blob: 20dbef875135f7e4645282037685dc4d2d4266f3 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef __DataTypes_h__
#define __DataTypes_h__
#include <float.h> // for FLT_EPSILON
#include <math.h> // for fabs, sqrt
#include "SkPoint.h"
#define FORCE_RELEASE 0 // set force release to 1 for multiple thread -- no debugging
#define ONE_OFF_DEBUG 1
#define ONE_OFF_DEBUG_MATHEMATICA 0
// FIXME: move these into SkTypes.h
template <typename T> inline T SkTMax(T a, T b) {
if (a < b)
a = b;
return a;
}
template <typename T> inline T SkTMin(T a, T b) {
if (a > b)
a = b;
return a;
}
extern bool AlmostEqualUlps(float A, float B);
inline bool AlmostEqualUlps(double A, double B) { return AlmostEqualUlps((float) A, (float) B); }
// FIXME: delete
int UlpsDiff(float A, float B);
// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23)
// DBL_EPSILON == 2.22045e-16
const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_HALF = FLT_EPSILON / 2;
const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON;
const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON);
const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON;
const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // tune -- allow a few bits of error
const double ROUGH_EPSILON = FLT_EPSILON * 64;
const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256;
inline bool approximately_zero(double x) {
return fabs(x) < FLT_EPSILON;
}
inline bool precisely_zero(double x) {
return fabs(x) < DBL_EPSILON_ERR;
}
inline bool approximately_zero(float x) {
return fabs(x) < FLT_EPSILON;
}
inline bool approximately_zero_cubed(double x) {
return fabs(x) < FLT_EPSILON_CUBED;
}
inline bool approximately_zero_half(double x) {
return fabs(x) < FLT_EPSILON_HALF;
}
inline bool approximately_zero_squared(double x) {
return fabs(x) < FLT_EPSILON_SQUARED;
}
inline bool approximately_zero_sqrt(double x) {
return fabs(x) < FLT_EPSILON_SQRT;
}
inline bool approximately_zero_inverse(double x) {
return fabs(x) > FLT_EPSILON_INVERSE;
}
// FIXME: if called multiple times with the same denom, we want to pass 1/y instead
inline bool approximately_zero_when_compared_to(double x, double y) {
return x == 0 || fabs(x / y) < FLT_EPSILON;
}
// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use
// AlmostEqualUlps instead.
inline bool approximately_equal(double x, double y) {
#if 1
return approximately_zero(x - y);
#else
// see http://visualstudiomagazine.com/blogs/tool-tracker/2011/11/compare-floating-point-numbers.aspx
// this allows very small (e.g. degenerate) values to compare unequally, but in this case,
// AlmostEqualUlps should be used instead.
if (x == y) {
return true;
}
double absY = fabs(y);
if (x == 0) {
return absY < FLT_EPSILON;
}
double absX = fabs(x);
if (y == 0) {
return absX < FLT_EPSILON;
}
return fabs(x - y) < (absX > absY ? absX : absY) * FLT_EPSILON;
#endif
}
inline bool precisely_equal(double x, double y) {
return precisely_zero(x - y);
}
inline bool approximately_equal_half(double x, double y) {
return approximately_zero_half(x - y);
}
inline bool approximately_equal_squared(double x, double y) {
return approximately_equal(x, y);
}
inline bool approximately_greater(double x, double y) {
return x - FLT_EPSILON >= y;
}
inline bool approximately_greater_or_equal(double x, double y) {
return x + FLT_EPSILON > y;
}
inline bool approximately_lesser(double x, double y) {
return x + FLT_EPSILON <= y;
}
inline bool approximately_lesser_or_equal(double x, double y) {
return x - FLT_EPSILON < y;
}
inline double approximately_pin(double x) {
return approximately_zero(x) ? 0 : x;
}
inline float approximately_pin(float x) {
return approximately_zero(x) ? 0 : x;
}
inline bool approximately_greater_than_one(double x) {
return x > 1 - FLT_EPSILON;
}
inline bool precisely_greater_than_one(double x) {
return x > 1 - DBL_EPSILON_ERR;
}
inline bool approximately_less_than_zero(double x) {
return x < FLT_EPSILON;
}
inline bool precisely_less_than_zero(double x) {
return x < DBL_EPSILON_ERR;
}
inline bool approximately_negative(double x) {
return x < FLT_EPSILON;
}
inline bool precisely_negative(double x) {
return x < DBL_EPSILON_ERR;
}
inline bool approximately_one_or_less(double x) {
return x < 1 + FLT_EPSILON;
}
inline bool approximately_positive(double x) {
return x > -FLT_EPSILON;
}
inline bool approximately_positive_squared(double x) {
return x > -(FLT_EPSILON_SQUARED);
}
inline bool approximately_zero_or_more(double x) {
return x > -FLT_EPSILON;
}
inline bool approximately_between(double a, double b, double c) {
return a <= c ? approximately_negative(a - b) && approximately_negative(b - c)
: approximately_negative(b - a) && approximately_negative(c - b);
}
// returns true if (a <= b <= c) || (a >= b >= c)
