blob: 21419a94005468e138ad74271546f83333b0603b [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef SK_CONVOLVER_H
#define SK_CONVOLVER_H
#include "SkSize.h"
#include "SkTypes.h"
#include "SkTArray.h"
// avoid confusion with Mac OS X's math library (Carbon)
#if defined(__APPLE__)
#undef FloatToConvolutionFixed
#undef ConvolutionFixedToFloat
#undef FloatToFixed
#undef FixedToFloat
#endif
// Represents a filter in one dimension. Each output pixel has one entry in this
// object for the filter values contributing to it. You build up the filter
// list by calling AddFilter for each output pixel (in order).
//
// We do 2-dimensional convolution by first convolving each row by one
// SkConvolutionFilter1D, then convolving each column by another one.
//
// Entries are stored in ConvolutionFixed point, shifted left by kShiftBits.
class SkConvolutionFilter1D {
public:
typedef short ConvolutionFixed;
// The number of bits that ConvolutionFixed point values are shifted by.
enum { kShiftBits = 14 };
SK_API SkConvolutionFilter1D();
SK_API ~SkConvolutionFilter1D();
// Convert between floating point and our ConvolutionFixed point representation.
static ConvolutionFixed FloatToFixed(float f) {
return static_cast<ConvolutionFixed>(f * (1 << kShiftBits));
}
static unsigned char FixedToChar(ConvolutionFixed x) {
return static_cast<unsigned char>(x >> kShiftBits);
}
static float FixedToFloat(ConvolutionFixed x) {
// The cast relies on ConvolutionFixed being a short, implying that on
// the platforms we care about all (16) bits will fit into
// the mantissa of a (32-bit) float.
SK_COMPILE_ASSERT(sizeof(ConvolutionFixed) == 2, ConvolutionFixed_type_should_fit_in_float_mantissa);
float raw = static_cast<float>(x);
return ldexpf(raw, -kShiftBits);
}
// Returns the maximum pixel span of a filter.
int maxFilter() const { return fMaxFilter; }
// Returns the number of filters in this filter. This is the dimension of the
// output image.
int numValues() const { return static_cast<int>(fFilters.count()); }
// Appends the given list of scaling values for generating a given output
// pixel. |filterOffset| is the distance from the edge of the image to where
// the scaling factors start. The scaling factors apply to the source pixels
// starting from this position, and going for the next |filterLength| pixels.
//
// You will probably want to make sure your input is normalized (that is,
// all entries in |filterValuesg| sub to one) to prevent affecting the overall
// brighness of the image.
//
// The filterLength must be > 0.
//
// This version will automatically convert your input to ConvolutionFixed point.
SK_API void AddFilter(int filterOffset,
const float* filterValues,
int filterLength);
// Same as the above version, but the input is already ConvolutionFixed point.
void AddFilter(int filterOffset,
const ConvolutionFixed* filterValues,
int filterLength);
// Retrieves a filter for the given |valueOffset|, a position in the output
// image in the direction we're convolving. The offset and length of the
// filter values are put into the corresponding out arguments (see AddFilter
// above for what these mean), and a pointer to the first scaling factor is
// returned. There will be |filterLength| values in this array.
inline const ConvolutionFixed* FilterForValue(int valueOffset,
int* filterOffset,
int* filterLength) const {
const FilterInstance& filter = fFilters[valueOffset];
*filterOffset = filter.fOffset;
*filterLength = filter.fTrimmedLength;
if (filter.fTrimmedLength == 0) {
return NULL;
}
return &fFilterValues[filter.fDataLocation];
}
// Retrieves the filter for the offset 0, presumed to be the one and only.
// The offset and length of the filter values are put into the corresponding
// out arguments (see AddFilter). Note that |filterLegth| and
// |specifiedFilterLength| may be different if leading/trailing zeros of the
// original floating point form were clipped.
// There will be |filterLength| values in the return array.
// Returns NULL if the filter is 0-length (for instance when all floating
// point values passed to AddFilter were clipped to 0).
SK_API const ConvolutionFixed* GetSingleFilter(int* specifiedFilterLength,
int* filterOffset,
int* filterLength) const;
// Add another value to the fFilterValues array -- useful for
// SIMD padding which happens outside of this class.
void addFilterValue( ConvolutionFixed val ) {
fFilterValues.push_back( val );
}
private:
struct FilterInstance {
// Offset within filterValues for this instance of the filter.
int fDataLocation;
// Distance from the left of the filter to the center. IN PIXELS
int fOffset;
// Number of values in this filter instance.
int fTrimmedLength;
// Filter length as specified. Note that this may be different from
// 'trimmed_length' if leading/trailing zeros of the original floating
// point form were clipped differently on each tail.
int fLength;
};
// Stores the information for each filter added to this class.
SkTArray<FilterInstance> fFilters;
// We store all the filter values in this flat list, indexed by
// |FilterInstance.data_location| to avoid the mallocs required for storing
// each one separately.
SkTArray<ConvolutionFixed> fFilterValues;
// The maximum size of any filter we've added.
int fMaxFilter;
};
typedef void (*SkConvolveVertically_pointer)(
const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
int filterLength,
unsigned char* const* sourceDataRows,
int pixelWidth,
unsigned char* outRow,
bool hasAlpha);
typedef void (*SkConvolve4RowsHorizontally_pointer)(
const unsigned char* srcData[4],
const SkConvolutionFilter1D& filter,
unsigned char* outRow[4],
size_t outRowBytes);
typedef void (*SkConvolveHorizontally_pointer)(
const unsigned char* srcData,
const SkConvolutionFilter1D& filter,
unsigned char* outRow,
bool hasAlpha);
typedef void (*SkConvolveFilterPadding_pointer)(
SkConvolutionFilter1D* filter);
struct SkConvolutionProcs {
// This is how many extra pixels may be read by the
// conolve*horizontally functions.
int fExtraHorizontalReads;
SkConvolveVertically_pointer fConvolveVertically;
SkConvolve4RowsHorizontally_pointer fConvolve4RowsHorizontally;
SkConvolveHorizontally_pointer fConvolveHorizontally;
SkConvolveFilterPadding_pointer fApplySIMDPadding;
};
// Does a two-dimensional convolution on the given source image.
//
// It is assumed the source pixel offsets referenced in the input filters
// reference only valid pixels, so the source image size is not required. Each
// row of the source image starts |sourceByteRowStride| after the previous
// one (this allows you to have rows with some padding at the end).
//
// The result will be put into the given output buffer. The destination image
// size will be xfilter.numValues() * yfilter.numValues() pixels. It will be
// in rows of exactly xfilter.numValues() * 4 bytes.
//
// |sourceHasAlpha| is a hint that allows us to avoid doing computations on
// the alpha channel if the image is opaque. If you don't know, set this to
// true and it will work properly, but setting this to false will be a few
// percent faster if you know the image is opaque.
//
// The layout in memory is assumed to be 4-bytes per pixel in B-G-R-A order
// (this is ARGB when loaded into 32-bit words on a little-endian machine).
SK_API void BGRAConvolve2D(const unsigned char* sourceData,
int sourceByteRowStride,
bool sourceHasAlpha,
const SkConvolutionFilter1D& xfilter,
const SkConvolutionFilter1D& yfilter,
int outputByteRowStride,
unsigned char* output,
const SkConvolutionProcs&,
bool useSimdIfPossible);
#endif // SK_CONVOLVER_H