blob: 607033ef20fc77b221af71583ee1a2f9383e5eca [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkHighContrastFilter.h"
#include "SkPM4f.h"
#include "SkArenaAlloc.h"
#include "SkRasterPipeline.h"
#include "SkReadBuffer.h"
#include "SkString.h"
#include "SkWriteBuffer.h"
#include "../jumper/SkJumper.h"
#if SK_SUPPORT_GPU
#include "GrColorSpaceInfo.h"
#include "GrContext.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#endif
using InvertStyle = SkHighContrastConfig::InvertStyle;
class SkHighContrast_Filter : public SkColorFilter {
public:
SkHighContrast_Filter(const SkHighContrastConfig& config) {
fConfig = config;
// Clamp contrast to just inside -1 to 1 to avoid division by zero.
fConfig.fContrast = SkScalarPin(fConfig.fContrast,
-1.0f + FLT_EPSILON,
1.0f - FLT_EPSILON);
}
~SkHighContrast_Filter() override {}
#if SK_SUPPORT_GPU
std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(
GrContext*, const GrColorSpaceInfo&) const override;
#endif
void onAppendStages(SkRasterPipeline* p,
SkColorSpace* dst,
SkArenaAlloc* scratch,
bool shaderIsOpaque) const override;
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkHighContrast_Filter)
protected:
void flatten(SkWriteBuffer&) const override;
private:
SkHighContrastConfig fConfig;
friend class SkHighContrastFilter;
typedef SkColorFilter INHERITED;
};
void SkHighContrast_Filter::onAppendStages(SkRasterPipeline* p,
SkColorSpace* dstCS,
SkArenaAlloc* alloc,
bool shaderIsOpaque) const {
if (!shaderIsOpaque) {
p->append(SkRasterPipeline::unpremul);
}
if (!dstCS) {
// In legacy draws this effect approximately linearizes by squaring.
// When non-legacy, we're already (better) linearized.
auto square = alloc->make<SkJumper_ParametricTransferFunction>();
square->G = 2.0f; square->A = 1.0f;
square->B = square->C = square->D = square->E = square->F = 0;
p->append(SkRasterPipeline::parametric_r, square);
p->append(SkRasterPipeline::parametric_g, square);
p->append(SkRasterPipeline::parametric_b, square);
}
if (fConfig.fGrayscale) {
float r = SK_LUM_COEFF_R;
float g = SK_LUM_COEFF_G;
float b = SK_LUM_COEFF_B;
float* matrix = alloc->makeArray<float>(12);
matrix[0] = matrix[1] = matrix[2] = r;
matrix[3] = matrix[4] = matrix[5] = g;
matrix[6] = matrix[7] = matrix[8] = b;
p->append(SkRasterPipeline::matrix_3x4, matrix);
}
if (fConfig.fInvertStyle == InvertStyle::kInvertBrightness) {
float* matrix = alloc->makeArray<float>(12);
matrix[0] = matrix[4] = matrix[8] = -1;
matrix[9] = matrix[10] = matrix[11] = 1;
p->append(SkRasterPipeline::matrix_3x4, matrix);
} else if (fConfig.fInvertStyle == InvertStyle::kInvertLightness) {
p->append(SkRasterPipeline::rgb_to_hsl);
float* matrix = alloc->makeArray<float>(12);
matrix[0] = matrix[4] = matrix[11] = 1;
matrix[8] = -1;
p->append(SkRasterPipeline::matrix_3x4, matrix);
p->append(SkRasterPipeline::hsl_to_rgb);
}
if (fConfig.fContrast != 0.0) {
float* matrix = alloc->makeArray<float>(12);
float c = fConfig.fContrast;
float m = (1 + c) / (1 - c);
float b = (-0.5f * m + 0.5f);
matrix[0] = matrix[4] = matrix[8] = m;
matrix[9] = matrix[10] = matrix[11] = b;
p->append(SkRasterPipeline::matrix_3x4, matrix);
}
p->append(SkRasterPipeline::clamp_0);
p->append(SkRasterPipeline::clamp_1);
if (!dstCS) {
// See the previous if(!dstCS) { ... }
auto sqrt = alloc->make<SkJumper_ParametricTransferFunction>();
sqrt->G = 0.5f; sqrt->A = 1.0f;
sqrt->B = sqrt->C = sqrt->D = sqrt->E = sqrt->F = 0;
p->append(SkRasterPipeline::parametric_r, sqrt);
p->append(SkRasterPipeline::parametric_g, sqrt);
p->append(SkRasterPipeline::parametric_b, sqrt);
}
if (!shaderIsOpaque) {
p->append(SkRasterPipeline::premul);
}
}
void SkHighContrast_Filter::flatten(SkWriteBuffer& buffer) const {
buffer.writeBool(fConfig.fGrayscale);
buffer.writeInt(static_cast<int>(fConfig.fInvertStyle));
buffer.writeScalar(fConfig.fContrast);
}
sk_sp<SkFlattenable> SkHighContrast_Filter::CreateProc(SkReadBuffer& buffer) {
SkHighContrastConfig config;
config.fGrayscale = buffer.readBool();
config.fInvertStyle = buffer.read32LE(InvertStyle::kLast);
config.fContrast = buffer.readScalar();
