blob: 88c179d9e827601fd72002d4dbb84167e4c84ecb [file] [log] [blame]
#include "SkXfermode.h"
#include "SkXfermode_proccoeff.h"
#include "SkColorPriv.h"
#include <arm_neon.h>
#include "SkColor_opts_neon.h"
#include "SkXfermode_opts_arm_neon.h"
#define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b)
////////////////////////////////////////////////////////////////////////////////
// NEONized skia functions
////////////////////////////////////////////////////////////////////////////////
static inline uint8x8_t SkAlphaMulAlpha_neon8(uint8x8_t color, uint8x8_t alpha) {
uint16x8_t tmp;
uint8x8_t ret;
tmp = vmull_u8(color, alpha);
tmp = vaddq_u16(tmp, vdupq_n_u16(128));
tmp = vaddq_u16(tmp, vshrq_n_u16(tmp, 8));
ret = vshrn_n_u16(tmp, 8);
return ret;
}
static inline uint16x8_t SkAlphaMulAlpha_neon8_16(uint8x8_t color, uint8x8_t alpha) {
uint16x8_t ret;
ret = vmull_u8(color, alpha);
ret = vaddq_u16(ret, vdupq_n_u16(128));
ret = vaddq_u16(ret, vshrq_n_u16(ret, 8));
ret = vshrq_n_u16(ret, 8);
return ret;
}
static inline uint8x8_t SkDiv255Round_neon8_32_8(int32x4_t p1, int32x4_t p2) {
uint16x8_t tmp;
#ifdef SK_CPU_ARM64
tmp = vmovn_high_u32(vmovn_u32(vreinterpretq_u32_s32(p1)),
vreinterpretq_u32_s32(p2));
#else
tmp = vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(p1)),
vmovn_u32(vreinterpretq_u32_s32(p2)));
#endif
tmp += vdupq_n_u16(128);
tmp += vshrq_n_u16(tmp, 8);
return vshrn_n_u16(tmp, 8);
}
static inline uint16x8_t SkDiv255Round_neon8_16_16(uint16x8_t prod) {
prod += vdupq_n_u16(128);
prod += vshrq_n_u16(prod, 8);
return vshrq_n_u16(prod, 8);
}
static inline uint8x8_t clamp_div255round_simd8_32(int32x4_t val1, int32x4_t val2) {
uint8x8_t ret;
uint32x4_t cmp1, cmp2;
uint16x8_t cmp16;
uint8x8_t cmp8, cmp8_1;
// Test if <= 0
cmp1 = vcleq_s32(val1, vdupq_n_s32(0));
cmp2 = vcleq_s32(val2, vdupq_n_s32(0));
#ifdef SK_CPU_ARM64
cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2);
#else
cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2));
#endif
cmp8_1 = vmovn_u16(cmp16);
// Init to zero
ret = vdup_n_u8(0);
// Test if >= 255*255
cmp1 = vcgeq_s32(val1, vdupq_n_s32(255*255));
cmp2 = vcgeq_s32(val2, vdupq_n_s32(255*255));
#ifdef SK_CPU_ARM64
cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2);
#else
cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2));
#endif
cmp8 = vmovn_u16(cmp16);
// Insert 255 where true
ret = vbsl_u8(cmp8, vdup_n_u8(255), ret);
// Calc SkDiv255Round
uint8x8_t div = SkDiv255Round_neon8_32_8(val1, val2);
// Insert where false and previous test false
cmp8 = cmp8 | cmp8_1;
ret = vbsl_u8(cmp8, ret, div);
// Return the final combination
return ret;
}
////////////////////////////////////////////////////////////////////////////////
// 1 pixel modeprocs
////////////////////////////////////////////////////////////////////////////////
// kSrcATop_Mode, //!< [Da, Sc * Da + (1 - Sa) * Dc]
SkPMColor srcatop_modeproc_neon(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned isa = 255 - sa;
uint8x8_t vda, visa, vsrc, vdst;
vda = vdup_n_u8(da);
visa = vdup_n_u8(isa);
uint16x8_t vsrc_wide, vdst_wide;
vsrc_wide = vmull_u8(vda, vreinterpret_u8_u32(vdup_n_u32(src)));
