCache.find(instr.fWords[resultTypeWord]); |
| SkASSERT(typeInstr); |
| return typeInstr; |
| } |
| |
| int SPIRVCodeGenerator::numComponentsForVecInstruction(const Instruction& instr) { |
| // If an instruction is in the op cache, its type should be as well. |
| Instruction* typeInstr = this->resultTypeForInstruction(instr); |
| SkASSERT(typeInstr); |
| SkASSERT(typeInstr->fOp == SpvOpTypeVector || typeInstr->fOp == SpvOpTypeFloat || |
| typeInstr->fOp == SpvOpTypeInt || typeInstr->fOp == SpvOpTypeBool); |
| |
| // For vectors, extract their column count. Scalars have one component by definition. |
| // SpvOpTypeVector ResultID ComponentType NumComponents |
| return (typeInstr->fOp == SpvOpTypeVector) ? typeInstr->fWords[2] |
| : 1; |
| } |
| |
| SpvId SPIRVCodeGenerator::toComponent(SpvId id, int component) { |
| Instruction* instr = fSpvIdCache.find(id); |
| if (!instr) { |
| return NA; |
| } |
| if (instr->fOp == SpvOpConstantComposite) { |
| // SpvOpConstantComposite ResultType ResultID [components...] |
| // Add 2 to the component index to skip past ResultType and ResultID. |
| return instr->fWords[2 + component]; |
| } |
| if (instr->fOp == SpvOpCompositeConstruct) { |
| // SpvOpCompositeConstruct ResultType ResultID [components...] |
| // Vectors have special rules; check to see if we are composing a vector. |
| Instruction* composedType = fSpvIdCache.find(instr->fWords[0]); |
| SkASSERT(composedType); |
| |
| // When composing a non-vector, each instruction word maps 1:1 to the component index. |
| // We can just extract out the associated component directly. |
| if (composedType->fOp != SpvOpTypeVector) { |
| return instr->fWords[2 + component]; |
| } |
| |
| // When composing a vector, components can be either scalars or vectors. |
| // This means we need to check the op type on each component. (+2 to skip ResultType/Result) |
| for (int index = 2; index < instr->fWords.size(); ++index) { |
| int32_t currentWord = instr->fWords[index]; |
| |
| // Retrieve the sub-instruction pointed to by OpCompositeConstruct. |
| Instruction* subinstr = fSpvIdCache.find(currentWord); |
| if (!subinstr) { |
| return NA; |
| } |
| // If this subinstruction contains the component we're looking for... |
| int numComponents = this->numComponentsForVecInstruction(*subinstr); |
| if (component < numComponents) { |
| if (numComponents == 1) { |
| // ... it's a scalar. Return it. |
| SkASSERT(component == 0); |
| return currentWord; |
| } else { |
| // ... it's a vector. Recurse into it. |
| return this->toComponent(currentWord, component); |
| } |
| } |
| // This sub-instruction doesn't contain our component. Keep walking forward. |
| component -= numComponents; |
| } |
| SkDEBUGFAIL("component index goes past the end of this composite value"); |
| return NA; |
| } |
| return NA; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeOpCompositeExtract(const Type& type, |
| SpvId base, |
| int component, |
| OutputStream& out) { |
| // If the base op is a composite, we can extract from it directly. |
| SpvId result = this->toComponent(base, component); |
| if (result != NA) { |
| return result; |
| } |
| return this->writeInstruction( |
| SpvOpCompositeExtract, |
| {this->getType(type), Word::Result(type), base, Word::Number(component)}, |
| out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeOpCompositeExtract(const Type& type, |
| SpvId base, |
| int componentA, |
| int componentB, |
| OutputStream& out) { |
| // If the base op is a composite, we can extract from it directly. |
| SpvId result = this->toComponent(base, componentA); |
| if (result != NA) { |
| return this->writeOpCompositeExtract(type, result, componentB, out); |
| } |
| return this->writeInstruction(SpvOpCompositeExtract, |
| {this->getType(type), |
| Word::Result(type), |
| base, |
| Word::Number(componentA), |
| Word::Number(componentB)}, |
| out); |
| } |
| |
| void SPIRVCodeGenerator::writeCapabilities(OutputStream& out) { |
| for (uint64_t i = 0, bit = 1; i <= kLast_Capability; i++, bit <<= 1) { |
| if (fCapabilities & bit) { |
| this->writeInstruction(SpvOpCapability, (SpvId) i, out); |
| } |
| } |
| this->writeInstruction(SpvOpCapability, SpvCapabilityShader, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::nextId(const Type* type) { |
| return this->nextId(type && type->hasPrecision() && !type->highPrecision() |
| ? Precision::kRelaxed |
| : Precision::kDefault); |
| } |
| |
| SpvId SPIRVCodeGenerator::nextId(Precision precision) { |
| if (precision == Precision::kRelaxed && !fProgram.fConfig->fSettings.fForceHighPrecision) { |
| this->writeInstruction(SpvOpDecorate, fIdCount, SpvDecorationRelaxedPrecision, |
| fDecorationBuffer); |
| } |
| return fIdCount++; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeStruct(const Type& type, const MemoryLayout& memoryLayout) { |
| // If we've already written out this struct, return its existing SpvId. |
| if (SpvId* cachedStructId = fStructMap.find(&type)) { |
| return *cachedStructId; |
| } |
| |
| // Write all of the field types first, so we don't inadvertently write them while we're in the |
| // middle of writing the struct instruction. |
| Words words; |
| words.push_back(Word::UniqueResult()); |
| for (const auto& f : type.fields()) { |
| words.push_back(this->getType(*f.fType, memoryLayout)); |
| } |
| SpvId resultId = this->writeInstruction(SpvOpTypeStruct, words, fConstantBuffer); |
| this->writeInstruction(SpvOpName, resultId, type.name(), fNameBuffer); |
| fStructMap.set(&type, resultId); |
| |
| size_t offset = 0; |
| for (int32_t i = 0; i < (int32_t) type.fields().size(); i++) { |
| const Type::Field& field = type.fields()[i]; |
| if (!memoryLayout.isSupported(*field.fType)) { |
| fContext.fErrors->error(type.fPosition, "type '" + field.fType->displayName() + |
| "' is not permitted here"); |
| return resultId; |
| } |
| size_t size = memoryLayout.size(*field.fType); |
| size_t alignment = memoryLayout.alignment(*field.fType); |
| const Layout& fieldLayout = field.fModifiers.fLayout; |
| if (fieldLayout.fOffset >= 0) { |
| if (fieldLayout.fOffset < (int) offset) { |
| fContext.fErrors->error(field.fPosition, "offset of field '" + |
| std::string(field.fName) + "' must be at least " + std::to_string(offset)); |
| } |
| if (fieldLayout.fOffset % alignment) { |
| fContext.fErrors->error(field.fPosition, |
| "offset of field '" + std::string(field.fName) + |
| "' must be a multiple of " + std::to_string(alignment)); |
| } |
| offset = fieldLayout.fOffset; |
| } else { |
| size_t mod = offset % alignment; |
| if (mod) { |
| offset += alignment - mod; |
| } |
| } |
| this->writeInstruction(SpvOpMemberName, resultId, i, field.fName, fNameBuffer); |
| this->writeFieldLayout(fieldLayout, resultId, i); |
| if (field.fModifiers.fLayout.fBuiltin < 0) { |
| this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationOffset, |
| (SpvId) offset, fDecorationBuffer); |
| } |
| if (field.fType->isMatrix()) { |
| this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationColMajor, |
| fDecorationBuffer); |
| this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationMatrixStride, |
| (SpvId) memoryLayout.stride(*field.fType), |
| fDecorationBuffer); |
| } |
| if (!field.fType->highPrecision()) { |
| this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, |
| SpvDecorationRelaxedPrecision, fDecorationBuffer); |
| } |
| offset += size; |
| if ((field.fType->isArray() || field.fType->isStruct()) && offset % alignment != 0) { |
| offset += alignment - offset % alignment; |
| } |
| } |
| |
| return resultId; |
| } |
| |
| SpvId SPIRVCodeGenerator::getType(const Type& type) { |
| return this->getType(type, fDefaultLayout); |
| } |
| |
| SpvId SPIRVCodeGenerator::getType(const Type& rawType, const MemoryLayout& layout) { |
| const Type* type = &rawType; |
| |
| switch (type->typeKind()) { |
| case Type::TypeKind::kVoid: { |
| return this->writeInstruction(SpvOpTypeVoid, Words{Word::Result()}, fConstantBuffer); |
| } |
| case Type::TypeKind::kScalar: |
| case Type::TypeKind::kLiteral: { |
| if (type->isBoolean()) { |
| return this->writeInstruction(SpvOpTypeBool, {Word::Result()}, fConstantBuffer); |
| } |
| if (type->isSigned()) { |
| return this->writeInstruction( |
