blob: e0c0fcb577685375a099452261d2bb0b3fc891e2 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkDeferredDisplayList.h"
#include "include/core/SkGraphics.h"
#include "include/core/SkPicture.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkStream.h"
#include "include/core/SkSurface.h"
#include "include/core/SkSurfaceProps.h"
#include "include/effects/SkPerlinNoiseShader.h"
#include "src/core/SkOSFile.h"
#include "src/core/SkTaskGroup.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/SkGr.h"
#include "src/utils/SkMultiPictureDocument.h"
#include "src/utils/SkOSPath.h"
#include "tools/DDLPromiseImageHelper.h"
#include "tools/DDLTileHelper.h"
#include "tools/SkSharingProc.h"
#include "tools/ToolUtils.h"
#include "tools/flags/CommandLineFlags.h"
#include "tools/flags/CommonFlags.h"
#include "tools/flags/CommonFlagsConfig.h"
#include "tools/gpu/FlushFinishTracker.h"
#include "tools/gpu/GpuTimer.h"
#include "tools/gpu/GrContextFactory.h"
#ifdef SK_XML
#include "experimental/svg/model/SkSVGDOM.h"
#include "src/xml/SkDOM.h"
#endif
#include <stdlib.h>
#include <algorithm>
#include <array>
#include <chrono>
#include <cmath>
#include <vector>
/**
* This is a minimalist program whose sole purpose is to open a .skp or .svg file, benchmark it on a
* single config, and exit. It is intended to be used through skpbench.py rather than invoked
* directly. Limiting the entire process to a single config/skp pair helps to keep the results
* repeatable.
*
* No tiling, looping, or other fanciness is used; it just draws the skp whole into a size-matched
* render target and syncs the GPU after each draw.
*
* Well, maybe a little fanciness, MSKP's can be loaded and played. The animation is played as many
* times as necessary to reach the target sample duration and FPS is reported.
*
* Currently, only GPU configs are supported.
*/
static DEFINE_bool(ddl, false, "record the skp into DDLs before rendering");
static DEFINE_int(ddlNumRecordingThreads, 0, "number of DDL recording threads (0=num_cores)");
static DEFINE_int(ddlTilingWidthHeight, 0, "number of tiles along one edge when in DDL mode");
static DEFINE_bool(comparableDDL, false, "render in a way that is comparable to 'comparableSKP'");
static DEFINE_bool(comparableSKP, false, "report in a way that is comparable to 'comparableDDL'");
static DEFINE_int(duration, 5000, "number of milliseconds to run the benchmark");
static DEFINE_int(sampleMs, 50, "minimum duration of a sample");
static DEFINE_bool(gpuClock, false, "time on the gpu clock (gpu work only)");
static DEFINE_bool(fps, false, "use fps instead of ms");
static DEFINE_string(src, "",
"path to a single .skp or .svg file, or 'warmup' for a builtin warmup run");
static DEFINE_string(png, "", "if set, save a .png proof to disk at this file location");
static DEFINE_int(verbosity, 4, "level of verbosity (0=none to 5=debug)");
static DEFINE_bool(suppressHeader, false, "don't print a header row before the results");
static DEFINE_double(scale, 1, "Scale the size of the canvas and the zoom level by this factor.");
static const char header[] =
" accum median max min stddev samples sample_ms clock metric config bench";
static const char resultFormat[] =
"%8.4g %8.4g %8.4g %8.4g %6.3g%% %7zu %9i %-5s %-6s %-9s %s";
static constexpr int kNumFlushesToPrimeCache = 3;
struct Sample {
using duration = std::chrono::nanoseconds;
Sample() : fFrames(0), fDuration(0) {}
double seconds() const { return std::chrono::duration<double>(fDuration).count(); }
double ms() const { return std::chrono::duration<double, std::milli>(fDuration).count(); }
double value() const { return FLAGS_fps ? fFrames / this->seconds() : this->ms() / fFrames; }
static const char* metric() { return FLAGS_fps ? "fps" : "ms"; }
int fFrames;
duration fDuration;
};
class GpuSync {
public:
GpuSync() {}
~GpuSync() {}
void waitIfNeeded();
sk_gpu_test::FlushFinishTracker* newFlushTracker(GrContext* context);
private:
enum { kMaxFrameLag = 3 };
sk_sp<sk_gpu_test::FlushFinishTracker> fFinishTrackers[kMaxFrameLag - 1];
int fCurrentFlushIdx = 0;
};
enum class ExitErr {
kOk = 0,
kUsage = 64,
kData = 65,
kUnavailable = 69,
kIO = 74,
kSoftware = 70
};
static void flush_with_sync(GrContext*, GpuSync&);
static void draw_skp_and_flush_with_sync(GrContext*, SkSurface*, const SkPicture*, GpuSync&);
static sk_sp<SkPicture> create_warmup_skp();
static sk_sp<SkPicture> create_skp_from_svg(SkStream*, const char* filename);
static bool mkdir_p(const SkString& name);
static SkString join(const CommandLineFlags::StringArray&);
static void exitf(ExitErr, const char* format, ...);
// An interface used by both static SKPs and animated SKPs
class SkpProducer {
public:
virtual ~SkpProducer() {}
// Draw an SkPicture to the provided surface, flush the surface, and sync the GPU.