vdst_wide = vmull_u8(visa, vreinterpret_u8_u32(vdup_n_u32(dst)));
vsrc_wide += vdupq_n_u16(128);
vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
vdst_wide += vdupq_n_u16(128);
vdst_wide += vshrq_n_u16(vdst_wide, 8);
vsrc = vshrn_n_u16(vsrc_wide, 8);
vdst = vshrn_n_u16(vdst_wide, 8);
vsrc += vdst;
vsrc = vset_lane_u8(da, vsrc, 3);
return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
}
// kDstATop_Mode, //!< [Sa, Sa * Dc + Sc * (1 - Da)]
SkPMColor dstatop_modeproc_neon(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned ida = 255 - da;
uint8x8_t vsa, vida, vsrc, vdst;
vsa = vdup_n_u8(sa);
vida = vdup_n_u8(ida);
uint16x8_t vsrc_wide, vdst_wide;
vsrc_wide = vmull_u8(vida, vreinterpret_u8_u32(vdup_n_u32(src)));
vdst_wide = vmull_u8(vsa, vreinterpret_u8_u32(vdup_n_u32(dst)));
vsrc_wide += vdupq_n_u16(128);
vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
vdst_wide += vdupq_n_u16(128);
vdst_wide += vshrq_n_u16(vdst_wide, 8);
vsrc = vshrn_n_u16(vsrc_wide, 8);
vdst = vshrn_n_u16(vdst_wide, 8);
vsrc += vdst;
vsrc = vset_lane_u8(sa, vsrc, 3);
return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
}
// kXor_Mode [Sa + Da - 2 * Sa * Da, Sc * (1 - Da) + (1 - Sa) * Dc]
SkPMColor xor_modeproc_neon(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned ret_alpha = sa + da - (SkAlphaMulAlpha(sa, da) << 1);
unsigned isa = 255 - sa;
unsigned ida = 255 - da;
uint8x8_t vsrc, vdst, visa, vida;
uint16x8_t vsrc_wide, vdst_wide;
visa = vdup_n_u8(isa);
vida = vdup_n_u8(ida);
vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
vsrc_wide = vmull_u8(vsrc, vida);
vdst_wide = vmull_u8(vdst, visa);
vsrc_wide += vdupq_n_u16(128);
vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
vdst_wide += vdupq_n_u16(128);
vdst_wide += vshrq_n_u16(vdst_wide, 8);
vsrc = vshrn_n_u16(vsrc_wide, 8);
vdst = vshrn_n_u16(vdst_wide, 8);
vsrc += vdst;
vsrc = vset_lane_u8(ret_alpha, vsrc, 3);
return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
}
// kPlus_Mode
SkPMColor plus_modeproc_neon(SkPMColor src, SkPMColor dst) {
uint8x8_t vsrc, vdst;
vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
vsrc = vqadd_u8(vsrc, vdst);
return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
}
// kModulate_Mode
SkPMColor modulate_modeproc_neon(SkPMColor src, SkPMColor dst) {
uint8x8_t vsrc, vdst, vres;
uint16x8_t vres_wide;
vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
vres_wide = vmull_u8(vsrc, vdst);
vres_wide += vdupq_n_u16(128);
vres_wide += vshrq_n_u16(vres_wide, 8);
vres = vshrn_n_u16(vres_wide, 8);
return vget_lane_u32(vreinterpret_u32_u8(vres), 0);
}
////////////////////////////////////////////////////////////////////////////////
// 8 pixels modeprocs
////////////////////////////////////////////////////////////////////////////////
uint8x8x4_t dstover_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t src_scale;
src_scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]);
ret.val[NEON_A] = dst.val[NEON_A] + SkAlphaMul_neon8(src.val[NEON_A], src_scale);
ret.val[NEON_R] = dst.val[NEON_R] + SkAlphaMul_neon8(src.val[NEON_R], src_scale);
ret.val[NEON_G] = dst.val[NEON_G] + SkAlphaMul_neon8(src.val[NEON_G], src_scale);