| SpvOpTypeInt, |
| Words{Word::Result(), Word::Number(32), Word::Number(1)}, |
| fConstantBuffer); |
| } |
| if (type->isUnsigned()) { |
| return this->writeInstruction( |
| SpvOpTypeInt, |
| Words{Word::Result(), Word::Number(32), Word::Number(0)}, |
| fConstantBuffer); |
| } |
| if (type->isFloat()) { |
| return this->writeInstruction( |
| SpvOpTypeFloat, |
| Words{Word::Result(), Word::Number(32)}, |
| fConstantBuffer); |
| } |
| SkDEBUGFAILF("unrecognized scalar type '%s'", type->description().c_str()); |
| return (SpvId)-1; |
| } |
| case Type::TypeKind::kVector: { |
| SpvId scalarTypeId = this->getType(type->componentType(), layout); |
| return this->writeInstruction( |
| SpvOpTypeVector, |
| Words{Word::Result(), scalarTypeId, Word::Number(type->columns())}, |
| fConstantBuffer); |
| } |
| case Type::TypeKind::kMatrix: { |
| SpvId vectorTypeId = this->getType(IndexExpression::IndexType(fContext, *type), layout); |
| return this->writeInstruction( |
| SpvOpTypeMatrix, |
| Words{Word::Result(), vectorTypeId, Word::Number(type->columns())}, |
| fConstantBuffer); |
| } |
| case Type::TypeKind::kArray: { |
| if (!layout.isSupported(*type)) { |
| fContext.fErrors->error(type->fPosition, "type '" + type->displayName() + |
| "' is not permitted here"); |
| return NA; |
| } |
| if (type->columns() == 0) { |
| // We do not support runtime-sized arrays. |
| fContext.fErrors->error(type->fPosition, "runtime-sized arrays are not supported"); |
| return NA; |
| } |
| size_t stride = layout.stride(*type); |
| SpvId typeId = this->getType(type->componentType(), layout); |
| SpvId countId = this->writeLiteral(type->columns(), *fContext.fTypes.fInt); |
| SpvId result = this->writeInstruction(SpvOpTypeArray, |
| Words{Word::KeyedResult(stride), typeId, countId}, |
| fConstantBuffer); |
| this->writeInstruction(SpvOpDecorate, |
| {result, SpvDecorationArrayStride, Word::Number(stride)}, |
| fDecorationBuffer); |
| return result; |
| } |
| case Type::TypeKind::kStruct: { |
| return this->writeStruct(*type, layout); |
| } |
| case Type::TypeKind::kSeparateSampler: { |
| return this->writeInstruction(SpvOpTypeSampler, Words{Word::Result()}, fConstantBuffer); |
| } |
| case Type::TypeKind::kSampler: { |
| // Subpass inputs should use the Texture type, not a Sampler. |
| SkASSERT(type->dimensions() != SpvDimSubpassData); |
| if (SpvDimBuffer == type->dimensions()) { |
| fCapabilities |= 1ULL << SpvCapabilitySampledBuffer; |
| } |
| SpvId imageTypeId = this->getType(type->textureType(), layout); |
| return this->writeInstruction(SpvOpTypeSampledImage, |
| Words{Word::Result(), imageTypeId}, |
| fConstantBuffer); |
| } |
| case Type::TypeKind::kTexture: { |
| SpvId floatTypeId = this->getType(*fContext.fTypes.fFloat, layout); |
| int sampled = (type->textureAccess() == Type::TextureAccess::kSample) ? 1 : 2; |
| return this->writeInstruction(SpvOpTypeImage, |
| Words{Word::Result(), |
| floatTypeId, |
| Word::Number(type->dimensions()), |
| Word::Number(type->isDepth()), |
| Word::Number(type->isArrayedTexture()), |
| Word::Number(type->isMultisampled()), |
| Word::Number(sampled), |
| SpvImageFormatUnknown}, |
| fConstantBuffer); |
| } |
| default: { |
| SkDEBUGFAILF("invalid type: %s", type->description().c_str()); |
| return NA; |
| } |
| } |
| } |
| |
| SpvId SPIRVCodeGenerator::getFunctionType(const FunctionDeclaration& function) { |
| Words words; |
| words.push_back(Word::Result()); |
| words.push_back(this->getType(function.returnType())); |
| for (const Variable* parameter : function.parameters()) { |
| words.push_back(this->getFunctionParameterType(parameter->type())); |
| } |
| return this->writeInstruction(SpvOpTypeFunction, words, fConstantBuffer); |
| } |
| |
| SpvId SPIRVCodeGenerator::getFunctionParameterType(const Type& parameterType) { |
| // glslang treats all function arguments as pointers whether they need to be or |
| // not. I was initially puzzled by this until I ran bizarre failures with certain |
| // patterns of function calls and control constructs, as exemplified by this minimal |
| // failure case: |
| // |
| // void sphere(float x) { |
| // } |
| // |
| // void map() { |
| // sphere(1.0); |
| // } |
| // |
| // void main() { |
| // for (int i = 0; i < 1; i++) { |
| // map(); |
| // } |
| // } |
| // |
| // As of this writing, compiling this in the "obvious" way (with sphere taking a float) |
| // crashes. Making it take a float* and storing the argument in a temporary variable, |
| // as glslang does, fixes it. |
| // |
| // The consensus among shader compiler authors seems to be that GPU driver generally don't |
| // handle value-based parameters consistently. It is highly likely that they fit their |
| // implementations to conform to glslang. We take care to do so ourselves. |
| // |
| // Our implementation first stores every parameter value into a function storage-class pointer |
| // before calling a function. The exception is for opaque handle types (samplers and textures) |
| // which must be stored in a pointer with UniformConstant storage-class. This prevents |
| // unnecessary temporaries (becuase opaque handles are always rooted in a pointer variable), |
| // matches glslang's behavior, and translates into WGSL more easily when targeting Dawn. |
| SpvStorageClass_ storageClass; |
| if (parameterType.typeKind() == Type::TypeKind::kSampler || |
| parameterType.typeKind() == Type::TypeKind::kSeparateSampler || |
| parameterType.typeKind() == Type::TypeKind::kTexture) { |
| storageClass = SpvStorageClassUniformConstant; |
| } else { |
| storageClass = SpvStorageClassFunction; |
| } |
| return this->getPointerType(parameterType, storageClass); |
| } |
| |
| SpvId SPIRVCodeGenerator::getPointerType(const Type& type, SpvStorageClass_ storageClass) { |
| return this->getPointerType( |
| type, this->memoryLayoutForStorageClass(storageClass), storageClass); |
| } |
| |
| SpvId SPIRVCodeGenerator::getPointerType(const Type& type, const MemoryLayout& layout, |
| SpvStorageClass_ storageClass) { |
| return this->writeInstruction( |
| SpvOpTypePointer, |
| Words{Word::Result(), Word::Number(storageClass), this->getType(type, layout)}, |
| fConstantBuffer); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeExpression(const Expression& expr, OutputStream& out) { |
| switch (expr.kind()) { |
| case Expression::Kind::kBinary: |
| return this->writeBinaryExpression(expr.as<BinaryExpression>(), out); |
| case Expression::Kind::kConstructorArrayCast: |
| return this->writeExpression(*expr.as<ConstructorArrayCast>().argument(), out); |
| case Expression::Kind::kConstructorArray: |
| case Expression::Kind::kConstructorStruct: |
| return this->writeCompositeConstructor(expr.asAnyConstructor(), out); |
| case Expression::Kind::kConstructorDiagonalMatrix: |
| return this->writeConstructorDiagonalMatrix(expr.as<ConstructorDiagonalMatrix>(), out); |
| case Expression::Kind::kConstructorMatrixResize: |
| return this->writeConstructorMatrixResize(expr.as<ConstructorMatrixResize>(), out); |
| case Expression::Kind::kConstructorScalarCast: |
| return this->writeConstructorScalarCast(expr.as<ConstructorScalarCast>(), out); |
| case Expression::Kind::kConstructorSplat: |
| return this->writeConstructorSplat(expr.as<ConstructorSplat>(), out); |
| case Expression::Kind::kConstructorCompound: |
| return this->writeConstructorCompound(expr.as<ConstructorCompound>(), out); |
| case Expression::Kind::kConstructorCompoundCast: |
| return this->writeConstructorCompoundCast(expr.as<ConstructorCompoundCast>(), out); |
| case Expression::Kind::kFieldAccess: |
| return this->writeFieldAccess(expr.as<FieldAccess>(), out); |
| case Expression::Kind::kFunctionCall: |
| return this->writeFunctionCall(expr.as<FunctionCall>(), out); |
| case Expression::Kind::kLiteral: |
| return this->writeLiteral(expr.as<Literal>()); |
| case Expression::Kind::kPrefix: |
| return this->writePrefixExpression(expr.as<PrefixExpression>(), out); |
| case Expression::Kind::kPostfix: |
| return this->writePostfixExpression(expr.as<PostfixExpression>(), out); |
| case Expression::Kind::kSwizzle: |
| return this->writeSwizzle(expr.as<Swizzle>(), out); |
| case Expression::Kind::kVariableReference: |