// You may use the static draw_skp_and_flush_with_sync declared above.
// returned int tells how many draw/flush/sync were done.
virtual int drawAndFlushAndSync(GrContext*, SkSurface* surface, GpuSync& gpuSync) = 0;
};
class StaticSkp : public SkpProducer {
public:
StaticSkp(sk_sp<SkPicture> skp) : fSkp(skp) {}
int drawAndFlushAndSync(GrContext* context, SkSurface* surface, GpuSync& gpuSync) override {
draw_skp_and_flush_with_sync(context, surface, fSkp.get(), gpuSync);
return 1;
}
private:
sk_sp<SkPicture> fSkp;
};
// A class for playing/benchmarking a multi frame SKP file.
// the recorded frames are looped over repeatedly.
// This type of benchmark may have a much higher std dev in frame times.
class MultiFrameSkp : public SkpProducer {
public:
MultiFrameSkp(const std::vector<SkDocumentPage>& frames) : fFrames(frames){}
static std::unique_ptr<MultiFrameSkp> MakeFromFile(const SkString& path) {
// Load the multi frame skp at the given filename.
std::unique_ptr<SkStreamAsset> stream = SkStream::MakeFromFile(path.c_str());
if (!stream) { return nullptr; }
// Attempt to deserialize with an image sharing serial proc.
auto deserialContext = std::make_unique<SkSharingDeserialContext>();
SkDeserialProcs procs;
procs.fImageProc = SkSharingDeserialContext::deserializeImage;
procs.fImageCtx = deserialContext.get();
// The outer format of multi-frame skps is the multi-picture document, which is a
// skp file containing subpictures separated by annotations.
int page_count = SkMultiPictureDocumentReadPageCount(stream.get());
if (!page_count) {
return nullptr;
}
std::vector<SkDocumentPage> frames(page_count); // can't call reserve, why?
if (!SkMultiPictureDocumentRead(stream.get(), frames.data(), page_count, &procs)) {
return nullptr;
}
return std::make_unique<MultiFrameSkp>(frames);
}
// Draw the whole animation once.
int drawAndFlushAndSync(GrContext* context, SkSurface* surface, GpuSync& gpuSync) override {
for (int i=0; i<this->count(); i++){
draw_skp_and_flush_with_sync(context, surface, this->frame(i).get(), gpuSync);
}
return this->count();
}
// Return the requested frame.
sk_sp<SkPicture> frame(int n) const { return fFrames[n].fPicture; }
// Return the number of frames in the recording.
int count() const { return fFrames.size(); }
private:
std::vector<SkDocumentPage> fFrames;
};
static void ddl_sample(GrContext* context, DDLTileHelper* tiles, GpuSync& gpuSync,
Sample* sample, SkTaskGroup* recordingTaskGroup, SkTaskGroup* gpuTaskGroup,
std::chrono::high_resolution_clock::time_point* startStopTime) {
using clock = std::chrono::high_resolution_clock;
clock::time_point start = *startStopTime;
if (FLAGS_comparableDDL) {
SkASSERT(!FLAGS_comparableSKP);
// In this mode we simply alternate between creating a DDL and drawing it - all on one
// thread. The interleaving is so that we don't starve the GPU.
