blob: 453ea16800d0b4136be29c4afebf6c99f918e02e [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/geometry/GrPathUtils.h"
#include "include/gpu/GrTypes.h"
#include "src/core/SkMathPriv.h"
#include "src/core/SkPointPriv.h"
#include "src/core/SkUtils.h"
static const SkScalar gMinCurveTol = 0.0001f;
SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
const SkMatrix& viewM,
const SkRect& pathBounds) {
// In order to tesselate the path we get a bound on how much the matrix can
// scale when mapping to screen coordinates.
SkScalar stretch = viewM.getMaxScale();
if (stretch < 0) {
// take worst case mapRadius amoung four corners.
// (less than perfect)
for (int i = 0; i < 4; ++i) {
SkMatrix mat;
mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
(i < 2) ? pathBounds.fTop : pathBounds.fBottom);
mat.postConcat(viewM);
stretch = std::max(stretch, mat.mapRadius(SK_Scalar1));
}
}
SkScalar srcTol = 0;
if (stretch <= 0) {
// We have degenerate bounds or some degenerate matrix. Thus we set the tolerance to be the
// max of the path pathBounds width and height.
srcTol = std::max(pathBounds.width(), pathBounds.height());
} else {
srcTol = devTol / stretch;
}
if (srcTol < gMinCurveTol) {
srcTol = gMinCurveTol;
}
return srcTol;
}
uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
// You should have called scaleToleranceToSrc, which guarantees this
SkASSERT(tol >= gMinCurveTol);
SkScalar d = SkPointPriv::DistanceToLineSegmentBetween(points[1], points[0], points[2]);
if (!SkScalarIsFinite(d)) {
return kMaxPointsPerCurve;
} else if (d <= tol) {
return 1;
} else {
// Each time we subdivide, d should be cut in 4. So we need to
// subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
// points.
// 2^(log4(x)) = sqrt(x);
SkScalar divSqrt = SkScalarSqrt(d / tol);
if (((SkScalar)SK_MaxS32) <= divSqrt) {
return kMaxPointsPerCurve;
} else {
int temp = SkScalarCeilToInt(divSqrt);
int pow2 = GrNextPow2(temp);
// Because of NaNs & INFs we can wind up with a degenerate temp
// such that pow2 comes out negative. Also, our point generator
// will always output at least one pt.
if (pow2 < 1) {
pow2 = 1;
}
return std::min(pow2, kMaxPointsPerCurve);
}
}
}
uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
const SkPoint& p1,
const SkPoint& p2,
SkScalar tolSqd,
SkPoint** points,
uint32_t pointsLeft) {
if (pointsLeft < 2 ||
(SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
(*points)[0] = p2;
*points += 1;
return 1;
}
SkPoint q[] = {
{ SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
{ SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
};
SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
pointsLeft >>= 1;
uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
return a + b;
}
uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
SkScalar tol) {
// You should have called scaleToleranceToSrc, which guarantees this
SkASSERT(tol >= gMinCurveTol);
SkScalar d = std::max(
SkPointPriv::DistanceToLineSegmentBetweenSqd(points[1], points[0], points[3]),
SkPointPriv::DistanceToLineSegmentBetweenSqd(points[2], points[0], points[3]));
d = SkScalarSqrt(d);
if (!SkScalarIsFinite(d)) {
return kMaxPointsPerCurve;
} else if (d <= tol) {
return 1;
} else {
SkScalar divSqrt = SkScalarSqrt(d / tol);
if (((SkScalar)SK_MaxS32) <= divSqrt) {
return kMaxPointsPerCurve;
} else {
int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
int pow2 = GrNextPow2(temp);
// Because of NaNs & INFs we can wind up with a degenerate temp
// such that pow2 comes out negative. Also, our point generator
// will always output at least one pt.
if (pow2 < 1) {
pow2 = 1;
}
return std::min(pow2, kMaxPointsPerCurve);
}
}
}
uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
const SkPoint& p1,
const SkPoint& p2,
const SkPoint& p3,
SkScalar tolSqd,
SkPoint** points,
uint32_t pointsLeft) {
if (pointsLeft < 2 ||
(SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
(*points)[0] = p3;
*points += 1;
return 1;
}
SkPoint q[] = {
{ SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
{ SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
{ SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
};
SkPoint r[] = {
{ SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
{ SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
};
SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
pointsLeft >>= 1;
uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
return a + b;
}
void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
SkMatrix m;
// We want M such that M * xy_pt = uv_pt
// We know M * control_pts = [0 1/2 1]
// [0 0 1]
// [1 1 1]
// And control_pts = [x0 x1 x2]
// [y0 y1 y2]
// [1 1 1 ]
// We invert the control pt matrix and post concat to both sides to get M.