| return this->writeVariableReference(expr.as<VariableReference>(), out); |
| case Expression::Kind::kTernary: |
| return this->writeTernaryExpression(expr.as<TernaryExpression>(), out); |
| case Expression::Kind::kIndex: |
| return this->writeIndexExpression(expr.as<IndexExpression>(), out); |
| case Expression::Kind::kSetting: |
| return this->writeExpression(*expr.as<Setting>().toLiteral(fContext), out); |
| default: |
| SkDEBUGFAILF("unsupported expression: %s", expr.description().c_str()); |
| break; |
| } |
| return NA; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeIntrinsicCall(const FunctionCall& c, OutputStream& out) { |
| const FunctionDeclaration& function = c.function(); |
| Intrinsic intrinsic = this->getIntrinsic(function.intrinsicKind()); |
| if (intrinsic.opKind == kInvalid_IntrinsicOpcodeKind) { |
| fContext.fErrors->error(c.fPosition, "unsupported intrinsic '" + function.description() + |
| "'"); |
| return NA; |
| } |
| const ExpressionArray& arguments = c.arguments(); |
| int32_t intrinsicId = intrinsic.floatOp; |
| if (arguments.size() > 0) { |
| const Type& type = arguments[0]->type(); |
| if (intrinsic.opKind == kSpecial_IntrinsicOpcodeKind) { |
| // Keep the default float op. |
| } else { |
| intrinsicId = pick_by_type(type, intrinsic.floatOp, intrinsic.signedOp, |
| intrinsic.unsignedOp, intrinsic.boolOp); |
| } |
| } |
| switch (intrinsic.opKind) { |
| case kGLSL_STD_450_IntrinsicOpcodeKind: { |
| SpvId result = this->nextId(&c.type()); |
| SkTArray<SpvId> argumentIds; |
| std::vector<TempVar> tempVars; |
| argumentIds.reserve_back(arguments.size()); |
| for (int i = 0; i < arguments.size(); i++) { |
| argumentIds.push_back(this->writeFunctionCallArgument(c, i, &tempVars, out)); |
| } |
| this->writeOpCode(SpvOpExtInst, 5 + (int32_t) argumentIds.size(), out); |
| this->writeWord(this->getType(c.type()), out); |
| this->writeWord(result, out); |
| this->writeWord(fGLSLExtendedInstructions, out); |
| this->writeWord(intrinsicId, out); |
| for (SpvId id : argumentIds) { |
| this->writeWord(id, out); |
| } |
| this->copyBackTempVars(tempVars, out); |
| return result; |
| } |
| case kSPIRV_IntrinsicOpcodeKind: { |
| // GLSL supports dot(float, float), but SPIR-V does not. Convert it to FMul |
| if (intrinsicId == SpvOpDot && arguments[0]->type().isScalar()) { |
| intrinsicId = SpvOpFMul; |
| } |
| SpvId result = this->nextId(&c.type()); |
| SkTArray<SpvId> argumentIds; |
| std::vector<TempVar> tempVars; |
| argumentIds.reserve_back(arguments.size()); |
| for (int i = 0; i < arguments.size(); i++) { |
| argumentIds.push_back(this->writeFunctionCallArgument(c, i, &tempVars, out)); |
| } |
| if (!c.type().isVoid()) { |
| this->writeOpCode((SpvOp_) intrinsicId, 3 + (int32_t) arguments.size(), out); |
| this->writeWord(this->getType(c.type()), out); |
| this->writeWord(result, out); |
| } else { |
| this->writeOpCode((SpvOp_) intrinsicId, 1 + (int32_t) arguments.size(), out); |
| } |
| for (SpvId id : argumentIds) { |
| this->writeWord(id, out); |
| } |
| this->copyBackTempVars(tempVars, out); |
| return result; |
| } |
| case kSpecial_IntrinsicOpcodeKind: |
| return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId, out); |
| default: |
| fContext.fErrors->error(c.fPosition, "unsupported intrinsic '" + |
| function.description() + "'"); |
| return NA; |
| } |
| } |
| |
| SpvId SPIRVCodeGenerator::vectorize(const Expression& arg, int vectorSize, OutputStream& out) { |
| SkASSERT(vectorSize >= 1 && vectorSize <= 4); |
| const Type& argType = arg.type(); |
| if (argType.isScalar() && vectorSize > 1) { |
| ConstructorSplat splat{arg.fPosition, |
| argType.toCompound(fContext, vectorSize, /*rows=*/1), |
| arg.clone()}; |
| return this->writeConstructorSplat(splat, out); |
| } |
| |
| SkASSERT(vectorSize == argType.columns()); |
| return this->writeExpression(arg, out); |
| } |
| |
| SkTArray<SpvId> SPIRVCodeGenerator::vectorize(const ExpressionArray& args, OutputStream& out) { |
| int vectorSize = 1; |
| for (const auto& a : args) { |
| if (a->type().isVector()) { |
| if (vectorSize > 1) { |
| SkASSERT(a->type().columns() == vectorSize); |
| } else { |
| vectorSize = a->type().columns(); |
| } |
| } |
| } |
| SkTArray<SpvId> result; |
| result.reserve_back(args.size()); |
| for (const auto& arg : args) { |
| result.push_back(this->vectorize(*arg, vectorSize, out)); |
| } |
| return result; |
| } |
| |
| void SPIRVCodeGenerator::writeGLSLExtendedInstruction(const Type& type, SpvId id, SpvId floatInst, |
| SpvId signedInst, SpvId unsignedInst, |
| const SkTArray<SpvId>& args, |
| OutputStream& out) { |
| this->writeOpCode(SpvOpExtInst, 5 + args.size(), out); |
| this->writeWord(this->getType(type), out); |
| this->writeWord(id, out); |
| this->writeWord(fGLSLExtendedInstructions, out); |
| this->writeWord(pick_by_type(type, floatInst, signedInst, unsignedInst, NA), out); |
| for (SpvId a : args) { |
| this->writeWord(a, out); |
| } |
| } |
| |
| SpvId SPIRVCodeGenerator::writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind, |
| OutputStream& out) { |
| const ExpressionArray& arguments = c.arguments(); |
| const Type& callType = c.type(); |
| SpvId result = this->nextId(nullptr); |
| switch (kind) { |
| case kAtan_SpecialIntrinsic: { |
| SkSTArray<2, SpvId> argumentIds; |
| for (const std::unique_ptr<Expression>& arg : arguments) { |
| argumentIds.push_back(this->writeExpression(*arg, out)); |
| } |
| this->writeOpCode(SpvOpExtInst, 5 + (int32_t) argumentIds.size(), out); |
| this->writeWord(this->getType(callType), out); |
| this->writeWord(result, out); |
| this->writeWord(fGLSLExtendedInstructions, out); |
| this->writeWord(argumentIds.size() == 2 ? GLSLstd450Atan2 : GLSLstd450Atan, out); |
| for (SpvId id : argumentIds) { |
| this->writeWord(id, out); |
| } |
| break; |
| } |
| case kSampledImage_SpecialIntrinsic: { |
| SkASSERT(arguments.size() == 2); |
| SpvId img = this->writeExpression(*arguments[0], out); |
| SpvId sampler = this->writeExpression(*arguments[1], out); |
| this->writeInstruction(SpvOpSampledImage, |
| this->getType(callType), |
| result, |
| img, |
| sampler, |
| out); |
| break; |
| } |
| case kSubpassLoad_SpecialIntrinsic: { |
| SpvId img = this->writeExpression(*arguments[0], out); |
| ExpressionArray args; |
| args.reserve_back(2); |
| args.push_back(Literal::MakeInt(fContext, Position(), /*value=*/0)); |
| args.push_back(Literal::MakeInt(fContext, Position(), /*value=*/0)); |
| ConstructorCompound ctor(Position(), *fContext.fTypes.fInt2, std::move(args)); |
| SpvId coords = this->writeExpression(ctor, out); |
| if (arguments.size() == 1) { |
| this->writeInstruction(SpvOpImageRead, |
| this->getType(callType), |
| result, |
| img, |
| coords, |
| out); |
| } else { |
| SkASSERT(arguments.size() == 2); |
| SpvId sample = this->writeExpression(*arguments[1], out); |
| this->writeInstruction(SpvOpImageRead, |
| this->getType(callType), |
| result, |
| img, |
| coords, |
| SpvImageOperandsSampleMask, |
| sample, |
| out); |
| } |
| break; |
| } |
| case kTexture_SpecialIntrinsic: { |
| SpvOp_ op = SpvOpImageSampleImplicitLod; |
| const Type& arg1Type = arguments[1]->type(); |
| switch (arguments[0]->type().dimensions()) { |
| case SpvDim1D: |
| if (arg1Type.matches(*fContext.fTypes.fFloat2)) { |
| op = SpvOpImageSampleProjImplicitLod; |
| } else { |
| SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat)); |
| } |
| break; |
| case SpvDim2D: |
| if (arg1Type.matches(*fContext.fTypes.fFloat3)) { |
| op = SpvOpImageSampleProjImplicitLod; |
| } else { |
| SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat2)); |
| } |
| break; |
| case SpvDim3D: |
| if (arg1Type.matches(*fContext.fTypes.fFloat4)) { |
| op = SpvOpImageSampleProjImplicitLod; |
| } else { |
| SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat3)); |
| } |
| break; |
| case SpvDimCube: // fall through |
| case SpvDimRect: // fall through |
| case SpvDimBuffer: // fall through |
| case SpvDimSubpassData: |
| break; |
| } |
| SpvId type = this->getType(callType); |
| SpvId sampler = this->writeExpression(*arguments[0], out); |
| SpvId uv = this->writeExpression(*arguments[1], out); |
| if (arguments.size() == 3) { |
| this->writeInstruction(op, type, result, sampler, uv, |