// One unfortunate side effect of this is that we can't delete the DDLs until after
// the GPU work is flushed.
tiles->interleaveDDLCreationAndDraw(context);
} else if (FLAGS_comparableSKP) {
// In this mode simply draw the re-inflated per-tile SKPs directly to the GPU w/o going
// through a DDL.
tiles->drawAllTilesDirectly(context);
} else {
tiles->kickOffThreadedWork(recordingTaskGroup, gpuTaskGroup, context);
recordingTaskGroup->wait();
}
if (gpuTaskGroup) {
gpuTaskGroup->add([&]{
flush_with_sync(context, gpuSync);
});
gpuTaskGroup->wait();
} else {
flush_with_sync(context, gpuSync);
}
*startStopTime = clock::now();
if (sample) {
sample->fDuration += *startStopTime - start;
sample->fFrames++;
}
}
static void run_ddl_benchmark(sk_gpu_test::TestContext* testContext, GrContext *context,
sk_sp<SkSurface> dstSurface, SkPicture* inputPicture,
std::vector<Sample>* samples) {
using clock = std::chrono::high_resolution_clock;
const Sample::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs);
const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration);
SkSurfaceCharacterization dstCharacterization;
SkAssertResult(dstSurface->characterize(&dstCharacterization));
SkIRect viewport = dstSurface->imageInfo().bounds();
DDLPromiseImageHelper promiseImageHelper;
sk_sp<SkData> compressedPictureData = promiseImageHelper.deflateSKP(inputPicture);
if (!compressedPictureData) {
exitf(ExitErr::kUnavailable, "DDL: conversion of skp failed");
}
promiseImageHelper.createCallbackContexts(context);
promiseImageHelper.uploadAllToGPU(nullptr, context);
DDLTileHelper tiles(context, dstCharacterization, viewport, FLAGS_ddlTilingWidthHeight);
tiles.createBackendTextures(nullptr, context);
tiles.createSKPPerTile(compressedPictureData.get(), promiseImageHelper);
// In comparable modes, there is no GPU thread. The following pointers are all null.
// Otherwise, we transfer testContext onto the GPU thread until after the bench.
std::unique_ptr<SkExecutor> gpuThread;
std::unique_ptr<SkTaskGroup> gpuTaskGroup;
std::unique_ptr<SkExecutor> recordingThreadPool;
std::unique_ptr<SkTaskGroup> recordingTaskGroup;
if (!FLAGS_comparableDDL && !FLAGS_comparableSKP) {
gpuThread = SkExecutor::MakeFIFOThreadPool(1, false);
gpuTaskGroup = std::make_unique<SkTaskGroup>(*gpuThread);
recordingThreadPool = SkExecutor::MakeFIFOThreadPool(FLAGS_ddlNumRecordingThreads, false);
recordingTaskGroup = std::make_unique<SkTaskGroup>(*recordingThreadPool);
testContext->makeNotCurrent();
gpuTaskGroup->add([=]{ testContext->makeCurrent(); });
}
clock::time_point startStopTime = clock::now();
GpuSync gpuSync;
ddl_sample(context, &tiles, gpuSync, nullptr, recordingTaskGroup.get(),
gpuTaskGroup.get(), &startStopTime);
clock::duration cumulativeDuration = std::chrono::milliseconds(0);
do {
samples->emplace_back();
Sample& sample = samples->back();
do {
tiles.resetAllTiles();
ddl_sample(context, &tiles, gpuSync, &sample, recordingTaskGroup.get(),
gpuTaskGroup.get(), &startStopTime);
} while (sample.fDuration < sampleDuration);
cumulativeDuration += sample.fDuration;
} while (cumulativeDuration < benchDuration || 0 == samples->size() % 2);
// Move the context back to this thread now that we're done benching.
if (gpuTaskGroup) {
gpuTaskGroup->add([=]{
testContext->makeNotCurrent();
});
gpuTaskGroup->wait();
testContext->makeCurrent();
}
if (!FLAGS_png.isEmpty()) {
// The user wants to see the final result
dstSurface->draw(tiles.composeDDL());
dstSurface->flushAndSubmit();
}
tiles.resetAllTiles();
// Make sure the gpu has finished all its work before we exit this function and delete the
// fence.