// Using the known form of the control point matrix and the result, we can
// optimize and improve precision.
double x0 = qPts[0].fX;
double y0 = qPts[0].fY;
double x1 = qPts[1].fX;
double y1 = qPts[1].fY;
double x2 = qPts[2].fX;
double y2 = qPts[2].fY;
double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
if (!sk_float_isfinite(det)
|| SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
// The quad is degenerate. Hopefully this is rare. Find the pts that are
// farthest apart to compute a line (unless it is really a pt).
SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
int maxEdge = 0;
SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
if (d > maxD) {
maxD = d;
maxEdge = 1;
}
d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
if (d > maxD) {
maxD = d;
maxEdge = 2;
}
// We could have a tolerance here, not sure if it would improve anything
if (maxD > 0) {
// Set the matrix to give (u = 0, v = distance_to_line)
SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
// when looking from the point 0 down the line we want positive
// distances to be to the left. This matches the non-degenerate
// case.
lineVec = SkPointPriv::MakeOrthog(lineVec, SkPointPriv::kLeft_Side);
// first row
fM[0] = 0;
fM[1] = 0;
fM[2] = 0;
// second row
fM[3] = lineVec.fX;
fM[4] = lineVec.fY;
fM[5] = -lineVec.dot(qPts[maxEdge]);
} else {
// It's a point. It should cover zero area. Just set the matrix such
// that (u, v) will always be far away from the quad.
fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
}
} else {
double scale = 1.0/det;
// compute adjugate matrix
double a2, a3, a4, a5, a6, a7, a8;
a2 = x1*y2-x2*y1;
a3 = y2-y0;
a4 = x0-x2;
a5 = x2*y0-x0*y2;
a6 = y0-y1;
a7 = x1-x0;
a8 = x0*y1-x1*y0;
// this performs the uv_pts*adjugate(control_pts) multiply,
// then does the scale by 1/det afterwards to improve precision
m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
m[SkMatrix::kMSkewX] = (float)((0.5*a4 + a7)*scale);
m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
m[SkMatrix::kMSkewY] = (float)(a6*scale);
m[SkMatrix::kMScaleY] = (float)(a7*scale);
m[SkMatrix::kMTransY] = (float)(a8*scale);
// kMPersp0 & kMPersp1 should algebraically be zero
m[SkMatrix::kMPersp0] = 0.0f;
m[SkMatrix::kMPersp1] = 0.0f;
m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
// It may not be normalized to have 1.0 in the bottom right
float m33 = m.get(SkMatrix::kMPersp2);
if (1.f != m33) {
m33 = 1.f / m33;
fM[0] = m33 * m.get(SkMatrix::kMScaleX);
fM[1] = m33 * m.get(SkMatrix::kMSkewX);
fM[2] = m33 * m.get(SkMatrix::kMTransX);
fM[3] = m33 * m.get(SkMatrix::kMSkewY);
fM[4] = m33 * m.get(SkMatrix::kMScaleY);
fM[5] = m33 * m.get(SkMatrix::kMTransY);
} else {
fM[0] = m.get(SkMatrix::kMScaleX);
fM[1] = m.get(SkMatrix::kMSkewX);
fM[2] = m.get(SkMatrix::kMTransX);
fM[3] = m.get(SkMatrix::kMSkewY);
fM[4] = m.get(SkMatrix::kMScaleY);
fM[5] = m.get(SkMatrix::kMTransY);
}
}
}
////////////////////////////////////////////////////////////////////////////////
// k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
// l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
// m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
SkMatrix& klm = *out;
const SkScalar w2 = 2.f * weight;
klm[0] = p[2].fY - p[0].fY;
klm[1] = p[0].fX - p[2].fX;
klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
klm[3] = w2 * (p[1].fY - p[0].fY);
klm[4] = w2 * (p[0].fX - p[1].fX);
klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
klm[6] = w2 * (p[2].fY - p[1].fY);
klm[7] = w2 * (p[1].fX - p[2].fX);
klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
// scale the max absolute value of coeffs to 10
SkScalar scale = 0.f;
for (int i = 0; i < 9; ++i) {
scale = std::max(scale, SkScalarAbs(klm[i]));
}
SkASSERT(scale > 0.f);
scale = 10.f / scale;
for (int i = 0; i < 9; ++i) {
klm[i] *= scale;
}
}
////////////////////////////////////////////////////////////////////////////////
namespace {
// a is the first control point of the cubic.