ret.val[NEON_B] = dst.val[NEON_B] + SkAlphaMul_neon8(src.val[NEON_B], src_scale);
return ret;
}
uint8x8x4_t srcin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale;
scale = SkAlpha255To256_neon8(dst.val[NEON_A]);
ret.val[NEON_A] = SkAlphaMul_neon8(src.val[NEON_A], scale);
ret.val[NEON_R] = SkAlphaMul_neon8(src.val[NEON_R], scale);
ret.val[NEON_G] = SkAlphaMul_neon8(src.val[NEON_G], scale);
ret.val[NEON_B] = SkAlphaMul_neon8(src.val[NEON_B], scale);
return ret;
}
uint8x8x4_t dstin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale;
scale = SkAlpha255To256_neon8(src.val[NEON_A]);
ret = SkAlphaMulQ_neon8(dst, scale);
return ret;
}
uint8x8x4_t srcout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]);
ret = SkAlphaMulQ_neon8(src, scale);
return ret;
}
uint8x8x4_t dstout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), src.val[NEON_A]);
ret = SkAlphaMulQ_neon8(dst, scale);
return ret;
}
uint8x8x4_t srcatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t isa;
isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]);
ret.val[NEON_A] = dst.val[NEON_A];
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa);
return ret;
}
uint8x8x4_t dstatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t ida;
ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]);
ret.val[NEON_A] = src.val[NEON_A];
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], src.val[NEON_A]);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], src.val[NEON_A]);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], src.val[NEON_A]);
return ret;
}
uint8x8x4_t xor_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t isa, ida;
uint16x8_t tmp_wide, tmp_wide2;
isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]);
ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]);
// First calc alpha
tmp_wide = vmovl_u8(src.val[NEON_A]);
tmp_wide = vaddw_u8(tmp_wide, dst.val[NEON_A]);
tmp_wide2 = vshll_n_u8(SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]), 1);
tmp_wide = vsubq_u16(tmp_wide, tmp_wide2);
ret.val[NEON_A] = vmovn_u16(tmp_wide);
// Then colors
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa);
return ret;
}
uint8x8x4_t plus_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = vqadd_u8(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = vqadd_u8(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = vqadd_u8(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = vqadd_u8(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
uint8x8x4_t modulate_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
static inline uint8x8_t srcover_color(uint8x8_t a, uint8x8_t b) {
uint16x8_t tmp;
tmp = vaddl_u8(a, b);
tmp -= SkAlphaMulAlpha_neon8_16(a, b);
return vmovn_u16(tmp);
}
uint8x8x4_t screen_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = srcover_color(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = srcover_color(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = srcover_color(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
template <bool overlay>
static inline uint8x8_t overlay_hardlight_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
/*
* In the end we're gonna use (rc + tmp) with a different rc
* coming from an alternative.