| SpvImageOperandsBiasMask, |
| this->writeExpression(*arguments[2], out), |
| out); |
| } else { |
| SkASSERT(arguments.size() == 2); |
| if (fProgram.fConfig->fSettings.fSharpenTextures) { |
| SpvId lodBias = this->writeLiteral(kSharpenTexturesBias, |
| *fContext.fTypes.fFloat); |
| this->writeInstruction(op, type, result, sampler, uv, |
| SpvImageOperandsBiasMask, lodBias, out); |
| } else { |
| this->writeInstruction(op, type, result, sampler, uv, |
| out); |
| } |
| } |
| break; |
| } |
| case kTextureGrad_SpecialIntrinsic: { |
| SpvOp_ op = SpvOpImageSampleExplicitLod; |
| SkASSERT(arguments.size() == 4); |
| SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); |
| SkASSERT(arguments[1]->type().matches(*fContext.fTypes.fFloat2)); |
| SkASSERT(arguments[2]->type().matches(*fContext.fTypes.fFloat2)); |
| SkASSERT(arguments[3]->type().matches(*fContext.fTypes.fFloat2)); |
| SpvId type = this->getType(callType); |
| SpvId sampler = this->writeExpression(*arguments[0], out); |
| SpvId uv = this->writeExpression(*arguments[1], out); |
| SpvId dPdx = this->writeExpression(*arguments[2], out); |
| SpvId dPdy = this->writeExpression(*arguments[3], out); |
| this->writeInstruction(op, type, result, sampler, uv, SpvImageOperandsGradMask, |
| dPdx, dPdy, out); |
| break; |
| } |
| case kTextureLod_SpecialIntrinsic: { |
| SpvOp_ op = SpvOpImageSampleExplicitLod; |
| SkASSERT(arguments.size() == 3); |
| SkASSERT(arguments[0]->type().dimensions() == SpvDim2D); |
| SkASSERT(arguments[2]->type().matches(*fContext.fTypes.fFloat)); |
| const Type& arg1Type = arguments[1]->type(); |
| if (arg1Type.matches(*fContext.fTypes.fFloat3)) { |
| op = SpvOpImageSampleProjExplicitLod; |
| } else { |
| SkASSERT(arg1Type.matches(*fContext.fTypes.fFloat2)); |
| } |
| SpvId type = this->getType(callType); |
| SpvId sampler = this->writeExpression(*arguments[0], out); |
| SpvId uv = this->writeExpression(*arguments[1], out); |
| this->writeInstruction(op, type, result, sampler, uv, |
| SpvImageOperandsLodMask, |
| this->writeExpression(*arguments[2], out), |
| out); |
| break; |
| } |
| case kMod_SpecialIntrinsic: { |
| SkTArray<SpvId> args = this->vectorize(arguments, out); |
| SkASSERT(args.size() == 2); |
| const Type& operandType = arguments[0]->type(); |
| SpvOp_ op = pick_by_type(operandType, SpvOpFMod, SpvOpSMod, SpvOpUMod, SpvOpUndef); |
| SkASSERT(op != SpvOpUndef); |
| this->writeOpCode(op, 5, out); |
| this->writeWord(this->getType(operandType), out); |
| this->writeWord(result, out); |
| this->writeWord(args[0], out); |
| this->writeWord(args[1], out); |
| break; |
| } |
| case kDFdy_SpecialIntrinsic: { |
| SpvId fn = this->writeExpression(*arguments[0], out); |
| this->writeOpCode(SpvOpDPdy, 4, out); |
| this->writeWord(this->getType(callType), out); |
| this->writeWord(result, out); |
| this->writeWord(fn, out); |
| if (!fProgram.fConfig->fSettings.fForceNoRTFlip) { |
| this->addRTFlipUniform(c.fPosition); |
| using namespace dsl; |
| DSLExpression rtFlip( |
| ThreadContext::Compiler().convertIdentifier(Position(), SKSL_RTFLIP_NAME)); |
| SpvId rtFlipY = this->vectorize(*rtFlip.y().release(), callType.columns(), out); |
| SpvId flipped = this->nextId(&callType); |
| this->writeInstruction( |
| SpvOpFMul, this->getType(callType), flipped, result, rtFlipY, out); |
| result = flipped; |
| } |
| break; |
| } |
| case kClamp_SpecialIntrinsic: { |
| SkTArray<SpvId> args = this->vectorize(arguments, out); |
| SkASSERT(args.size() == 3); |
| this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp, |
| GLSLstd450UClamp, args, out); |
| break; |
| } |
| case kMax_SpecialIntrinsic: { |
| SkTArray<SpvId> args = this->vectorize(arguments, out); |
| SkASSERT(args.size() == 2); |
| this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMax, GLSLstd450SMax, |
| GLSLstd450UMax, args, out); |
| break; |
| } |
| case kMin_SpecialIntrinsic: { |
| SkTArray<SpvId> args = this->vectorize(arguments, out); |
| SkASSERT(args.size() == 2); |
| this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMin, GLSLstd450SMin, |
| GLSLstd450UMin, args, out); |
| break; |
| } |
| case kMix_SpecialIntrinsic: { |
| SkTArray<SpvId> args = this->vectorize(arguments, out); |
| SkASSERT(args.size() == 3); |
| if (arguments[2]->type().componentType().isBoolean()) { |
| // Use OpSelect to implement Boolean mix(). |
| SpvId falseId = this->writeExpression(*arguments[0], out); |
| SpvId trueId = this->writeExpression(*arguments[1], out); |
| SpvId conditionId = this->writeExpression(*arguments[2], out); |
| this->writeInstruction(SpvOpSelect, this->getType(arguments[0]->type()), result, |
| conditionId, trueId, falseId, out); |
| } else { |
| this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FMix, SpvOpUndef, |
| SpvOpUndef, args, out); |
| } |
| break; |
| } |
| case kSaturate_SpecialIntrinsic: { |
| SkASSERT(arguments.size() == 1); |
| ExpressionArray finalArgs; |
| finalArgs.reserve_back(3); |
| finalArgs.push_back(arguments[0]->clone()); |
| finalArgs.push_back(Literal::MakeFloat(fContext, Position(), /*value=*/0)); |
| finalArgs.push_back(Literal::MakeFloat(fContext, Position(), /*value=*/1)); |
| SkTArray<SpvId> spvArgs = this->vectorize(finalArgs, out); |
| this->writeGLSLExtendedInstruction(callType, result, GLSLstd450FClamp, GLSLstd450SClamp, |
| GLSLstd450UClamp, spvArgs, out); |
| break; |
| } |
| case kSmoothStep_SpecialIntrinsic: { |
| SkTArray<SpvId> args = this->vectorize(arguments, out); |
| SkASSERT(args.size() == 3); |
| this->writeGLSLExtendedInstruction(callType, result, GLSLstd450SmoothStep, SpvOpUndef, |
| SpvOpUndef, args, out); |
| break; |
| } |
| case kStep_SpecialIntrinsic: { |
| SkTArray<SpvId> args = this->vectorize(arguments, out); |
| SkASSERT(args.size() == 2); |
| this->writeGLSLExtendedInstruction(callType, result, GLSLstd450Step, SpvOpUndef, |
| SpvOpUndef, args, out); |
| break; |
| } |
| case kMatrixCompMult_SpecialIntrinsic: { |
| SkASSERT(arguments.size() == 2); |
| SpvId lhs = this->writeExpression(*arguments[0], out); |
| SpvId rhs = this->writeExpression(*arguments[1], out); |
| result = this->writeComponentwiseMatrixBinary(callType, lhs, rhs, SpvOpFMul, out); |
| break; |
| } |
| } |
| return result; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeFunctionCallArgument(const FunctionCall& call, |
| int argIndex, |
| std::vector<TempVar>* tempVars, |
| OutputStream& out) { |
| const FunctionDeclaration& funcDecl = call.function(); |
| const Expression& arg = *call.arguments()[argIndex]; |
| const Modifiers& paramModifiers = funcDecl.parameters()[argIndex]->modifiers(); |
| |
| // ID of temporary variable that we will use to hold this argument, or 0 if it is being |
| // passed directly |
| SpvId tmpVar; |
| // if we need a temporary var to store this argument, this is the value to store in the var |
| SpvId tmpValueId = NA; |
| |
| if (is_out(paramModifiers)) { |
| std::unique_ptr<LValue> lv = this->getLValue(arg, out); |
| // We handle out params with a temp var that we copy back to the original variable at the |
| // end of the call. GLSL guarantees that the original variable will be unchanged until the |
| // end of the call, and also that out params are written back to their original variables in |
| // a specific order (left-to-right), so it's unsafe to pass a pointer to the original value. |
| if (is_in(paramModifiers)) { |
| tmpValueId = lv->load(out); |
| } |
| tmpVar = this->nextId(&arg.type()); |
| tempVars->push_back(TempVar{tmpVar, &arg.type(), std::move(lv)}); |
| } else if (funcDecl.isIntrinsic()) { |
| // Unlike user function calls, non-out intrinsic arguments don't need pointer parameters. |
| return this->writeExpression(arg, out); |
| } else if (arg.is<VariableReference>() && |
| (arg.type().typeKind() == Type::TypeKind::kSampler || |
| arg.type().typeKind() == Type::TypeKind::kSeparateSampler || |
| arg.type().typeKind() == Type::TypeKind::kTexture)) { |
| // Opaque handle (sampler/texture) arguments are always declared as pointers but never |
| // stored in intermediates when calling user-defined functions. |
| // |
| // The case for intrinsics (which take opaque arguments by value) is handled above just like |
| // regular pointers. |
| // |