GrFlushInfo flushInfo;
flushInfo.fFlags = kSyncCpu_GrFlushFlag;
context->flush(flushInfo);
context->submit(true);
promiseImageHelper.deleteAllFromGPU(nullptr, context);
tiles.deleteBackendTextures(nullptr, context);
}
static void run_benchmark(GrContext* context, SkSurface* surface, SkpProducer* skpp,
std::vector<Sample>* samples) {
using clock = std::chrono::high_resolution_clock;
const Sample::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs);
const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration);
GpuSync gpuSync;
int i = 0;
do {
i += skpp->drawAndFlushAndSync(context, surface, gpuSync);
} while(i < kNumFlushesToPrimeCache);
clock::time_point now = clock::now();
const clock::time_point endTime = now + benchDuration;
do {
clock::time_point sampleStart = now;
samples->emplace_back();
Sample& sample = samples->back();
do {
sample.fFrames += skpp->drawAndFlushAndSync(context, surface, gpuSync);
now = clock::now();
sample.fDuration = now - sampleStart;
} while (sample.fDuration < sampleDuration);
} while (now < endTime || 0 == samples->size() % 2);
// Make sure the gpu has finished all its work before we exit this function and delete the
// fence.
GrFlushInfo flushInfo;
flushInfo.fFlags = kSyncCpu_GrFlushFlag;
surface->flush(SkSurface::BackendSurfaceAccess::kNoAccess, flushInfo);
context->submit(true);
}
static void run_gpu_time_benchmark(sk_gpu_test::GpuTimer* gpuTimer, GrContext* context,
SkSurface* surface, const SkPicture* skp,
std::vector<Sample>* samples) {
using sk_gpu_test::PlatformTimerQuery;
using clock = std::chrono::steady_clock;
const clock::duration sampleDuration = std::chrono::milliseconds(FLAGS_sampleMs);
const clock::duration benchDuration = std::chrono::milliseconds(FLAGS_duration);
if (!gpuTimer->disjointSupport()) {
fprintf(stderr, "WARNING: GPU timer cannot detect disjoint operations; "
"results may be unreliable\n");
}
GpuSync gpuSync;
draw_skp_and_flush_with_sync(context, surface, skp, gpuSync);
PlatformTimerQuery previousTime = 0;
for (int i = 1; i < kNumFlushesToPrimeCache; ++i) {
gpuTimer->queueStart();
draw_skp_and_flush_with_sync(context, surface, skp, gpuSync);
previousTime = gpuTimer->queueStop();
}
clock::time_point now = clock::now();
const clock::time_point endTime = now + benchDuration;
do {
const clock::time_point sampleEndTime = now + sampleDuration;
samples->emplace_back();
Sample& sample = samples->back();
do {
gpuTimer->queueStart();
draw_skp_and_flush_with_sync(context, surface, skp, gpuSync);
PlatformTimerQuery time = gpuTimer->queueStop();
switch (gpuTimer->checkQueryStatus(previousTime)) {
using QueryStatus = sk_gpu_test::GpuTimer::QueryStatus;
case QueryStatus::kInvalid:
exitf(ExitErr::kUnavailable, "GPU timer failed");
break;
case QueryStatus::kPending:
exitf(ExitErr::kUnavailable, "timer query still not ready after fence sync");
break;
case QueryStatus::kDisjoint:
if (FLAGS_verbosity >= 4) {
fprintf(stderr, "discarding timer query due to disjoint operations.\n");
}
break;
case QueryStatus::kAccurate:
sample.fDuration += gpuTimer->getTimeElapsed(previousTime);
++sample.fFrames;
break;
}
gpuTimer->deleteQuery(previousTime);
previousTime = time;
now = clock::now();
} while (now < sampleEndTime || 0 == sample.fFrames);
} while (now < endTime || 0 == samples->size() % 2);
gpuTimer->deleteQuery(previousTime);
// Make sure the gpu has finished all its work before we exit this function and delete the
// fence.
