blob: 84ffbc544ea5005d6faa2e6ec3542f785052aff2 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrFragmentProcessor.h"
#include "src/gpu/GrProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLUniformHandler.h"
void GrGLSLFragmentProcessor::setData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& processor) {
this->onSetData(pdman, processor);
}
void GrGLSLFragmentProcessor::emitChildFunction(int childIndex, EmitArgs& args) {
SkASSERT(childIndex >= 0);
SkASSERT(args.fFp.childProcessor(childIndex));
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
while (childIndex >= (int) fFunctionNames.size()) {
fFunctionNames.emplace_back();
}
// Emit the child's helper function if this is the first time we've seen a call
if (fFunctionNames[childIndex].size() == 0) {
TransformedCoordVars coordVars = args.fTransformedCoords.childInputs(childIndex);
EmitArgs childArgs(fragBuilder,
args.fUniformHandler,
args.fShaderCaps,
*args.fFp.childProcessor(childIndex),
"_input",
"_coords",
coordVars);
fFunctionNames[childIndex] =
fragBuilder->writeProcessorFunction(this->childProcessor(childIndex), childArgs);
}
}
SkString GrGLSLFragmentProcessor::invokeChild(int childIndex, const char* inputColor,
EmitArgs& args, SkSL::String skslCoords) {
if (!inputColor) {
inputColor = args.fInputColor;
}
SkASSERT(childIndex >= 0);
const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
if (!childProc) {
return SkString(inputColor);
}
this->emitChildFunction(childIndex, args);
if (skslCoords.empty()) {
// Empty coords means passing through the coords of the parent
skslCoords = args.fSampleCoord;
}
if (childProc->isSampledWithExplicitCoords()) {
// The child's function takes a half4 color and a float2 coordinate
return SkStringPrintf("%s(%s, %s)", fFunctionNames[childIndex].c_str(),
inputColor, skslCoords.c_str());
} else {
// The child's function just takes a color. We should only get here for a call to sample
// without explicit coordinates. Assert that the child has no sample matrix and skslCoords
// is _coords (a uniform matrix sample call would go through invokeChildWithMatrix, and if
// a child was sampled with sample(matrix) and sample(), it should have been flagged as
// variable and hit the branch above).
SkASSERT(skslCoords == args.fSampleCoord && !childProc->sampleUsage().hasMatrix());
return SkStringPrintf("%s(%s)", fFunctionNames[childIndex].c_str(), inputColor);
}
}
SkString GrGLSLFragmentProcessor::invokeChildWithMatrix(int childIndex, const char* inputColor,
EmitArgs& args,
SkSL::String skslMatrix) {
if (!inputColor) {
inputColor = args.fInputColor;
}
SkASSERT(childIndex >= 0);
const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
if (!childProc) {
return SkString(inputColor);
}
this->emitChildFunction(childIndex, args);
SkASSERT(childProc->sampleUsage().hasMatrix());
// Since this is uniform, the provided sksl expression should exactly match the expression
// stored on the FP, or it should match the mangled uniform name.
if (skslMatrix.empty()) {
// Empty matrix expression replaces with the sample matrix expression stored on the FP, but
// that is only valid for uniform sampled FPs
SkASSERT(childProc->sampleUsage().hasUniformMatrix());
skslMatrix.assign(childProc->sampleUsage().fExpression);
}
if (childProc->sampleUsage().hasUniformMatrix()) {
// Attempt to resolve the uniform name from the raw name stored in the sample usage.
// Since this is uniform, the provided expression better match what was given to the FP.