return SkHighContrastFilter::Make(config);
}
sk_sp<SkColorFilter> SkHighContrastFilter::Make(
const SkHighContrastConfig& config) {
if (!config.isValid()) {
return nullptr;
}
return sk_make_sp<SkHighContrast_Filter>(config);
}
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkHighContrastFilter)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkHighContrast_Filter)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
#if SK_SUPPORT_GPU
class HighContrastFilterEffect : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(const SkHighContrastConfig& config,
bool linearize) {
return std::unique_ptr<GrFragmentProcessor>(new HighContrastFilterEffect(config,
linearize));
}
const char* name() const override { return "HighContrastFilter"; }
const SkHighContrastConfig& config() const { return fConfig; }
bool linearize() const { return fLinearize; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return Make(fConfig, fLinearize);
}
private:
HighContrastFilterEffect(const SkHighContrastConfig& config, bool linearize)
: INHERITED(kHighContrastFilterEffect_ClassID, kNone_OptimizationFlags)
, fConfig(config)
, fLinearize(linearize) {
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const override;
bool onIsEqual(const GrFragmentProcessor& other) const override {
const HighContrastFilterEffect& that = other.cast<HighContrastFilterEffect>();
return fConfig.fGrayscale == that.fConfig.fGrayscale &&
fConfig.fInvertStyle == that.fConfig.fInvertStyle &&
fConfig.fContrast == that.fConfig.fContrast &&
fLinearize == that.fLinearize;
}
SkHighContrastConfig fConfig;
bool fLinearize;
typedef GrFragmentProcessor INHERITED;
};
class GLHighContrastFilterEffect : public GrGLSLFragmentProcessor {
public:
static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);
protected:
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
void emitCode(EmitArgs& args) override;
private:
UniformHandle fContrastUni;
typedef GrGLSLFragmentProcessor INHERITED;
};
GrGLSLFragmentProcessor* HighContrastFilterEffect::onCreateGLSLInstance() const {
return new GLHighContrastFilterEffect();
}
void HighContrastFilterEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const {
GLHighContrastFilterEffect::GenKey(*this, caps, b);
}
void GLHighContrastFilterEffect::onSetData(const GrGLSLProgramDataManager& pdm,
const GrFragmentProcessor& proc) {
const HighContrastFilterEffect& hcfe = proc.cast<HighContrastFilterEffect>();
pdm.set1f(fContrastUni, hcfe.config().fContrast);
}
void GLHighContrastFilterEffect::GenKey(
const GrProcessor& proc, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
const HighContrastFilterEffect& hcfe = proc.cast<HighContrastFilterEffect>();
b->add32(static_cast<uint32_t>(hcfe.config().fGrayscale));
b->add32(static_cast<uint32_t>(hcfe.config().fInvertStyle));
b->add32(hcfe.linearize() ? 1 : 0);
}
void GLHighContrastFilterEffect::emitCode(EmitArgs& args) {
const HighContrastFilterEffect& hcfe = args.fFp.cast<HighContrastFilterEffect>();
const SkHighContrastConfig& config = hcfe.config();
const char* contrast;
fContrastUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType,
"contrast", &contrast);
if (nullptr == args.fInputColor) {
args.fInputColor = "half4(1)";
}
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("half4 color = %s;", args.fInputColor);
// Unpremultiply. The max() is to guard against 0 / 0.
fragBuilder->codeAppendf("half nonZeroAlpha = max(color.a, 0.00001);");
fragBuilder->codeAppendf("color = half4(color.rgb / nonZeroAlpha, nonZeroAlpha);");
if (hcfe.linearize()) {
fragBuilder->codeAppend("color.rgb = color.rgb * color.rgb;");
}
// Grayscale.
if (config.fGrayscale) {
fragBuilder->codeAppendf("half luma = dot(color, half4(%f, %f, %f, 0));",
SK_LUM_COEFF_R, SK_LUM_COEFF_G, SK_LUM_COEFF_B);
fragBuilder->codeAppendf("color = half4(luma, luma, luma, 0);");
}
if (config.fInvertStyle == InvertStyle::kInvertBrightness) {
fragBuilder->codeAppendf("color = half4(1, 1, 1, 1) - color;");
}
if (config.fInvertStyle == InvertStyle::kInvertLightness) {
// Convert from RGB to HSL.