inline bool between(double a, double b, double c) {
SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0));
return (a - b) * (c - b) <= 0;
}
inline bool more_roughly_equal(double x, double y) {
return fabs(x - y) < MORE_ROUGH_EPSILON;
}
inline bool roughly_equal(double x, double y) {
return fabs(x - y) < ROUGH_EPSILON;
}
struct _Point;
struct _Vector {
double x;
double y;
friend _Point operator+(const _Point& a, const _Vector& b);
void operator+=(const _Vector& v) {
x += v.x;
y += v.y;
}
void operator-=(const _Vector& v) {
x -= v.x;
y -= v.y;
}
void operator/=(const double s) {
x /= s;
y /= s;
}
void operator*=(const double s) {
x *= s;
y *= s;
}
double cross(const _Vector& a) const {
return x * a.y - y * a.x;
}
double dot(const _Vector& a) const {
return x * a.x + y * a.y;
}
double length() const {
return sqrt(lengthSquared());
}
double lengthSquared() const {
return x * x + y * y;
}
SkVector asSkVector() const {
SkVector v = {SkDoubleToScalar(x), SkDoubleToScalar(y)};
return v;
}
};
struct _Point {
double x;
double y;
friend _Vector operator-(const _Point& a, const _Point& b);
void operator+=(const _Vector& v) {
x += v.x;
y += v.y;
}
void operator-=(const _Vector& v) {
x -= v.x;
y -= v.y;
}
friend bool operator==(const _Point& a, const _Point& b) {
return a.x == b.x && a.y == b.y;
}
friend bool operator!=(const _Point& a, const _Point& b) {
return a.x != b.x || a.y != b.y;
}
// note: this can not be implemented with
// return approximately_equal(a.y, y) && approximately_equal(a.x, x);
// because that will not take the magnitude of the values
bool approximatelyEqual(const _Point& a) const {
double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.x), fabs(a.y))));
if (denom == 0) {
return true;
}
double inv = 1 / denom;
return approximately_equal(x * inv, a.x * inv) && approximately_equal(y * inv, a.y * inv);
}
bool approximatelyEqual(const SkPoint& a) const {
double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.fX), fabs(a.fY))));
if (denom == 0) {
return true;
}
double inv = 1 / denom;
return approximately_equal(x * inv, a.fX * inv) && approximately_equal(y * inv, a.fY * inv);
}
bool approximatelyEqualHalf(const _Point& a) const {
double denom = SkTMax(fabs(x), SkTMax(fabs(y), SkTMax(fabs(a.x), fabs(a.y))));
if (denom == 0) {
return true;
}
double inv = 1 / denom;
return approximately_equal_half(x * inv, a.x * inv)
&& approximately_equal_half(y * inv, a.y * inv);
}
bool approximatelyZero() const {
return approximately_zero(x) && approximately_zero(y);
}
SkPoint asSkPoint() const {
SkPoint pt = {SkDoubleToScalar(x), SkDoubleToScalar(y)};
return pt;
}
double distance(const _Point& a) const {
_Vector temp = *this - a;
return temp.length();
}
double distanceSquared(const _Point& a) const {
_Vector temp = *this - a;
return temp.lengthSquared();
}
double moreRoughlyEqual(const _Point& a) const {
return more_roughly_equal(a.y, y) && more_roughly_equal(a.x, x);
}
double roughlyEqual(const _Point& a) const {
return roughly_equal(a.y, y) && roughly_equal(a.x, x);
}
};
typedef _Point _Line[2];
typedef _Point Quadratic[3];
typedef _Point Triangle[3];
typedef _Point Cubic[4];
struct _Rect {
double left;
double top;
double right;
double bottom;
void add(const _Point& pt) {
if (left > pt.x) {
left = pt.x;
}
if (top > pt.y) {
top = pt.y;
}
if (right < pt.x) {
right = pt.x;
}
if (bottom < pt.y) {
bottom = pt.y;
}
}
// FIXME: used by debugging only ?
bool contains(const _Point& pt) const {
return approximately_between(left, pt.x, right)
&& approximately_between(top, pt.y, bottom);
}
bool intersects(_Rect& r) const {
SkASSERT(left <= right);
SkASSERT(top <= bottom);
SkASSERT(r.left <= r.right);
SkASSERT(r.top <= r.bottom);
return r.left <= right && left <= r.right && r.top <= bottom && top <= r.bottom;
}
void set(const _Point& pt) {
left = right = pt.x;
top = bottom = pt.y;
}
void setBounds(const _Line& line) {
set(line[0]);
add(line[1]);
}
void setBounds(const Cubic& );
void setBounds(const Quadratic& );
void setRawBounds(const Cubic& );
void setRawBounds(const Quadratic& );
};
struct CubicPair {
const Cubic& first() const { return (const Cubic&) pts[0]; }
const Cubic& second() const { return (const Cubic&) pts[3]; }
_Point pts[7];
};
struct QuadraticPair {
const Quadratic& first() const { return (const Quadratic&) pts[0]; }
const Quadratic& second() const { return (const Quadratic&) pts[2]; }
_Point pts[5];
};
// FIXME: move these into SkFloatingPoint.h
#include "SkFloatingPoint.h"
#define sk_double_isnan(a) sk_float_isnan(a)
// FIXME: move these to debugging file
#if SK_DEBUG
void mathematica_ize(char* str, size_t bufferSize);
bool valid_wind(int winding);
void winding_printf(int winding);
#endif
#endif // __DataTypes_h__