blob: 3d4a9abe010b780cb7a92206ca1bda2b22b76162 [file] [log] [blame]
// Copyright 2023 Google LLC
// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
#include "modules/bentleyottmann/include/Segment.h"
#include "include/private/base/SkAssert.h"
#include "include/private/base/SkTo.h"
#include <algorithm>
#include <cmath>
namespace bentleyottmann {
// -- Segment --------------------------------------------------------------------------------------
Point Segment::upper() const {
return std::min(p0, p1);
}
Point Segment::lower() const {
return std::max(p0, p1);
}
// Use auto [l, t, r, b] = s.bounds();
std::tuple<int32_t, int32_t, int32_t, int32_t> Segment::bounds() const {
auto [l, r] = std::minmax(p0.x, p1.x);
auto [t, b] = std::minmax(p0.y, p1.y);
return std::make_tuple(l, t, r, b);
}
bool no_intersection_by_bounding_box(const Segment& s0, const Segment& s1) {
auto [left0, top0, right0, bottom0] = s0.bounds();
auto [left1, top1, right1, bottom1] = s1.bounds();
// If the sides of the box touch, then there is no new intersection.
return right0 <= left1 || right1 <= left0 || bottom0 <= top1 || bottom1 <= top0;
}
// Derivation of Intersection
// The intersection point I = (X, Y) of the two segments (x0, y0) -> (x1, y1)
// and (x2, y2) -> (x3, y3).
// X = x0 + s(x1 - x0) = x2 + t(x3 - x2)
// Y = y0 + s(y1 - y0) = y2 + t(y3 - y2)
//
// Solve for s in terms of x.
// x0 + s(x1 - x0) = x2 + t(x3 - x2)
// s(x1 - x0) = x2 - x0 + t(x3 - x2)
// s = (x2 - x0 + t(x3 - x2)) / (x1 - x0)
//
// Back substitute s into the equation for Y.
// y0 + ((x2 - x0 + t(x3 - x2)) / (x1 - x0))(y1 - y0) = y2 + t(y3 - y2)
// (x2 - x0 + t(x3 - x2)) / (x1 - x0) = (y2 - y1 + t(y3 - y2)) / (y1 - y0)
// (y1 - y0)(x2 - x0 + t(x3 - x2)) = (x1 - x0)(y2 - y1 + t(y3 - y2))
// (y1 - y0)(x2 - x0) + t(y1 - y0)(x3 - x2) = (x1 - x0)(y2 - y1) + t(x1 - x0)(y3 - y2)
// Collecting t's on one side, and constants on the other.
// t((y1 - y0)(x3 - x2) - (x1 - x0)(y3 - y2)) = (x1 - x0)(y2 - y1) - (y1 - y0)(x2 - x0)
// Assign names and vectors to extract the cross products. The vector (x0, y0) -> (x1, y1) is
// P0 -> P1, and is named Q = (x1 - x0, y1 - y0) = P1 - P0. The following vectors are defined in
// a similar way.
// * Q: P1 - P0
// * R: P2 - P0
// * S: P3 - P0
// * T: P3 - P2
// Extracting cross products from above.
// t((P3 - P2) x (P1 - P0)) = (P1 - P0) x (P2 - P0)
// t(T x Q) = Q x R
// t = (Q x R) / (T x Q)
// But, T x Q is not something we want to calculate. What must be calculated is Q x R and Q x S.
// If these two cross products have different signs, then there is an intersection, otherwise
// there is not. We can calculate T x Q in terms of Q x R and Q x S in the following way.
// T x Q = Q x R - Q x S
// = (P1 - P0) x (P2 - P0) - (P1 - P0) x (P3 - P0)
// = (P1 - P0) x ((P2 - P0) - (P3 - P0))
// = (P1 - P0) x (P2 - P3)
// = Q x -T
// = -(Q x T)
// = T x Q.
// So, t is equal to
// t = (Q x R) / ((Q x R) - (Q x S)).
// This is then substituted into I = (x2 + t(x3 - x2), y2 + t(y3 - y2)).
//
// This method of calculating the intersection only uses 6 multiplies, and 1 division. It also
// determines if the two segments cross with no round-off error and is always correct using 4
// multiplies. However, the actual crossing point is rounded to fit back into the int32_t.
std::optional<Point> intersect(const Segment& s0, const Segment& s1) {
// Check if the bounds intersect.
if (no_intersection_by_bounding_box(s0, s1)) {
return std::nullopt;
}
// Create the Q, R, and S vectors rooted at s0.p0.
Point O = s0.p0,
Q = s0.p1 - O,
R = s1.p0 - O,
S = s1.p1 - O;
// 64-bit cross product.
auto cross = [](const Point& v0, const Point& v1) {
int64_t x0 = SkToS64(v0.x),
y0 = SkToS64(v0.y),
x1 = SkToS64(v1.x),
y1 = SkToS64(v1.y);
return x0 * y1 - y0 * x1;
};
// Calculate the two cross products.
int64_t QxR = cross(Q, R),
QxS = cross(Q, S);
// If the endpoint is on Q, then there is no crossing. Only true intersections are returned.
// For the intersection calculation, line segments do not include their end-points.
if (QxR == 0 || QxS == 0) {
return std::nullopt;
}
// The cross products have the same sign, so no intersection. There is no round-off error in
// QXR or QXS. This ensures that there is really an intersection.
if ((QxR ^ QxS) >= 0) {
return std::nullopt;
}
// TODO: this calculation probably needs to use 32-bit x 64-bit -> 96-bit multiply and
// 96-bit / 64-bit -> 32-bit quotient and a 64-bit remainder. Fake it with doubles below.
// N / D constitute a value on [0, 1], where the intersection I is
// I = s0.p0 + (s0.p1 - s0.p0) * N/D.
double N = QxR,
D = QxR - QxS,
t = N / D;
SkASSERT(0 <= t && t <= 1);
// Calculate the intersection using doubles.
// TODO: This is just a placeholder approximation for calculating x and y should use big math
// above.
int32_t x = std::round(t * (s1.p1.x - s1.p0.x) + s1.p0.x),
y = std::round(t * (s1.p1.y - s1.p0.y) + s1.p0.y);
return Point{x, y};
}
} // namespace bentleyottmann