fragBuilder->codeAppendf("half fmax = max(color.r, max(color.g, color.b));");
fragBuilder->codeAppendf("half fmin = min(color.r, min(color.g, color.b));");
fragBuilder->codeAppendf("half l = (fmax + fmin) / 2;");
fragBuilder->codeAppendf("half h;");
fragBuilder->codeAppendf("half s;");
fragBuilder->codeAppendf("if (fmax == fmin) {");
fragBuilder->codeAppendf(" h = 0;");
fragBuilder->codeAppendf(" s = 0;");
fragBuilder->codeAppendf("} else {");
fragBuilder->codeAppendf(" half d = fmax - fmin;");
fragBuilder->codeAppendf(" s = l > 0.5 ?");
fragBuilder->codeAppendf(" d / (2 - fmax - fmin) :");
fragBuilder->codeAppendf(" d / (fmax + fmin);");
// We'd like to just write "if (color.r == fmax) { ... }". On many GPUs, running the
// angle_d3d9_es2 config, that failed. It seems that max(x, y) is not necessarily equal
// to either x or y. Tried several ways to fix it, but this was the only reasonable fix.
fragBuilder->codeAppendf(" if (color.r >= color.g && color.r >= color.b) {");
fragBuilder->codeAppendf(" h = (color.g - color.b) / d + ");
fragBuilder->codeAppendf(" (color.g < color.b ? 6 : 0);");
fragBuilder->codeAppendf(" } else if (color.g >= color.b) {");
fragBuilder->codeAppendf(" h = (color.b - color.r) / d + 2;");
fragBuilder->codeAppendf(" } else {");
fragBuilder->codeAppendf(" h = (color.r - color.g) / d + 4;");
fragBuilder->codeAppendf(" }");
fragBuilder->codeAppendf("}");
fragBuilder->codeAppendf("h /= 6;");
fragBuilder->codeAppendf("l = 1.0 - l;");
// Convert back from HSL to RGB.
SkString hue2rgbFuncName;
static const GrShaderVar gHue2rgbArgs[] = {
GrShaderVar("p", kHalf_GrSLType),
GrShaderVar("q", kHalf_GrSLType),
GrShaderVar("t", kHalf_GrSLType),
};
fragBuilder->emitFunction(kHalf_GrSLType,
"hue2rgb",
SK_ARRAY_COUNT(gHue2rgbArgs),
gHue2rgbArgs,
"if (t < 0)"
" t += 1;"
"if (t > 1)"
" t -= 1;"
"if (t < 1/6.)"
" return p + (q - p) * 6 * t;"
"if (t < 1/2.)"
" return q;"
"if (t < 2/3.)"
" return p + (q - p) * (2/3. - t) * 6;"
"return p;",
&hue2rgbFuncName);
fragBuilder->codeAppendf("if (s == 0) {");
fragBuilder->codeAppendf(" color = half4(l, l, l, 0);");
fragBuilder->codeAppendf("} else {");
fragBuilder->codeAppendf(" half q = l < 0.5 ? l * (1 + s) : l + s - l * s;");
fragBuilder->codeAppendf(" half p = 2 * l - q;");
fragBuilder->codeAppendf(" color.r = %s(p, q, h + 1/3.);", hue2rgbFuncName.c_str());
fragBuilder->codeAppendf(" color.g = %s(p, q, h);", hue2rgbFuncName.c_str());
fragBuilder->codeAppendf(" color.b = %s(p, q, h - 1/3.);", hue2rgbFuncName.c_str());
fragBuilder->codeAppendf("}");
}
// Contrast.
fragBuilder->codeAppendf("if (%s != 0) {", contrast);
fragBuilder->codeAppendf(" half m = (1 + %s) / (1 - %s);", contrast, contrast);
fragBuilder->codeAppendf(" half off = (-0.5 * m + 0.5);");
fragBuilder->codeAppendf(" color = m * color + off;");
fragBuilder->codeAppendf("}");
// Clamp.
fragBuilder->codeAppendf("color = clamp(color, 0, 1);");
if (hcfe.linearize()) {
fragBuilder->codeAppend("color.rgb = sqrt(color.rgb);");
}
// Restore the original alpha and premultiply.
fragBuilder->codeAppendf("color.a = %s.a;", args.fInputColor);
fragBuilder->codeAppendf("color.rgb *= color.a;");
// Copy to the output color.
fragBuilder->codeAppendf("%s = color;", args.fOutputColor);
}
std::unique_ptr<GrFragmentProcessor> SkHighContrast_Filter::asFragmentProcessor(
GrContext*, const GrColorSpaceInfo& csi) const {
bool linearize = !csi.isGammaCorrect();
return HighContrastFilterEffect::Make(fConfig, linearize);
}
#endif