| // See getFunctionParameterType for further explanation. |
| SpvId* entry = fVariableMap.find(arg.as<VariableReference>().variable()); |
| SkASSERTF(entry, "%s", arg.description().c_str()); |
| return *entry; |
| } else { |
| // We always use pointer parameters when calling user functions. |
| // See getFunctionParameterType for further explanation. |
| tmpValueId = this->writeExpression(arg, out); |
| tmpVar = this->nextId(nullptr); |
| } |
| this->writeInstruction(SpvOpVariable, |
| this->getPointerType(arg.type(), SpvStorageClassFunction), |
| tmpVar, |
| SpvStorageClassFunction, |
| fVariableBuffer); |
| if (tmpValueId != NA) { |
| this->writeOpStore(SpvStorageClassFunction, tmpVar, tmpValueId, out); |
| } |
| return tmpVar; |
| } |
| |
| void SPIRVCodeGenerator::copyBackTempVars(const std::vector<TempVar>& tempVars, OutputStream& out) { |
| for (const TempVar& tempVar : tempVars) { |
| SpvId load = this->nextId(tempVar.type); |
| this->writeInstruction(SpvOpLoad, this->getType(*tempVar.type), load, tempVar.spvId, out); |
| tempVar.lvalue->store(load, out); |
| } |
| } |
| |
| SpvId SPIRVCodeGenerator::writeFunctionCall(const FunctionCall& c, OutputStream& out) { |
| const FunctionDeclaration& function = c.function(); |
| if (function.isIntrinsic() && !function.definition()) { |
| return this->writeIntrinsicCall(c, out); |
| } |
| const ExpressionArray& arguments = c.arguments(); |
| SpvId* entry = fFunctionMap.find(&function); |
| if (!entry) { |
| fContext.fErrors->error(c.fPosition, "function '" + function.description() + |
| "' is not defined"); |
| return NA; |
| } |
| // Temp variables are used to write back out-parameters after the function call is complete. |
| std::vector<TempVar> tempVars; |
| SkTArray<SpvId> argumentIds; |
| argumentIds.reserve_back(arguments.size()); |
| for (int i = 0; i < arguments.size(); i++) { |
| argumentIds.push_back(this->writeFunctionCallArgument(c, i, &tempVars, out)); |
| } |
| SpvId result = this->nextId(nullptr); |
| this->writeOpCode(SpvOpFunctionCall, 4 + (int32_t) arguments.size(), out); |
| this->writeWord(this->getType(c.type()), out); |
| this->writeWord(result, out); |
| this->writeWord(*entry, out); |
| for (SpvId id : argumentIds) { |
| this->writeWord(id, out); |
| } |
| // Now that the call is complete, we copy temp out-variables back to their real lvalues. |
| this->copyBackTempVars(tempVars, out); |
| return result; |
| } |
| |
| SpvId SPIRVCodeGenerator::castScalarToType(SpvId inputExprId, |
| const Type& inputType, |
| const Type& outputType, |
| OutputStream& out) { |
| if (outputType.isFloat()) { |
| return this->castScalarToFloat(inputExprId, inputType, outputType, out); |
| } |
| if (outputType.isSigned()) { |
| return this->castScalarToSignedInt(inputExprId, inputType, outputType, out); |
| } |
| if (outputType.isUnsigned()) { |
| return this->castScalarToUnsignedInt(inputExprId, inputType, outputType, out); |
| } |
| if (outputType.isBoolean()) { |
| return this->castScalarToBoolean(inputExprId, inputType, outputType, out); |
| } |
| |
| fContext.fErrors->error(Position(), "unsupported cast: " + inputType.description() + " to " + |
| outputType.description()); |
| return inputExprId; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeFloatConstructor(const AnyConstructor& c, OutputStream& out) { |
| SkASSERT(c.argumentSpan().size() == 1); |
| SkASSERT(c.type().isFloat()); |
| const Expression& ctorExpr = *c.argumentSpan().front(); |
| SpvId expressionId = this->writeExpression(ctorExpr, out); |
| return this->castScalarToFloat(expressionId, ctorExpr.type(), c.type(), out); |
| } |
| |
| SpvId SPIRVCodeGenerator::castScalarToFloat(SpvId inputId, const Type& inputType, |
| const Type& outputType, OutputStream& out) { |
| // Casting a float to float is a no-op. |
| if (inputType.isFloat()) { |
| return inputId; |
| } |
| |
| // Given the input type, generate the appropriate instruction to cast to float. |
| SpvId result = this->nextId(&outputType); |
| if (inputType.isBoolean()) { |
| // Use OpSelect to convert the boolean argument to a literal 1.0 or 0.0. |
| const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fFloat); |
| const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fFloat); |
| this->writeInstruction(SpvOpSelect, this->getType(outputType), result, |
| inputId, oneID, zeroID, out); |
| } else if (inputType.isSigned()) { |
| this->writeInstruction(SpvOpConvertSToF, this->getType(outputType), result, inputId, out); |
| } else if (inputType.isUnsigned()) { |
| this->writeInstruction(SpvOpConvertUToF, this->getType(outputType), result, inputId, out); |
| } else { |
| SkDEBUGFAILF("unsupported type for float typecast: %s", inputType.description().c_str()); |
| return NA; |
| } |
| return result; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeIntConstructor(const AnyConstructor& c, OutputStream& out) { |
| SkASSERT(c.argumentSpan().size() == 1); |
| SkASSERT(c.type().isSigned()); |
| const Expression& ctorExpr = *c.argumentSpan().front(); |
| SpvId expressionId = this->writeExpression(ctorExpr, out); |
| return this->castScalarToSignedInt(expressionId, ctorExpr.type(), c.type(), out); |
| } |
| |
| SpvId SPIRVCodeGenerator::castScalarToSignedInt(SpvId inputId, const Type& inputType, |
| const Type& outputType, OutputStream& out) { |
| // Casting a signed int to signed int is a no-op. |
| if (inputType.isSigned()) { |
| return inputId; |
| } |
| |
| // Given the input type, generate the appropriate instruction to cast to signed int. |
| SpvId result = this->nextId(&outputType); |
| if (inputType.isBoolean()) { |
| // Use OpSelect to convert the boolean argument to a literal 1 or 0. |
| const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fInt); |
| const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fInt); |
| this->writeInstruction(SpvOpSelect, this->getType(outputType), result, |
| inputId, oneID, zeroID, out); |
| } else if (inputType.isFloat()) { |
| this->writeInstruction(SpvOpConvertFToS, this->getType(outputType), result, inputId, out); |
| } else if (inputType.isUnsigned()) { |
| this->writeInstruction(SpvOpBitcast, this->getType(outputType), result, inputId, out); |
| } else { |
| SkDEBUGFAILF("unsupported type for signed int typecast: %s", |
| inputType.description().c_str()); |
| return NA; |
| } |
| return result; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeUIntConstructor(const AnyConstructor& c, OutputStream& out) { |
| SkASSERT(c.argumentSpan().size() == 1); |
| SkASSERT(c.type().isUnsigned()); |
| const Expression& ctorExpr = *c.argumentSpan().front(); |
| SpvId expressionId = this->writeExpression(ctorExpr, out); |
| return this->castScalarToUnsignedInt(expressionId, ctorExpr.type(), c.type(), out); |
| } |
| |
| SpvId SPIRVCodeGenerator::castScalarToUnsignedInt(SpvId inputId, const Type& inputType, |
| const Type& outputType, OutputStream& out) { |
| // Casting an unsigned int to unsigned int is a no-op. |
| if (inputType.isUnsigned()) { |
| return inputId; |
| } |
| |
| // Given the input type, generate the appropriate instruction to cast to unsigned int. |
| SpvId result = this->nextId(&outputType); |
| if (inputType.isBoolean()) { |
| // Use OpSelect to convert the boolean argument to a literal 1u or 0u. |
| const SpvId oneID = this->writeLiteral(1.0, *fContext.fTypes.fUInt); |
| const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fUInt); |
| this->writeInstruction(SpvOpSelect, this->getType(outputType), result, |
| inputId, oneID, zeroID, out); |
| } else if (inputType.isFloat()) { |
| this->writeInstruction(SpvOpConvertFToU, this->getType(outputType), result, inputId, out); |
| } else if (inputType.isSigned()) { |
| this->writeInstruction(SpvOpBitcast, this->getType(outputType), result, inputId, out); |
| } else { |
| SkDEBUGFAILF("unsupported type for unsigned int typecast: %s", |
| inputType.description().c_str()); |
| return NA; |
| } |
| return result; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeBooleanConstructor(const AnyConstructor& c, OutputStream& out) { |
| SkASSERT(c.argumentSpan().size() == 1); |
| SkASSERT(c.type().isBoolean()); |
| const Expression& ctorExpr = *c.argumentSpan().front(); |
| SpvId expressionId = this->writeExpression(ctorExpr, out); |