SkASSERT(childProc->sampleUsage().fExpression == skslMatrix);
GrShaderVar uniform = args.fUniformHandler->getUniformMapping(
args.fFp, SkString(childProc->sampleUsage().fExpression));
if (uniform.getType() != kVoid_GrSLType) {
// Found the uniform, so replace the expression with the actual uniform name
SkASSERT(uniform.getType() == kFloat3x3_GrSLType);
skslMatrix = uniform.getName().c_str();
} // else assume it's a constant expression
}
// Produce a string containing the call to the helper function. sample(matrix) is special where
// the provided skslMatrix expression means that the child FP should be invoked with coords
// equal to matrix * parent coords. However, if matrix is a uniform expression AND the parent
// coords were produced by uniform transforms, then this expression is lifted to a vertex
// shader and is stored in a varying. In that case, childProc will not have a variable sample
// matrix and will not be sampled explicitly, so its function signature will not take in coords.
//
// In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke
// the function.
if (childProc->isSampledWithExplicitCoords()) {
// Only check perspective for this specific matrix transform, not the aggregate FP property.
// Any parent perspective will have already been applied when evaluated in the FS.
if (childProc->sampleUsage().fHasPerspective) {
return SkStringPrintf("%s(%s, proj((%s) * %s.xy1))", fFunctionNames[childIndex].c_str(),
inputColor, skslMatrix.c_str(), args.fSampleCoord);
} else {
return SkStringPrintf("%s(%s, ((%s) * %s.xy1).xy)", fFunctionNames[childIndex].c_str(),
inputColor, skslMatrix.c_str(), args.fSampleCoord);
}
} else {
// A variable matrix expression should mark the child as explicitly sampled. A no-op
// matrix should match sample(color), not sample(color, matrix).
SkASSERT(childProc->sampleUsage().hasUniformMatrix());
// Since this is uniform and not explicitly sampled, it's transform has been promoted to
// the vertex shader and the signature doesn't take a float2 coord.
return SkStringPrintf("%s(%s)", fFunctionNames[childIndex].c_str(), inputColor);
}
}
//////////////////////////////////////////////////////////////////////////////
GrGLSLFragmentProcessor::Iter::Iter(std::unique_ptr<GrGLSLFragmentProcessor> fps[], int cnt) {
for (int i = cnt - 1; i >= 0; --i) {
fFPStack.push_back(fps[i].get());
}
}
GrGLSLFragmentProcessor::ParallelIter::ParallelIter(const GrFragmentProcessor& fp,
GrGLSLFragmentProcessor& glslFP)
: fpIter(fp), glslIter(glslFP) {}
GrGLSLFragmentProcessor::ParallelIter& GrGLSLFragmentProcessor::ParallelIter::operator++() {
++fpIter;
++glslIter;
SkASSERT(static_cast<bool>(fpIter) == static_cast<bool>(glslIter));
return *this;
}
std::tuple<const GrFragmentProcessor&, GrGLSLFragmentProcessor&>
GrGLSLFragmentProcessor::ParallelIter::operator*() const {
return {*fpIter, *glslIter};
}
bool GrGLSLFragmentProcessor::ParallelIter::operator==(const ParallelIterEnd& end) const {
SkASSERT(static_cast<bool>(fpIter) == static_cast<bool>(glslIter));
return !fpIter;
}
GrGLSLFragmentProcessor& GrGLSLFragmentProcessor::Iter::operator*() const {
return *fFPStack.back();
}
GrGLSLFragmentProcessor* GrGLSLFragmentProcessor::Iter::operator->() const {
return fFPStack.back();
}
GrGLSLFragmentProcessor::Iter& GrGLSLFragmentProcessor::Iter::operator++() {
SkASSERT(!fFPStack.empty());
const GrGLSLFragmentProcessor* back = fFPStack.back();
fFPStack.pop_back();
for (int i = back->numChildProcessors() - 1; i >= 0; --i) {
if (auto child = back->childProcessor(i)) {
fFPStack.push_back(child);
}
}
return *this;
}
GrGLSLFragmentProcessor::ParallelRange::ParallelRange(const GrFragmentProcessor& fp,
GrGLSLFragmentProcessor& glslFP)
: fInitialFP(fp), fInitialGLSLFP(glslFP) {}