* The whole value (rc + tmp) can always be expressed as
* VAL = COM - SUB in the if case
* VAL = COM + SUB - sa*da in the else case
*
* with COM = 255 * (sc + dc)
* and SUB = sc*da + dc*sa - 2*dc*sc
*/
// Prepare common subexpressions
uint16x8_t const255 = vdupq_n_u16(255);
uint16x8_t sc_plus_dc = vaddl_u8(sc, dc);
uint16x8_t scda = vmull_u8(sc, da);
uint16x8_t dcsa = vmull_u8(dc, sa);
uint16x8_t sada = vmull_u8(sa, da);
// Prepare non common subexpressions
uint16x8_t dc2, sc2;
uint32x4_t scdc2_1, scdc2_2;
if (overlay) {
dc2 = vshll_n_u8(dc, 1);
scdc2_1 = vmull_u16(vget_low_u16(dc2), vget_low_u16(vmovl_u8(sc)));
#ifdef SK_CPU_ARM64
scdc2_2 = vmull_high_u16(dc2, vmovl_u8(sc));
#else
scdc2_2 = vmull_u16(vget_high_u16(dc2), vget_high_u16(vmovl_u8(sc)));
#endif
} else {
sc2 = vshll_n_u8(sc, 1);
scdc2_1 = vmull_u16(vget_low_u16(sc2), vget_low_u16(vmovl_u8(dc)));
#ifdef SK_CPU_ARM64
scdc2_2 = vmull_high_u16(sc2, vmovl_u8(dc));
#else
scdc2_2 = vmull_u16(vget_high_u16(sc2), vget_high_u16(vmovl_u8(dc)));
#endif
}
// Calc COM
int32x4_t com1, com2;
com1 = vreinterpretq_s32_u32(
vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc)));
com2 = vreinterpretq_s32_u32(
#ifdef SK_CPU_ARM64
vmull_high_u16(const255, sc_plus_dc));
#else
vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc)));
#endif
// Calc SUB
int32x4_t sub1, sub2;
sub1 = vreinterpretq_s32_u32(vaddl_u16(vget_low_u16(scda), vget_low_u16(dcsa)));
#ifdef SK_CPU_ARM64
sub2 = vreinterpretq_s32_u32(vaddl_high_u16(scda, dcsa));
#else
sub2 = vreinterpretq_s32_u32(vaddl_u16(vget_high_u16(scda), vget_high_u16(dcsa)));
#endif
sub1 = vsubq_s32(sub1, vreinterpretq_s32_u32(scdc2_1));
sub2 = vsubq_s32(sub2, vreinterpretq_s32_u32(scdc2_2));
// Compare 2*dc <= da
uint16x8_t cmp;
if (overlay) {
cmp = vcleq_u16(dc2, vmovl_u8(da));
} else {
cmp = vcleq_u16(sc2, vmovl_u8(sa));
}
// Prepare variables
int32x4_t val1_1, val1_2;
int32x4_t val2_1, val2_2;
uint32x4_t cmp1, cmp2;
// Doing a signed lengthening allows to save a few instructions
// thanks to sign extension.
cmp1 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_low_u16(cmp))));
#ifdef SK_CPU_ARM64
cmp2 = vreinterpretq_u32_s32(vmovl_high_s16(vreinterpretq_s16_u16(cmp)));
#else
cmp2 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_high_u16(cmp))));
#endif
// Calc COM - SUB
val1_1 = com1 - sub1;
val1_2 = com2 - sub2;
// Calc COM + SUB - sa*da
val2_1 = com1 + sub1;
val2_2 = com2 + sub2;
val2_1 = vsubq_s32(val2_1, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(sada))));
#ifdef SK_CPU_ARM64
val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_high_u16(sada)));
#else
val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(sada))));
#endif
// Insert where needed
val1_1 = vbslq_s32(cmp1, val1_1, val2_1);
val1_2 = vbslq_s32(cmp2, val1_2, val2_2);
// Call the clamp_div255round function
return clamp_div255round_simd8_32(val1_1, val1_2);
}
static inline uint8x8_t overlay_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return overlay_hardlight_color<true>(sc, dc, sa, da);
}
uint8x8x4_t overlay_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = overlay_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = overlay_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = overlay_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
template <bool lighten>
static inline uint8x8_t lighten_darken_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint16x8_t sd, ds, cmp, tmp, tmp2;
// Prepare
sd = vmull_u8(sc, da);
ds = vmull_u8(dc, sa);
// Do test
if (lighten) {
cmp = vcgtq_u16(sd, ds);
} else {
cmp = vcltq_u16(sd, ds);
}
// Assign if
tmp = vaddl_u8(sc, dc);
tmp2 = tmp;
tmp -= SkDiv255Round_neon8_16_16(ds);
// Calc else
tmp2 -= SkDiv255Round_neon8_16_16(sd);
// Insert where needed
tmp = vbslq_u16(cmp, tmp, tmp2);
return vmovn_u16(tmp);
}
static inline uint8x8_t darken_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return lighten_darken_color<false>(sc, dc, sa, da);
}
uint8x8x4_t darken_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = darken_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = darken_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = darken_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t lighten_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return lighten_darken_color<true>(sc, dc, sa, da);
}