| return this->castScalarToBoolean(expressionId, ctorExpr.type(), c.type(), out); |
| } |
| |
| SpvId SPIRVCodeGenerator::castScalarToBoolean(SpvId inputId, const Type& inputType, |
| const Type& outputType, OutputStream& out) { |
| // Casting a bool to bool is a no-op. |
| if (inputType.isBoolean()) { |
| return inputId; |
| } |
| |
| // Given the input type, generate the appropriate instruction to cast to bool. |
| SpvId result = this->nextId(nullptr); |
| if (inputType.isSigned()) { |
| // Synthesize a boolean result by comparing the input against a signed zero literal. |
| const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fInt); |
| this->writeInstruction(SpvOpINotEqual, this->getType(outputType), result, |
| inputId, zeroID, out); |
| } else if (inputType.isUnsigned()) { |
| // Synthesize a boolean result by comparing the input against an unsigned zero literal. |
| const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fUInt); |
| this->writeInstruction(SpvOpINotEqual, this->getType(outputType), result, |
| inputId, zeroID, out); |
| } else if (inputType.isFloat()) { |
| // Synthesize a boolean result by comparing the input against a floating-point zero literal. |
| const SpvId zeroID = this->writeLiteral(0.0, *fContext.fTypes.fFloat); |
| this->writeInstruction(SpvOpFUnordNotEqual, this->getType(outputType), result, |
| inputId, zeroID, out); |
| } else { |
| SkDEBUGFAILF("unsupported type for boolean typecast: %s", inputType.description().c_str()); |
| return NA; |
| } |
| return result; |
| } |
| |
| SpvId SPIRVCodeGenerator::writeMatrixCopy(SpvId src, const Type& srcType, const Type& dstType, |
| OutputStream& out) { |
| SkASSERT(srcType.isMatrix()); |
| SkASSERT(dstType.isMatrix()); |
| SkASSERT(srcType.componentType().matches(dstType.componentType())); |
| const Type& srcColumnType = srcType.componentType().toCompound(fContext, srcType.rows(), 1); |
| const Type& dstColumnType = dstType.componentType().toCompound(fContext, dstType.rows(), 1); |
| SkASSERT(dstType.componentType().isFloat()); |
| SpvId dstColumnTypeId = this->getType(dstColumnType); |
| const SpvId zeroId = this->writeLiteral(0.0, dstType.componentType()); |
| const SpvId oneId = this->writeLiteral(1.0, dstType.componentType()); |
| |
| SkSTArray<4, SpvId> columns; |
| for (int i = 0; i < dstType.columns(); i++) { |
| if (i < srcType.columns()) { |
| // we're still inside the src matrix, copy the column |
| SpvId srcColumn = this->writeOpCompositeExtract(srcColumnType, src, i, out); |
| SpvId dstColumn; |
| if (srcType.rows() == dstType.rows()) { |
| // columns are equal size, don't need to do anything |
| dstColumn = srcColumn; |
| } |
| else if (dstType.rows() > srcType.rows()) { |
| // dst column is bigger, need to zero-pad it |
| SkSTArray<4, SpvId> values; |
| values.push_back(srcColumn); |
| for (int j = srcType.rows(); j < dstType.rows(); ++j) { |
| values.push_back((i == j) ? oneId : zeroId); |
| } |
| dstColumn = this->writeOpCompositeConstruct(dstColumnType, values, out); |
| } |
| else { |
| // dst column is smaller, need to swizzle the src column |
| dstColumn = this->nextId(&dstType); |
| this->writeOpCode(SpvOpVectorShuffle, 5 + dstType.rows(), out); |
| this->writeWord(dstColumnTypeId, out); |
| this->writeWord(dstColumn, out); |
| this->writeWord(srcColumn, out); |
| this->writeWord(srcColumn, out); |
| for (int j = 0; j < dstType.rows(); j++) { |
| this->writeWord(j, out); |
| } |
| } |
| columns.push_back(dstColumn); |
| } else { |
| // we're past the end of the src matrix, need to synthesize an identity-matrix column |
| SkSTArray<4, SpvId> values; |
| for (int j = 0; j < dstType.rows(); ++j) { |
| values.push_back((i == j) ? oneId : zeroId); |
| } |
| columns.push_back(this->writeOpCompositeConstruct(dstColumnType, values, out)); |
| } |
| } |
| |
| return this->writeOpCompositeConstruct(dstType, columns, out); |
| } |
| |
| void SPIRVCodeGenerator::addColumnEntry(const Type& columnType, |
| SkTArray<SpvId>* currentColumn, |
| SkTArray<SpvId>* columnIds, |
| int rows, |
| SpvId entry, |
| OutputStream& out) { |
| SkASSERT(currentColumn->size() < rows); |
| currentColumn->push_back(entry); |
| if (currentColumn->size() == rows) { |
| // Synthesize this column into a vector. |
| SpvId columnId = this->writeOpCompositeConstruct(columnType, *currentColumn, out); |
| columnIds->push_back(columnId); |
| currentColumn->reset(); |
| } |
| } |
| |
| SpvId SPIRVCodeGenerator::writeMatrixConstructor(const ConstructorCompound& c, OutputStream& out) { |
| const Type& type = c.type(); |
| SkASSERT(type.isMatrix()); |
| SkASSERT(!c.arguments().empty()); |
| const Type& arg0Type = c.arguments()[0]->type(); |
| // go ahead and write the arguments so we don't try to write new instructions in the middle of |
| // an instruction |
| SkSTArray<16, SpvId> arguments; |
| for (const std::unique_ptr<Expression>& arg : c.arguments()) { |
| arguments.push_back(this->writeExpression(*arg, out)); |
| } |
| |
| if (arguments.size() == 1 && arg0Type.isVector()) { |
| // Special-case handling of float4 -> mat2x2. |
| SkASSERT(type.rows() == 2 && type.columns() == 2); |
| SkASSERT(arg0Type.columns() == 4); |
| SpvId v[4]; |
| for (int i = 0; i < 4; ++i) { |
| v[i] = this->writeOpCompositeExtract(type.componentType(), arguments[0], i, out); |
| } |
| const Type& vecType = type.componentType().toCompound(fContext, /*columns=*/2, /*rows=*/1); |
| SpvId v0v1 = this->writeOpCompositeConstruct(vecType, {v[0], v[1]}, out); |
| SpvId v2v3 = this->writeOpCompositeConstruct(vecType, {v[2], v[3]}, out); |
| return this->writeOpCompositeConstruct(type, {v0v1, v2v3}, out); |
| } |
| |
| int rows = type.rows(); |
| const Type& columnType = type.componentType().toCompound(fContext, |
| /*columns=*/rows, /*rows=*/1); |
| // SpvIds of completed columns of the matrix. |
| SkSTArray<4, SpvId> columnIds; |
| // SpvIds of scalars we have written to the current column so far. |
| SkSTArray<4, SpvId> currentColumn; |
| for (int i = 0; i < arguments.size(); i++) { |
| const Type& argType = c.arguments()[i]->type(); |
| if (currentColumn.empty() && argType.isVector() && argType.columns() == rows) { |
| // This vector is a complete matrix column by itself and can be used as-is. |
| columnIds.push_back(arguments[i]); |
| } else if (argType.columns() == 1) { |
| // This argument is a lone scalar and can be added to the current column as-is. |
| this->addColumnEntry(columnType, ¤tColumn, &columnIds, rows, arguments[i], out); |
| } else { |
| // This argument needs to be decomposed into its constituent scalars. |
| for (int j = 0; j < argType.columns(); ++j) { |
| SpvId swizzle = this->writeOpCompositeExtract(argType.componentType(), |
| arguments[i], j, out); |
| this->addColumnEntry(columnType, ¤tColumn, &columnIds, rows, swizzle, out); |
| } |
| } |
| } |
| SkASSERT(columnIds.size() == type.columns()); |
| return this->writeOpCompositeConstruct(type, columnIds, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeConstructorCompound(const ConstructorCompound& c, |
| OutputStream& out) { |
| return c.type().isMatrix() ? this->writeMatrixConstructor(c, out) |
| : this->writeVectorConstructor(c, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeVectorConstructor(const ConstructorCompound& c, OutputStream& out) { |
| const Type& type = c.type(); |
| const Type& componentType = type.componentType(); |
| SkASSERT(type.isVector()); |
| |
| SkSTArray<4, SpvId> arguments; |
| for (int i = 0; i < c.arguments().size(); i++) { |
| const Type& argType = c.arguments()[i]->type(); |
| SkASSERT(componentType.numberKind() == argType.componentType().numberKind()); |
| |
| SpvId arg = this->writeExpression(*c.arguments()[i], out); |
| if (argType.isMatrix()) { |
| // CompositeConstruct cannot take a 2x2 matrix as an input, so we need to extract out |
| // each scalar separately. |
| SkASSERT(argType.rows() == 2); |
| SkASSERT(argType.columns() == 2); |
| for (int j = 0; j < 4; ++j) { |
| arguments.push_back(this->writeOpCompositeExtract(componentType, arg, |
| j / 2, j % 2, out)); |
| } |
| } else if (argType.isVector()) { |
| // There's a bug in the Intel Vulkan driver where OpCompositeConstruct doesn't handle |