GrFlushInfo flushInfo;
flushInfo.fFlags = kSyncCpu_GrFlushFlag;
surface->flush(SkSurface::BackendSurfaceAccess::kNoAccess, flushInfo);
context->submit(true);
}
void print_result(const std::vector<Sample>& samples, const char* config, const char* bench) {
if (0 == (samples.size() % 2)) {
exitf(ExitErr::kSoftware, "attempted to gather stats on even number of samples");
}
Sample accum = Sample();
std::vector<double> values;
values.reserve(samples.size());
for (const Sample& sample : samples) {
accum.fFrames += sample.fFrames;
accum.fDuration += sample.fDuration;
values.push_back(sample.value());
}
std::sort(values.begin(), values.end());
const double accumValue = accum.value();
double variance = 0;
for (double value : values) {
const double delta = value - accumValue;
variance += delta * delta;
}
variance /= values.size();
// Technically, this is the relative standard deviation.
const double stddev = 100/*%*/ * sqrt(variance) / accumValue;
printf(resultFormat, accumValue, values[values.size() / 2], values.back(), values.front(),
stddev, values.size(), FLAGS_sampleMs, FLAGS_gpuClock ? "gpu" : "cpu", Sample::metric(),
config, bench);
printf("\n");
fflush(stdout);
}
int main(int argc, char** argv) {
CommandLineFlags::SetUsage(
"Use skpbench.py instead. "
"You usually don't want to use this program directly.");
CommandLineFlags::Parse(argc, argv);
if (!FLAGS_suppressHeader) {
printf("%s\n", header);
}
if (FLAGS_duration <= 0) {
exit(0); // This can be used to print the header and quit.
}
// Parse the config.
const SkCommandLineConfigGpu* config = nullptr; // Initialize for spurious warning.
SkCommandLineConfigArray configs;
ParseConfigs(FLAGS_config, &configs);
if (configs.count() != 1 || !(config = configs[0]->asConfigGpu())) {
exitf(ExitErr::kUsage, "invalid config '%s': must specify one (and only one) GPU config",
join(FLAGS_config).c_str());
}
// Parse the skp.
if (FLAGS_src.count() != 1) {
exitf(ExitErr::kUsage,
"invalid input '%s': must specify a single .skp or .svg file, or 'warmup'",
join(FLAGS_src).c_str());
}
SkGraphics::Init();
sk_sp<SkPicture> skp;
std::unique_ptr<MultiFrameSkp> mskp; // populated if the file is multi frame.
SkString srcname;
if (0 == strcmp(FLAGS_src[0], "warmup")) {
skp = create_warmup_skp();
srcname = "warmup";
} else {
SkString srcfile(FLAGS_src[0]);
std::unique_ptr<SkStream> srcstream(SkStream::MakeFromFile(srcfile.c_str()));
if (!srcstream) {
exitf(ExitErr::kIO, "failed to open file %s", srcfile.c_str());
}
if (srcfile.endsWith(".svg")) {
skp = create_skp_from_svg(srcstream.get(), srcfile.c_str());
} else if (srcfile.endsWith(".mskp")) {
mskp = MultiFrameSkp::MakeFromFile(srcfile);
// populate skp with it's first frame, for width height determination.
skp = mskp->frame(0);
} else {
skp = SkPicture::MakeFromStream(srcstream.get());
}
if (!skp) {
exitf(ExitErr::kData, "failed to parse file %s", srcfile.c_str());
}
srcname = SkOSPath::Basename(srcfile.c_str());
}
int width = std::min(SkScalarCeilToInt(skp->cullRect().width()), 2048),
height = std::min(SkScalarCeilToInt(skp->cullRect().height()), 2048);
if (FLAGS_verbosity >= 3 &&
(width != skp->cullRect().width() || height != skp->cullRect().height())) {
fprintf(stderr, "%s is too large (%ix%i), cropping to %ix%i.\n",
srcname.c_str(), SkScalarCeilToInt(skp->cullRect().width()),
SkScalarCeilToInt(skp->cullRect().height()), width, height);
}
if (FLAGS_scale != 1) {
width *= FLAGS_scale;
height *= FLAGS_scale;
if (FLAGS_verbosity >= 3) {
fprintf(stderr, "Scale factor of %.2f: scaling to %ix%i.\n",
FLAGS_scale, width, height);
}
}
if (config->getSurfType() != SkCommandLineConfigGpu::SurfType::kDefault) {
exitf(ExitErr::kUnavailable, "This tool only supports the default surface type. (%s)",
config->getTag().c_str());
}
// Create a context.