uint8x8x4_t lighten_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = lighten_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = lighten_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = lighten_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t hardlight_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return overlay_hardlight_color<false>(sc, dc, sa, da);
}
uint8x8x4_t hardlight_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = hardlight_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = hardlight_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = hardlight_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t difference_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint16x8_t sd, ds, tmp;
int16x8_t val;
sd = vmull_u8(sc, da);
ds = vmull_u8(dc, sa);
tmp = vminq_u16(sd, ds);
tmp = SkDiv255Round_neon8_16_16(tmp);
tmp = vshlq_n_u16(tmp, 1);
val = vreinterpretq_s16_u16(vaddl_u8(sc, dc));
val -= vreinterpretq_s16_u16(tmp);
val = vmaxq_s16(val, vdupq_n_s16(0));
val = vminq_s16(val, vdupq_n_s16(255));
return vmovn_u16(vreinterpretq_u16_s16(val));
}
uint8x8x4_t difference_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = difference_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = difference_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = difference_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t exclusion_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
/* The equation can be simplified to 255(sc + dc) - 2 * sc * dc */
uint16x8_t sc_plus_dc, scdc, const255;
int32x4_t term1_1, term1_2, term2_1, term2_2;
/* Calc (sc + dc) and (sc * dc) */
sc_plus_dc = vaddl_u8(sc, dc);
scdc = vmull_u8(sc, dc);
/* Prepare constants */
const255 = vdupq_n_u16(255);
/* Calc the first term */
term1_1 = vreinterpretq_s32_u32(
vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc)));
term1_2 = vreinterpretq_s32_u32(
#ifdef SK_CPU_ARM64
vmull_high_u16(const255, sc_plus_dc));
#else
vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc)));
#endif
/* Calc the second term */
term2_1 = vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(scdc), 1));
#ifdef SK_CPU_ARM64
term2_2 = vreinterpretq_s32_u32(vshll_high_n_u16(scdc, 1));
#else
term2_2 = vreinterpretq_s32_u32(vshll_n_u16(vget_high_u16(scdc), 1));
#endif
return clamp_div255round_simd8_32(term1_1 - term2_1, term1_2 - term2_2);
}
uint8x8x4_t exclusion_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = exclusion_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = exclusion_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = exclusion_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t blendfunc_multiply_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint32x4_t val1, val2;
uint16x8_t scdc, t1, t2;
t1 = vmull_u8(sc, vdup_n_u8(255) - da);
t2 = vmull_u8(dc, vdup_n_u8(255) - sa);
scdc = vmull_u8(sc, dc);
val1 = vaddl_u16(vget_low_u16(t1), vget_low_u16(t2));
#ifdef SK_CPU_ARM64
val2 = vaddl_high_u16(t1, t2);
#else
val2 = vaddl_u16(vget_high_u16(t1), vget_high_u16(t2));
#endif
val1 = vaddw_u16(val1, vget_low_u16(scdc));
#ifdef SK_CPU_ARM64
val2 = vaddw_high_u16(val2, scdc);
#else
val2 = vaddw_u16(val2, vget_high_u16(scdc));
#endif
return clamp_div255round_simd8_32(
vreinterpretq_s32_u32(val1), vreinterpretq_s32_u32(val2));
}
uint8x8x4_t multiply_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = blendfunc_multiply_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = blendfunc_multiply_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = blendfunc_multiply_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
////////////////////////////////////////////////////////////////////////////////
typedef uint8x8x4_t (*SkXfermodeProcSIMD)(uint8x8x4_t src, uint8x8x4_t dst);
extern SkXfermodeProcSIMD gNEONXfermodeProcs[];
SkNEONProcCoeffXfermode::SkNEONProcCoeffXfermode(SkReadBuffer& buffer)
: INHERITED(buffer) {
fProcSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[this->getMode()]);
}
void SkNEONProcCoeffXfermode::xfer32(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
SkASSERT(procSIMD != NULL);
if (NULL == aa) {
// Unrolled NEON code
// We'd like to just do this (modulo a few casts):
// vst4_u8(dst, procSIMD(vld4_u8(src), vld4_u8(dst)));
// src += 8;
// dst += 8;
// but that tends to generate miserable code. Here are a bunch of faster
// workarounds for different architectures and compilers.