// ab is the vector from a to the second control point.
// dc is the vector from the fourth to the third control point.
// d is the fourth control point.
// p is the candidate quadratic control point.
// this assumes that the cubic doesn't inflect and is simple
bool is_point_within_cubic_tangents(const SkPoint& a,
const SkVector& ab,
const SkVector& dc,
const SkPoint& d,
SkPathFirstDirection dir,
const SkPoint p) {
SkVector ap = p - a;
SkScalar apXab = ap.cross(ab);
if (SkPathFirstDirection::kCW == dir) {
if (apXab > 0) {
return false;
}
} else {
SkASSERT(SkPathFirstDirection::kCCW == dir);
if (apXab < 0) {
return false;
}
}
SkVector dp = p - d;
SkScalar dpXdc = dp.cross(dc);
if (SkPathFirstDirection::kCW == dir) {
if (dpXdc < 0) {
return false;
}
} else {
SkASSERT(SkPathFirstDirection::kCCW == dir);
if (dpXdc > 0) {
return false;
}
}
return true;
}
void convert_noninflect_cubic_to_quads(const SkPoint p[4],
SkScalar toleranceSqd,
SkTArray<SkPoint, true>* quads,
int sublevel = 0,
bool preserveFirstTangent = true,
bool preserveLastTangent = true) {
// Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
// p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
SkVector ab = p[1] - p[0];
SkVector dc = p[2] - p[3];
if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
SkPoint* degQuad = quads->push_back_n(3);
degQuad[0] = p[0];
degQuad[1] = p[0];
degQuad[2] = p[3];
return;
}
ab = p[2] - p[0];
}
if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
dc = p[1] - p[3];
}
static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
static const int kMaxSubdivs = 10;
ab.scale(kLengthScale);
dc.scale(kLengthScale);
// c0 and c1 are extrapolations along vectors ab and dc.
SkPoint c0 = p[0] + ab;
SkPoint c1 = p[3] + dc;
SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
if (dSqd < toleranceSqd) {
SkPoint newC;
if (preserveFirstTangent == preserveLastTangent) {
// We used to force a split when both tangents need to be preserved and c0 != c1.
// This introduced a large performance regression for tiny paths for no noticeable
// quality improvement. However, we aren't quite fulfilling our contract of guaranteeing
// the two tangent vectors and this could introduce a missed pixel in
// GrAAHairlinePathRenderer.
newC = (c0 + c1) * 0.5f;
} else if (preserveFirstTangent) {
newC = c0;
} else {
newC = c1;
}
SkPoint* pts = quads->push_back_n(3);
pts[0] = p[0];
pts[1] = newC;
pts[2] = p[3];
return;
}
SkPoint choppedPts[7];
SkChopCubicAtHalf(p, choppedPts);
convert_noninflect_cubic_to_quads(
choppedPts + 0, toleranceSqd, quads, sublevel + 1, preserveFirstTangent, false);
convert_noninflect_cubic_to_quads(
choppedPts + 3, toleranceSqd, quads, sublevel + 1, false, preserveLastTangent);
}
void convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],
SkScalar toleranceSqd,
SkPathFirstDirection dir,
SkTArray<SkPoint, true>* quads,
int sublevel = 0) {
// Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
// p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
SkVector ab = p[1] - p[0];
SkVector dc = p[2] - p[3];
if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
SkPoint* degQuad = quads->push_back_n(3);
degQuad[0] = p[0];
degQuad[1] = p[0];
degQuad[2] = p[3];
return;
}
ab = p[2] - p[0];
}
if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
dc = p[1] - p[3];
}
// When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
// constraint that the quad point falls between the tangents becomes hard to enforce and we are
// likely to hit the max subdivision count. However, in this case the cubic is approaching a
// line and the accuracy of the quad point isn't so important. We check if the two middle cubic
// control points are very close to the baseline vector. If so then we just pick quadratic
// points on the control polygon.
SkVector da = p[0] - p[3];
bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
if (!doQuads) {
SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
if (invDALengthSqd > SK_ScalarNearlyZero) {
invDALengthSqd = SkScalarInvert(invDALengthSqd);
// cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
// same goes for point c using vector cd.