GrContextOptions ctxOptions;
SetCtxOptionsFromCommonFlags(&ctxOptions);
sk_gpu_test::GrContextFactory factory(ctxOptions);
sk_gpu_test::ContextInfo ctxInfo =
factory.getContextInfo(config->getContextType(), config->getContextOverrides());
GrContext* ctx = ctxInfo.grContext();
if (!ctx) {
exitf(ExitErr::kUnavailable, "failed to create context for config %s",
config->getTag().c_str());
}
if (ctx->maxRenderTargetSize() < std::max(width, height)) {
exitf(ExitErr::kUnavailable, "render target size %ix%i not supported by platform (max: %i)",
width, height, ctx->maxRenderTargetSize());
}
GrBackendFormat format = ctx->defaultBackendFormat(config->getColorType(), GrRenderable::kYes);
if (!format.isValid()) {
exitf(ExitErr::kUnavailable, "failed to get GrBackendFormat from SkColorType: %d",
config->getColorType());
}
int supportedSampleCount = ctx->priv().caps()->getRenderTargetSampleCount(
config->getSamples(), format);
if (supportedSampleCount != config->getSamples()) {
exitf(ExitErr::kUnavailable, "sample count %i not supported by platform",
config->getSamples());
}
sk_gpu_test::TestContext* testCtx = ctxInfo.testContext();
if (!testCtx) {
exitf(ExitErr::kSoftware, "testContext is null");
}
if (!testCtx->fenceSyncSupport()) {
exitf(ExitErr::kUnavailable, "GPU does not support fence sync");
}
// Create a render target.
SkImageInfo info =
SkImageInfo::Make(width, height, config->getColorType(), config->getAlphaType(),
sk_ref_sp(config->getColorSpace()));
uint32_t flags = config->getUseDIText() ? SkSurfaceProps::kUseDeviceIndependentFonts_Flag : 0;
SkSurfaceProps props(flags, SkSurfaceProps::kLegacyFontHost_InitType);
sk_sp<SkSurface> surface =
SkSurface::MakeRenderTarget(ctx, SkBudgeted::kNo, info, config->getSamples(), &props);
if (!surface) {
exitf(ExitErr::kUnavailable, "failed to create %ix%i render target for config %s",
width, height, config->getTag().c_str());
}
// Run the benchmark.
std::vector<Sample> samples;
if (FLAGS_sampleMs > 0) {
// +1 because we might take one more sample in order to have an odd number.
samples.reserve(1 + (FLAGS_duration + FLAGS_sampleMs - 1) / FLAGS_sampleMs);
} else {
samples.reserve(2 * FLAGS_duration);
}
SkCanvas* canvas = surface->getCanvas();
canvas->translate(-skp->cullRect().x(), -skp->cullRect().y());
if (FLAGS_scale != 1) {
canvas->scale(FLAGS_scale, FLAGS_scale);
}
if (!FLAGS_gpuClock) {
if (FLAGS_ddl) {
run_ddl_benchmark(testCtx, ctx, surface, skp.get(), &samples);
} else if (!mskp) {
auto s = std::make_unique<StaticSkp>(skp);
run_benchmark(ctx, surface.get(), s.get(), &samples);
} else {
run_benchmark(ctx, surface.get(), mskp.get(), &samples);
}
} else {
if (FLAGS_ddl) {
exitf(ExitErr::kUnavailable, "DDL: GPU-only timing not supported");
}
if (!testCtx->gpuTimingSupport()) {
exitf(ExitErr::kUnavailable, "GPU does not support timing");
}
run_gpu_time_benchmark(testCtx->gpuTimer(), ctx, surface.get(), skp.get(), &samples);
}
print_result(samples, config->getTag().c_str(), srcname.c_str());
// Save a proof (if one was requested).