while (count >= 8) {
#ifdef SK_CPU_ARM32
uint8x8x4_t vsrc, vdst, vres;
#if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6))
asm volatile (
"vld4.u8 %h[vsrc], [%[src]]! \t\n"
"vld4.u8 %h[vdst], [%[dst]] \t\n"
: [vsrc] "=w" (vsrc), [vdst] "=w" (vdst), [src] "+&r" (src)
: [dst] "r" (dst)
:
);
#else
register uint8x8_t d0 asm("d0");
register uint8x8_t d1 asm("d1");
register uint8x8_t d2 asm("d2");
register uint8x8_t d3 asm("d3");
register uint8x8_t d4 asm("d4");
register uint8x8_t d5 asm("d5");
register uint8x8_t d6 asm("d6");
register uint8x8_t d7 asm("d7");
asm volatile (
"vld4.u8 {d0-d3},[%[src]]!;"
"vld4.u8 {d4-d7},[%[dst]];"
: "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3),
"=w" (d4), "=w" (d5), "=w" (d6), "=w" (d7),
[src] "+&r" (src)
: [dst] "r" (dst)
:
);
vsrc.val[0] = d0; vdst.val[0] = d4;
vsrc.val[1] = d1; vdst.val[1] = d5;
vsrc.val[2] = d2; vdst.val[2] = d6;
vsrc.val[3] = d3; vdst.val[3] = d7;
#endif
vres = procSIMD(vsrc, vdst);
vst4_u8((uint8_t*)dst, vres);
dst += 8;
#else // #ifdef SK_CPU_ARM32
asm volatile (
"ld4 {v0.8b - v3.8b}, [%[src]], #32 \t\n"
"ld4 {v4.8b - v7.8b}, [%[dst]] \t\n"
"blr %[proc] \t\n"
"st4 {v0.8b - v3.8b}, [%[dst]], #32 \t\n"
: [src] "+&r" (src), [dst] "+&r" (dst)
: [proc] "r" (procSIMD)
: "cc", "memory",
/* We don't know what proc is going to clobber so we must
* add everything that is not callee-saved.
*/
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9",
"x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18",
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17",
"v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26",
"v27", "v28", "v29", "v30", "v31"
);
#endif // #ifdef SK_CPU_ARM32
count -= 8;
}
// Leftovers
for (int i = 0; i < count; i++) {
dst[i] = proc(src[i], dst[i]);
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = dst[i];
SkPMColor C = proc(src[i], dstC);
if (a != 0xFF) {
C = SkFourByteInterp_neon(C, dstC, a);
}
dst[i] = C;
}
}
}
}
void SkNEONProcCoeffXfermode::xfer16(uint16_t* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
SkASSERT(procSIMD != NULL);
if (NULL == aa) {
while(count >= 8) {
uint16x8_t vdst, vres16;
uint8x8x4_t vdst32, vsrc, vres;
vdst = vld1q_u16(dst);
#ifdef SK_CPU_ARM64
vsrc = vld4_u8((uint8_t*)src);
#else
#if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6))
asm volatile (
"vld4.u8 %h[vsrc], [%[src]]! \t\n"
: [vsrc] "=w" (vsrc), [src] "+&r" (src)
: :
);
#else
register uint8x8_t d0 asm("d0");
register uint8x8_t d1 asm("d1");
register uint8x8_t d2 asm("d2");
register uint8x8_t d3 asm("d3");
asm volatile (
"vld4.u8 {d0-d3},[%[src]]!;"
: "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3),
[src] "+&r" (src)
: :
);
vsrc.val[0] = d0;
vsrc.val[1] = d1;
vsrc.val[2] = d2;
vsrc.val[3] = d3;
#endif
#endif // #ifdef SK_CPU_ARM64