| // vector arguments at all, so we always extract each vector component and pass them |
| // into OpCompositeConstruct individually. |
| for (int j = 0; j < argType.columns(); j++) { |
| arguments.push_back(this->writeOpCompositeExtract(componentType, arg, j, out)); |
| } |
| } else { |
| arguments.push_back(arg); |
| } |
| } |
| |
| return this->writeOpCompositeConstruct(type, arguments, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeConstructorSplat(const ConstructorSplat& c, OutputStream& out) { |
| // Write the splat argument. |
| SpvId argument = this->writeExpression(*c.argument(), out); |
| |
| // Generate a OpCompositeConstruct which repeats the argument N times. |
| SkSTArray<4, SpvId> values; |
| values.push_back_n(/*n=*/c.type().columns(), /*t=*/argument); |
| return this->writeOpCompositeConstruct(c.type(), values, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeCompositeConstructor(const AnyConstructor& c, OutputStream& out) { |
| SkASSERT(c.type().isArray() || c.type().isStruct()); |
| auto ctorArgs = c.argumentSpan(); |
| |
| SkSTArray<4, SpvId> arguments; |
| for (const std::unique_ptr<Expression>& arg : ctorArgs) { |
| arguments.push_back(this->writeExpression(*arg, out)); |
| } |
| |
| return this->writeOpCompositeConstruct(c.type(), arguments, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeConstructorScalarCast(const ConstructorScalarCast& c, |
| OutputStream& out) { |
| const Type& type = c.type(); |
| if (type.componentType().numberKind() == c.argument()->type().componentType().numberKind()) { |
| return this->writeExpression(*c.argument(), out); |
| } |
| |
| const Expression& ctorExpr = *c.argument(); |
| SpvId expressionId = this->writeExpression(ctorExpr, out); |
| return this->castScalarToType(expressionId, ctorExpr.type(), type, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeConstructorCompoundCast(const ConstructorCompoundCast& c, |
| OutputStream& out) { |
| const Type& ctorType = c.type(); |
| const Type& argType = c.argument()->type(); |
| SkASSERT(ctorType.isVector() || ctorType.isMatrix()); |
| |
| // Write the composite that we are casting. If the actual type matches, we are done. |
| SpvId compositeId = this->writeExpression(*c.argument(), out); |
| if (ctorType.componentType().numberKind() == argType.componentType().numberKind()) { |
| return compositeId; |
| } |
| |
| // writeMatrixCopy can cast matrices to a different type. |
| if (ctorType.isMatrix()) { |
| return this->writeMatrixCopy(compositeId, argType, ctorType, out); |
| } |
| |
| // SPIR-V doesn't support vector(vector-of-different-type) directly, so we need to extract the |
| // components and convert each one manually. |
| const Type& srcType = argType.componentType(); |
| const Type& dstType = ctorType.componentType(); |
| |
| SkSTArray<4, SpvId> arguments; |
| for (int index = 0; index < argType.columns(); ++index) { |
| SpvId componentId = this->writeOpCompositeExtract(srcType, compositeId, index, out); |
| arguments.push_back(this->castScalarToType(componentId, srcType, dstType, out)); |
| } |
| |
| return this->writeOpCompositeConstruct(ctorType, arguments, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c, |
| OutputStream& out) { |
| const Type& type = c.type(); |
| SkASSERT(type.isMatrix()); |
| SkASSERT(c.argument()->type().isScalar()); |
| |
| // Write out the scalar argument. |
| SpvId diagonal = this->writeExpression(*c.argument(), out); |
| |
| // Build the diagonal matrix. |
| SpvId zeroId = this->writeLiteral(0.0, *fContext.fTypes.fFloat); |
| |
| const Type& vecType = type.componentType().toCompound(fContext, |
| /*columns=*/type.rows(), |
| /*rows=*/1); |
| SkSTArray<4, SpvId> columnIds; |
| SkSTArray<4, SpvId> arguments; |
| arguments.resize(type.rows()); |
| for (int column = 0; column < type.columns(); column++) { |
| for (int row = 0; row < type.rows(); row++) { |
| arguments[row] = (row == column) ? diagonal : zeroId; |
| } |
| columnIds.push_back(this->writeOpCompositeConstruct(vecType, arguments, out)); |
| } |
| return this->writeOpCompositeConstruct(type, columnIds, out); |
| } |
| |
| SpvId SPIRVCodeGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& c, |
| OutputStream& out) { |
| // Write the input matrix. |
| SpvId argument = this->writeExpression(*c.argument(), out); |
| |
| // Use matrix-copy to resize the input matrix to its new size. |
| return this->writeMatrixCopy(argument, c.argument()->type(), c.type(), out); |
| } |
| |
| static SpvStorageClass_ get_storage_class_for_global_variable( |
| const Variable& var, SpvStorageClass_ fallbackStorageClass) { |
| SkASSERT(var.storage() == Variable::Storage::kGlobal); |
| |
| const Modifiers& modifiers = var.modifiers(); |
| if (modifiers.fFlags & Modifiers::kIn_Flag) { |
| SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag)); |
| return SpvStorageClassInput; |
| } |
| if (modifiers.fFlags & Modifiers::kOut_Flag) { |
| SkASSERT(!(modifiers.fLayout.fFlags & Layout::kPushConstant_Flag)); |
| return SpvStorageClassOutput; |
| } |
| if (modifiers.fFlags & Modifiers::kUniform_Flag) { |
| if (modifiers.fLayout.fFlags & Layout::kPushConstant_Flag) { |
| return SpvStorageClassPushConstant; |
| } |
| if (var.type().typeKind() == Type::TypeKind::kSampler || |
| var.type().typeKind() == Type::TypeKind::kSeparateSampler || |
| var.type().typeKind() == Type::TypeKind::kTexture) { |
| return SpvStorageClassUniformConstant; |
| } |
| return SpvStorageClassUniform; |
| } |
| return fallbackStorageClass; |
| } |
| |
| static SpvStorageClass_ get_storage_class(const Expression& expr) { |
| switch (expr.kind()) { |
| case Expression::Kind::kVariableReference: { |
| const Variable& var = *expr.as<VariableReference>().variable(); |
| if (var.storage() != Variable::Storage::kGlobal) { |
| return SpvStorageClassFunction; |
| } |
| return get_storage_class_for_global_variable(var, SpvStorageClassPrivate); |
| } |
| case Expression::Kind::kFieldAccess: |
| return get_storage_class(*expr.as<FieldAccess>().base()); |
| case Expression::Kind::kIndex: |
| return get_storage_class(*expr.as<IndexExpression>().base()); |
| default: |
| return SpvStorageClassFunction; |
| } |
| } |
| |
| SkTArray<SpvId> SPIRVCodeGenerator::getAccessChain(const Expression& expr, OutputStream& out) { |
| switch (expr.kind()) { |
| case Expression::Kind::kIndex: { |
| const IndexExpression& indexExpr = expr.as<IndexExpression>(); |
| SkTArray<SpvId> chain = this->getAccessChain(*indexExpr.base(), out); |
| chain.push_back(this->writeExpression(*indexExpr.index(), out)); |
| return chain; |
| } |
| case Expression::Kind::kFieldAccess: { |
| const FieldAccess& fieldExpr = expr.as<FieldAccess>(); |
| SkTArray<SpvId> chain = this->getAccessChain(*fieldExpr.base(), out); |
| chain.push_back(this->writeLiteral(fieldExpr.fieldIndex(), *fContext.fTypes.fInt)); |
| return chain; |
| } |
| default: { |
| SpvId id = this->getLValue(expr, out)->getPointer(); |
| SkASSERT(id != NA); |
| return SkTArray<SpvId>{id}; |
| } |
| } |
| SkUNREACHABLE; |
| } |
| |
| class PointerLValue : public SPIRVCodeGenerator::LValue { |
| public: |
| PointerLValue(SPIRVCodeGenerator& gen, SpvId pointer, bool isMemoryObject, SpvId type, |
| SPIRVCodeGenerator::Precision precision, SpvStorageClass_ storageClass) |
| : fGen(gen) |
| , fPointer(pointer) |
| , fIsMemoryObject(isMemoryObject) |
| , fType(type) |
| , fPrecision(precision) |
| , fStorageClass(storageClass) {} |
| |
| SpvId getPointer() override { |
| return fPointer; |
| } |
| |
| bool isMemoryObjectPointer() const override { |
| return fIsMemoryObject; |
| } |
| |
| SpvId load(OutputStream& out) override { |
| return fGen.writeOpLoad(fType, fPrecision, fPointer, out); |
| } |
| |
| void store(SpvId value, OutputStream& out) override { |
| if (!fIsMemoryObject) { |
| // We are going to write into an access chain; this could represent one component of a |
| // vector, or one element of an array. This has the potential to invalidate other, |
| // *unknown* elements of our store cache. (e.g. if the store cache holds `%50 = myVec4`, |
| // and we store `%60 = myVec4.z`, this invalidates the cached value for %50.) To avoid |
| // relying on stale data, reset the store cache entirely when this happens. |
| fGen.fStoreCache.reset(); |