SkScalar detABSqd = ab.cross(da);
detABSqd = SkScalarSquare(detABSqd);
SkScalar detDCSqd = dc.cross(da);
detDCSqd = SkScalarSquare(detDCSqd);
if (detABSqd * invDALengthSqd < toleranceSqd &&
detDCSqd * invDALengthSqd < toleranceSqd) {
doQuads = true;
}
}
}
if (doQuads) {
SkPoint b = p[0] + ab;
SkPoint c = p[3] + dc;
SkPoint mid = b + c;
mid.scale(SK_ScalarHalf);
// Insert two quadratics to cover the case when ab points away from d and/or dc
// points away from a.
if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab, da) > 0) {
SkPoint* qpts = quads->push_back_n(6);
qpts[0] = p[0];
qpts[1] = b;
qpts[2] = mid;
qpts[3] = mid;
qpts[4] = c;
qpts[5] = p[3];
} else {
SkPoint* qpts = quads->push_back_n(3);
qpts[0] = p[0];
qpts[1] = mid;
qpts[2] = p[3];
}
return;
}
static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
static const int kMaxSubdivs = 10;
ab.scale(kLengthScale);
dc.scale(kLengthScale);
// c0 and c1 are extrapolations along vectors ab and dc.
SkVector c0 = p[0] + ab;
SkVector c1 = p[3] + dc;
SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
if (dSqd < toleranceSqd) {
SkPoint cAvg = (c0 + c1) * 0.5f;
bool subdivide = false;
if (!is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
// choose a new cAvg that is the intersection of the two tangent lines.
ab = SkPointPriv::MakeOrthog(ab);
SkScalar z0 = -ab.dot(p[0]);
dc = SkPointPriv::MakeOrthog(dc);
SkScalar z1 = -dc.dot(p[3]);
cAvg.fX = ab.fY * z1 - z0 * dc.fY;
cAvg.fY = z0 * dc.fX - ab.fX * z1;
SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
z = SkScalarInvert(z);
cAvg.fX *= z;
cAvg.fY *= z;
if (sublevel <= kMaxSubdivs) {
SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
// We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
// the distances and tolerance can't be negative.
// (d0 + d1)^2 > toleranceSqd
// d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
}
}
if (!subdivide) {
SkPoint* pts = quads->push_back_n(3);
pts[0] = p[0];
pts[1] = cAvg;
pts[2] = p[3];
return;
}
}
SkPoint choppedPts[7];
SkChopCubicAtHalf(p, choppedPts);
convert_noninflect_cubic_to_quads_with_constraint(
choppedPts + 0, toleranceSqd, dir, quads, sublevel + 1);
convert_noninflect_cubic_to_quads_with_constraint(
choppedPts + 3, toleranceSqd, dir, quads, sublevel + 1);
}
} // namespace
void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
SkScalar tolScale,
SkTArray<SkPoint, true>* quads) {
if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
return;
}
if (!SkScalarIsFinite(tolScale)) {
return;
}
SkPoint chopped[10];
int count = SkChopCubicAtInflections(p, chopped);
const SkScalar tolSqd = SkScalarSquare(tolScale);
for (int i = 0; i < count; ++i) {
SkPoint* cubic = chopped + 3*i;
convert_noninflect_cubic_to_quads(cubic, tolSqd, quads);
}
}
void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
SkScalar tolScale,
SkPathFirstDirection dir,
SkTArray<SkPoint, true>* quads) {
if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
return;
}
if (!SkScalarIsFinite(tolScale)) {
return;
}
SkPoint chopped[10];
int count = SkChopCubicAtInflections(p, chopped);
const SkScalar tolSqd = SkScalarSquare(tolScale);
for (int i = 0; i < count; ++i) {
SkPoint* cubic = chopped + 3*i;
convert_noninflect_cubic_to_quads_with_constraint(cubic, tolSqd, dir, quads);
}
}
int GrPathUtils::findCubicConvex180Chops(const SkPoint pts[], float T[2], bool* areCusps) {
using grvx::float2;
SkASSERT(pts);
SkASSERT(T);
SkASSERT(areCusps);
// If a chop falls within a distance of "kEpsilon" from 0 or 1, throw it out. Tangents become
// unstable when we chop too close to the boundary. This works out because the tessellation
// shaders don't allow more than 2^10 parametric segments, and they snap the beginning and
// ending edges at 0 and 1. So if we overstep an inflection or point of 180-degree rotation by a
// fraction of a tessellation segment, it just gets snapped.
constexpr static float kEpsilon = 1.f / (1 << 11);
// Floating-point representation of "1 - 2*kEpsilon".
constexpr static uint32_t kIEEE_one_minus_2_epsilon = (127 << 23) - 2 * (1 << (24 - 11));
// Unfortunately we don't have a way to static_assert this, but we can runtime assert that the
// kIEEE_one_minus_2_epsilon bits are correct.