vdst32 = SkPixel16ToPixel32_neon8(vdst);
vres = procSIMD(vsrc, vdst32);
vres16 = SkPixel32ToPixel16_neon8(vres);
vst1q_u16(dst, vres16);
count -= 8;
dst += 8;
#ifdef SK_CPU_ARM64
src += 8;
#endif
}
for (int i = 0; i < count; i++) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
dst[i] = SkPixel32ToPixel16_ToU16(proc(src[i], dstC));
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
SkPMColor C = proc(src[i], dstC);
if (0xFF != a) {
C = SkFourByteInterp_neon(C, dstC, a);
}
dst[i] = SkPixel32ToPixel16_ToU16(C);
}
}
}
}
#ifndef SK_IGNORE_TO_STRING
void SkNEONProcCoeffXfermode::toString(SkString* str) const {
this->INHERITED::toString(str);
}
#endif
////////////////////////////////////////////////////////////////////////////////
SkXfermodeProcSIMD gNEONXfermodeProcs[] = {
NULL, // kClear_Mode
NULL, // kSrc_Mode
NULL, // kDst_Mode
NULL, // kSrcOver_Mode
dstover_modeproc_neon8,
srcin_modeproc_neon8,
dstin_modeproc_neon8,
srcout_modeproc_neon8,
dstout_modeproc_neon8,
srcatop_modeproc_neon8,
dstatop_modeproc_neon8,
xor_modeproc_neon8,
plus_modeproc_neon8,
modulate_modeproc_neon8,
screen_modeproc_neon8,
overlay_modeproc_neon8,
darken_modeproc_neon8,
lighten_modeproc_neon8,
NULL, // kColorDodge_Mode
NULL, // kColorBurn_Mode
hardlight_modeproc_neon8,
NULL, // kSoftLight_Mode
difference_modeproc_neon8,
exclusion_modeproc_neon8,
multiply_modeproc_neon8,
NULL, // kHue_Mode
NULL, // kSaturation_Mode
NULL, // kColor_Mode
NULL, // kLuminosity_Mode
};
SK_COMPILE_ASSERT(
SK_ARRAY_COUNT(gNEONXfermodeProcs) == SkXfermode::kLastMode + 1,
mode_count_arm
);
SkXfermodeProc gNEONXfermodeProcs1[] = {
NULL, // kClear_Mode
NULL, // kSrc_Mode
NULL, // kDst_Mode
NULL, // kSrcOver_Mode
NULL, // kDstOver_Mode
NULL, // kSrcIn_Mode
NULL, // kDstIn_Mode
NULL, // kSrcOut_Mode
NULL, // kDstOut_Mode
srcatop_modeproc_neon,
dstatop_modeproc_neon,
xor_modeproc_neon,
plus_modeproc_neon,
modulate_modeproc_neon,
NULL, // kScreen_Mode
NULL, // kOverlay_Mode
NULL, // kDarken_Mode
NULL, // kLighten_Mode
NULL, // kColorDodge_Mode
NULL, // kColorBurn_Mode
NULL, // kHardLight_Mode
NULL, // kSoftLight_Mode
NULL, // kDifference_Mode
NULL, // kExclusion_Mode
NULL, // kMultiply_Mode
NULL, // kHue_Mode
NULL, // kSaturation_Mode
NULL, // kColor_Mode
NULL, // kLuminosity_Mode
};
SK_COMPILE_ASSERT(
SK_ARRAY_COUNT(gNEONXfermodeProcs1) == SkXfermode::kLastMode + 1,
mode1_count_arm
);
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec,
SkXfermode::Mode mode) {
void* procSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[mode]);
if (procSIMD != NULL) {
return SkNEW_ARGS(SkNEONProcCoeffXfermode, (rec, mode, procSIMD));
}
return NULL;
}
SkXfermodeProc SkPlatformXfermodeProcFactory_impl_neon(SkXfermode::Mode mode) {
return gNEONXfermodeProcs1[mode];
}