| } |
| |
| fGen.writeOpStore(fStorageClass, fPointer, value, out); |
| } |
| |
| private: |
| SPIRVCodeGenerator& fGen; |
| const SpvId fPointer; |
| const bool fIsMemoryObject; |
| const SpvId fType; |
| const SPIRVCodeGenerator::Precision fPrecision; |
| const SpvStorageClass_ fStorageClass; |
| }; |
| |
| class SwizzleLValue : public SPIRVCodeGenerator::LValue { |
| public: |
| SwizzleLValue(SPIRVCodeGenerator& gen, SpvId vecPointer, const ComponentArray& components, |
| const Type& baseType, const Type& swizzleType, SpvStorageClass_ storageClass) |
| : fGen(gen) |
| , fVecPointer(vecPointer) |
| , fComponents(components) |
| , fBaseType(&baseType) |
| , fSwizzleType(&swizzleType) |
| , fStorageClass(storageClass) {} |
| |
| bool applySwizzle(const ComponentArray& components, const Type& newType) override { |
| ComponentArray updatedSwizzle; |
| for (int8_t component : components) { |
| if (component < 0 || component >= fComponents.size()) { |
| SkDEBUGFAILF("swizzle accessed nonexistent component %d", (int)component); |
| return false; |
| } |
| updatedSwizzle.push_back(fComponents[component]); |
| } |
| fComponents = updatedSwizzle; |
| fSwizzleType = &newType; |
| return true; |
| } |
| |
| SpvId load(OutputStream& out) override { |
| SpvId base = fGen.nextId(fBaseType); |
| fGen.writeInstruction(SpvOpLoad, fGen.getType(*fBaseType), base, fVecPointer, out); |
| SpvId result = fGen.nextId(fBaseType); |
| fGen.writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) fComponents.size(), out); |
| fGen.writeWord(fGen.getType(*fSwizzleType), out); |
| fGen.writeWord(result, out); |
| fGen.writeWord(base, out); |
| fGen.writeWord(base, out); |
| for (int component : fComponents) { |
| fGen.writeWord(component, out); |
| } |
| return result; |
| } |
| |
| void store(SpvId value, OutputStream& out) override { |
| // use OpVectorShuffle to mix and match the vector components. We effectively create |
| // a virtual vector out of the concatenation of the left and right vectors, and then |
| // select components from this virtual vector to make the result vector. For |
| // instance, given: |
| // float3L = ...; |
| // float3R = ...; |
| // L.xz = R.xy; |
| // we end up with the virtual vector (L.x, L.y, L.z, R.x, R.y, R.z). Then we want |
| // our result vector to look like (R.x, L.y, R.y), so we need to select indices |
| // (3, 1, 4). |
| SpvId base = fGen.nextId(fBaseType); |
| fGen.writeInstruction(SpvOpLoad, fGen.getType(*fBaseType), base, fVecPointer, out); |
| SpvId shuffle = fGen.nextId(fBaseType); |
| fGen.writeOpCode(SpvOpVectorShuffle, 5 + fBaseType->columns(), out); |
| fGen.writeWord(fGen.getType(*fBaseType), out); |
| fGen.writeWord(shuffle, out); |
| fGen.writeWord(base, out); |
| fGen.writeWord(value, out); |
| for (int i = 0; i < fBaseType->columns(); i++) { |
| // current offset into the virtual vector, defaults to pulling the unmodified |
| // value from the left side |
| int offset = i; |
| // check to see if we are writing this component |
| for (int j = 0; j < fComponents.size(); j++) { |
| if (fComponents[j] == i) { |
| // we're writing to this component, so adjust the offset to pull from |
| // the correct component of the right side instead of preserving the |
| // value from the left |
| offset = (int) (j + fBaseType->columns()); |
| break; |
| } |
| } |
| fGen.writeWord(offset, out); |
| } |
| fGen.writeOpStore(fStorageClass, fVecPointer, shuffle, out); |
| } |
| |
| private: |
| SPIRVCodeGenerator& fGen; |
| const SpvId fVecPointer; |
| ComponentArray fComponents; |
| const Type* fBaseType; |
| const Type* fSwizzleType; |
| const SpvStorageClass_ fStorageClass; |
| }; |
| |
| int SPIRVCodeGenerator::findUniformFieldIndex(const Variable& var) const { |
| int* fieldIndex = fTopLevelUniformMap.find(&var); |
| return fieldIndex ? *fieldIndex : -1; |
| } |
| |
| std::unique_ptr<SPIRVCodeGenerator::LValue> SPIRVCodeGenerator::getLValue(const Expression& expr, |
| OutputStream& out) { |
| const Type& type = expr.type(); |
| Precision precision = type.highPrecision() ? Precision::kDefault : Precision::kRelaxed; |
| switch (expr.kind()) { |
| case Expression::Kind::kVariableReference: { |
| const Variable& var = *expr.as<VariableReference>().variable(); |
| int uniformIdx = this->findUniformFieldIndex(var); |
| if (uniformIdx >= 0) { |
| SpvId memberId = this->nextId(nullptr); |
| SpvId typeId = this->getPointerType(type, SpvStorageClassUniform); |
| SpvId uniformIdxId = this->writeLiteral((double)uniformIdx, *fContext.fTypes.fInt); |
| this->writeInstruction(SpvOpAccessChain, typeId, memberId, fUniformBufferId, |
| uniformIdxId, out); |
| return std::make_unique<PointerLValue>( |
| *this, |
| memberId, |
| /*isMemoryObjectPointer=*/true, |
| this->getType(type, this->memoryLayoutForVariable(var)), |
| precision, |
| SpvStorageClassUniform); |
| } |
| SpvId typeId = this->getType(type, this->memoryLayoutForVariable(var)); |
| SpvId* entry = fVariableMap.find(&var); |
| SkASSERTF(entry, "%s", expr.description().c_str()); |
| return std::make_unique<PointerLValue>(*this, *entry, |
| /*isMemoryObjectPointer=*/true, |
| typeId, precision, get_storage_class(expr)); |
| } |
| case Expression::Kind::kIndex: // fall through |
| case Expression::Kind::kFieldAccess: { |
| SkTArray<SpvId> chain = this->getAccessChain(expr, out); |
| SpvId member = this->nextId(nullptr); |
| SpvStorageClass_ storageClass = get_storage_class(expr); |
| this->writeOpCode(SpvOpAccessChain, (SpvId) (3 + chain.size()), out); |
| this->writeWord(this->getPointerType(type, storageClass), out); |
| this->writeWord(member, out); |
| for (SpvId idx : chain) { |
| this->writeWord(idx, out); |
| } |
| return std::make_unique<PointerLValue>( |
| *this, |
| member, |
| /*isMemoryObjectPointer=*/false, |
| this->getType(type, this->memoryLayoutForStorageClass(storageClass)), |
| precision, |
| storageClass); |
| } |
| case Expression::Kind::kSwizzle: { |
| const Swizzle& swizzle = expr.as<Swizzle>(); |
| std::unique_ptr<LValue> lvalue = this->getLValue(*swizzle.base(), out); |
| if (lvalue->applySwizzle(swizzle.components(), type)) { |
| return lvalue; |
| } |
| SpvId base = lvalue->getPointer(); |
| if (base == NA) { |
| fContext.fErrors->error(swizzle.fPosition, |
| "unable to retrieve lvalue from swizzle"); |
| } |
| SpvStorageClass_ storageClass = get_storage_class(*swizzle.base()); |
| if (swizzle.components().size() == 1) { |
| SpvId member = this->nextId(nullptr); |
| SpvId typeId = this->getPointerType(type, storageClass); |
| SpvId indexId = this->writeLiteral(swizzle.components()[0], *fContext.fTypes.fInt); |
| this->writeInstruction(SpvOpAccessChain, typeId, member, base, indexId, out); |
| return std::make_unique<PointerLValue>(*this, member, |
| /*isMemoryObjectPointer=*/false, |
| this->getType(type), |
| precision, storageClass); |
| } else { |
| return std::make_unique<SwizzleLValue>(*this, base, swizzle.components(), |
| swizzle.base()->type(), type, storageClass); |
| } |
| } |
| default: { |
| // expr isn't actually an lvalue, create a placeholder variable for it. This case |
| // happens due to the need to store values in temporary variables during function |
| // calls (see comments in getFunctionParameterType); erroneous uses of rvalues as |
| // lvalues should have been caught before code generation. |
| // |
| // This is with the exception of opaque handle types (textures/samplers) which are |
| // always defined as UniformConstant pointers and don't need to be explicitly stored |
| // into a temporary (which is handled explicitly in writeFunctionCallArgument). |
| SpvId result = this->nextId(nullptr); |
| SpvId pointerType = this->getPointerType(type, SpvStorageClassFunction); |
| this->writeInstruction(SpvOpVariable, pointerType, result, SpvStorageClassFunction, |
| fVariableBuffer); |
| this->writeOpStore(SpvStorageClassFunction, result, this->writeExpression(expr, out), |
| out); |
| return std::make_unique<PointerLValue>(*this, result, /*isMemoryObjectPointer=*/true, |
| this->getType(type), precision, |
| SpvStorageClassFunction); |
| } |
| } |
| } |
| |
| SpvId SPIRVCodeGenerator::writeVariableReference(const VariableReference& ref, OutputStream& out) { |
| const Variable* |