SkASSERT(sk_bit_cast<float>(kIEEE_one_minus_2_epsilon) == 1 - 2*kEpsilon);
float2 p0 = skvx::bit_pun<float2>(pts[0]);
float2 p1 = skvx::bit_pun<float2>(pts[1]);
float2 p2 = skvx::bit_pun<float2>(pts[2]);
float2 p3 = skvx::bit_pun<float2>(pts[3]);
// Find the cubic's power basis coefficients. These define the bezier curve as:
//
// |T^3|
// Cubic(T) = x,y = |A 3B 3C| * |T^2| + P0
// |. . .| |T |
//
// And the tangent direction (scaled by a uniform 1/3) will be:
//
// |T^2|
// Tangent_Direction(T) = dx,dy = |A 2B C| * |T |
// |. . .| |1 |
//
float2 C = p1 - p0;
float2 D = p2 - p1;
float2 E = p3 - p0;
float2 B = D - C;
float2 A = grvx::fast_madd<2>(-3,D,E);
// Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
// We formulate this as a quadratic equation: F' x F'' == aT^2 + bT + c == 0.
// See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
// NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
float a = grvx::cross(A,B);
float b = grvx::cross(A,C);
float c = grvx::cross(B,C);
float b_over_minus_2 = -.5f * b;
float discr_over_4 = b_over_minus_2*b_over_minus_2 - a*c;
// If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two roots are within
// kEpsilon of one another (in parametric space). This is close enough for our purposes to
// consider them a single cusp.
float cuspThreshold = a * (kEpsilon/2);
cuspThreshold *= cuspThreshold;
if (discr_over_4 < -cuspThreshold) {
// The curve does not inflect or cusp. This means it might rotate more than 180 degrees
// instead. Chop were rotation == 180 deg. (This is the 2nd root where the tangent is
// parallel to tan0.)
//
// Tangent_Direction(T) x tan0 == 0
// (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
// (A x C)T^2 + (2B x C)T + (C x C) == 0 [[because tan0 == P1 - P0 == C]]
// bT^2 + 2cT + 0 == 0 [[because A x C == b, B x C == c]]
// T = [0, -2c/b]
//
// NOTE: if C == 0, then C != tan0. But this is fine because the curve is definitely
// convex-180 if any points are colocated, and T[0] will equal NaN which returns 0 chops.
*areCusps = false;
float root = sk_ieee_float_divide(c, b_over_minus_2);
// Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
T[0] = root;
return 1;
}
return 0;
}
*areCusps = (discr_over_4 <= cuspThreshold);
if (*areCusps) {
// The two roots are close enough that we can consider them a single cusp.
if (a != 0 || b_over_minus_2 != 0 || c != 0) {
// Pick the average of both roots.
float root = sk_ieee_float_divide(b_over_minus_2, a);
// Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
T[0] = root;
return 1;
}
return 0;
}
// The curve is a flat line. The standard inflection function doesn't detect cusps from flat
// lines. Find cusps by searching instead for points where the tangent is perpendicular to
// tan0. This will find any cusp point.
//
// dot(tan0, Tangent_Direction(T)) == 0
//
// |T^2|
// tan0 * |A 2B C| * |T | == 0
// |. . .| |1 |
//
float2 tan0 = skvx::if_then_else(C != 0, C, p2 - p0);
a = grvx::dot(tan0, A);
b_over_minus_2 = -grvx::dot(tan0, B);
c = grvx::dot(tan0, C);
discr_over_4 = std::max(b_over_minus_2*b_over_minus_2 - a*c, 0.f);
}
// Solve our quadratic equation to find where to chop. See the quadratic formula from
// Numerical Recipes in C.
float q = sqrtf(discr_over_4);
q = copysignf(q, b_over_minus_2);
q = q + b_over_minus_2;
float2 roots = float2{q,c} / float2{a,q};
auto inside = (roots > kEpsilon) & (roots < (1 - kEpsilon));
if (inside[0]) {
if (inside[1] && roots[0] != roots[1]) {
if (roots[0] > roots[1]) {
roots = skvx::shuffle<1,0>(roots); // Sort.
}
roots.store(T);
return 2;
}
T[0] = roots[0];
return 1;
}
if (inside[1]) {
T[0] = roots[1];
return 1;
}
return 0;
}