if (!FLAGS_png.isEmpty()) {
SkBitmap bmp;
bmp.allocPixels(info);
if (!surface->getCanvas()->readPixels(bmp, 0, 0)) {
exitf(ExitErr::kUnavailable, "failed to read canvas pixels for png");
}
if (!mkdir_p(SkOSPath::Dirname(FLAGS_png[0]))) {
exitf(ExitErr::kIO, "failed to create directory for png \"%s\"", FLAGS_png[0]);
}
if (!ToolUtils::EncodeImageToFile(FLAGS_png[0], bmp, SkEncodedImageFormat::kPNG, 100)) {
exitf(ExitErr::kIO, "failed to save png to \"%s\"", FLAGS_png[0]);
}
}
return(0);
}
static void flush_with_sync(GrContext* context, GpuSync& gpuSync) {
gpuSync.waitIfNeeded();
GrFlushInfo flushInfo;
flushInfo.fFinishedProc = sk_gpu_test::FlushFinishTracker::FlushFinished;
flushInfo.fFinishedContext = gpuSync.newFlushTracker(context);
context->flush(flushInfo);
context->submit();
}
static void draw_skp_and_flush_with_sync(GrContext* context, SkSurface* surface,
const SkPicture* skp, GpuSync& gpuSync) {
auto canvas = surface->getCanvas();
canvas->drawPicture(skp);
flush_with_sync(context, gpuSync);
}
static sk_sp<SkPicture> create_warmup_skp() {
static constexpr SkRect bounds{0, 0, 500, 500};
SkPictureRecorder recorder;
SkCanvas* recording = recorder.beginRecording(bounds);
recording->clear(SK_ColorWHITE);
SkPaint stroke;
stroke.setStyle(SkPaint::kStroke_Style);
stroke.setStrokeWidth(2);
// Use a big path to (theoretically) warmup the CPU.
SkPath bigPath;
ToolUtils::make_big_path(bigPath);
recording->drawPath(bigPath, stroke);
// Use a perlin shader to warmup the GPU.
SkPaint perlin;
perlin.setShader(SkPerlinNoiseShader::MakeTurbulence(0.1f, 0.1f, 1, 0, nullptr));
recording->drawRect(bounds, perlin);
return recorder.finishRecordingAsPicture();
}
static sk_sp<SkPicture> create_skp_from_svg(SkStream* stream, const char* filename) {
#ifdef SK_XML
SkDOM xml;
if (!xml.build(*stream)) {
exitf(ExitErr::kData, "failed to parse xml in file %s", filename);
}
sk_sp<SkSVGDOM> svg = SkSVGDOM::MakeFromDOM(xml);
if (!svg) {
exitf(ExitErr::kData, "failed to build svg dom from file %s", filename);
}
static constexpr SkRect bounds{0, 0, 1200, 1200};
SkPictureRecorder recorder;
SkCanvas* recording = recorder.beginRecording(bounds);
svg->setContainerSize(SkSize::Make(recording->getBaseLayerSize()));
svg->render(recording);
return recorder.finishRecordingAsPicture();
#endif
exitf(ExitErr::kData, "SK_XML is disabled; cannot open svg file %s", filename);
return nullptr;
}
bool mkdir_p(const SkString& dirname) {
if (dirname.isEmpty() || dirname == SkString("/")) {
return true;
}
return mkdir_p(SkOSPath::Dirname(dirname.c_str())) && sk_mkdir(dirname.c_str());
}
static SkString join(const CommandLineFlags::StringArray& stringArray) {
SkString joined;
for (int i = 0; i < stringArray.count(); ++i) {
joined.appendf(i ? " %s" : "%s", stringArray[i]);
}
return joined;
}
static void exitf(ExitErr err, const char* format, ...) {
fprintf(stderr, ExitErr::kSoftware == err ? "INTERNAL ERROR: " : "ERROR: ");
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
fprintf(stderr, ExitErr::kSoftware == err ? "; this should never happen.\n": ".\n");
exit((int)err);
}
void GpuSync::waitIfNeeded() {
if (fFinishTrackers[fCurrentFlushIdx]) {
fFinishTrackers[fCurrentFlushIdx]->waitTillFinished();
}
}
sk_gpu_test::FlushFinishTracker* GpuSync::newFlushTracker(GrContext* context) {
fFinishTrackers[fCurrentFlushIdx].reset(new sk_gpu_test::FlushFinishTracker(context));
sk_gpu_test::FlushFinishTracker* tracker = fFinishTrackers[fCurrentFlushIdx].get();
// We add an additional ref to the current flush tracker here. This ref is owned by the finish
// callback on the flush call. The finish callback will unref the tracker when called.
tracker->ref();
fCurrentFlushIdx = (fCurrentFlushIdx + 1) % SK_ARRAY_COUNT(fFinishTrackers);
return tracker;
}