blob: 3cb1247a22a90f50c62fd3ce859cd6e04bf41f31 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/effects/GrBlendFragmentProcessor.h"
#include "src/gpu/GrFragmentProcessor.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/glsl/GrGLSLBlend.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
using GrBlendFragmentProcessor::BlendBehavior;
// Some of the cpu implementations of blend modes differ too much from the GPU enough that
// we can't use the cpu implementation to implement constantOutputForConstantInput.
static inline bool does_cpu_blend_impl_match_gpu(SkBlendMode mode) {
// The non-seperable modes differ too much. So does SoftLight. ColorBurn differs too much on our
// test iOS device (but we just disable it across the aboard since it may happen on untested
// GPUs).
return mode <= SkBlendMode::kLastSeparableMode && mode != SkBlendMode::kSoftLight &&
mode != SkBlendMode::kColorBurn;
}
static const char* BlendBehavior_Name(BlendBehavior behavior) {
SkASSERT(unsigned(behavior) <= unsigned(BlendBehavior::kLastBlendBehavior));
static constexpr const char* gStrings[] = {
"Default",
"Compose-One",
"Compose-Two",
"SkMode",
};
static_assert(SK_ARRAY_COUNT(gStrings) == size_t(BlendBehavior::kLastBlendBehavior) + 1);
return gStrings[int(behavior)];
}
//////////////////////////////////////////////////////////////////////////////
class BlendFragmentProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> src,
std::unique_ptr<GrFragmentProcessor> dst,
SkBlendMode mode, BlendBehavior behavior) {
return std::unique_ptr<GrFragmentProcessor>(
new BlendFragmentProcessor(std::move(src), std::move(dst), mode, behavior));
}
const char* name() const override { return "Blend"; }
std::unique_ptr<GrFragmentProcessor> clone() const override;
SkBlendMode getMode() const { return fMode; }
BlendBehavior blendBehavior() const { return fBlendBehavior; }
private:
BlendFragmentProcessor(std::unique_ptr<GrFragmentProcessor> src,
std::unique_ptr<GrFragmentProcessor> dst,
SkBlendMode mode, BlendBehavior behavior)
: INHERITED(kBlendFragmentProcessor_ClassID, OptFlags(src.get(), dst.get(), mode))
, fMode(mode)
, fBlendBehavior(behavior) {
if (fBlendBehavior == BlendBehavior::kDefault) {
fBlendBehavior = (src && dst) ? BlendBehavior::kComposeTwoBehavior
: BlendBehavior::kComposeOneBehavior;
}
this->registerChild(std::move(src));
this->registerChild(std::move(dst));
}
BlendFragmentProcessor(const BlendFragmentProcessor& that)
: INHERITED(kBlendFragmentProcessor_ClassID, ProcessorOptimizationFlags(&that))
, fMode(that.fMode)
, fBlendBehavior(that.fBlendBehavior) {
this->cloneAndRegisterAllChildProcessors(that);
}
#if GR_TEST_UTILS
SkString onDumpInfo() const override {
return SkStringPrintf("(fMode=%s)", SkBlendMode_Name(fMode));
}
#endif
static OptimizationFlags OptFlags(const GrFragmentProcessor* src,
const GrFragmentProcessor* dst, SkBlendMode mode) {
OptimizationFlags flags;
switch (mode) {
case SkBlendMode::kClear:
case SkBlendMode::kSrc:
case SkBlendMode::kDst:
SK_ABORT("Shouldn't have created a Blend FP as 'clear', 'src', or 'dst'.");
flags = kNone_OptimizationFlags;
break;
// Produces opaque if both src and dst are opaque. These also will modulate the child's
// output by either the input color or alpha. However, if the child is not compatible
// with the coverage as alpha then it may produce a color that is not valid premul.
case SkBlendMode::kSrcIn:
case SkBlendMode::kDstIn:
case SkBlendMode::kModulate:
if (src && dst) {
flags = ProcessorOptimizationFlags(src) & ProcessorOptimizationFlags(dst) &
kPreservesOpaqueInput_OptimizationFlag;
} else if (src) {
flags = ProcessorOptimizationFlags(src) &
~kConstantOutputForConstantInput_OptimizationFlag;
} else if (dst) {
flags = ProcessorOptimizationFlags(dst) &
~kConstantOutputForConstantInput_OptimizationFlag;
} else {
flags = kNone_OptimizationFlags;
}
break;
// Produces zero when both are opaque, indeterminate if one is opaque.
case SkBlendMode::kSrcOut:
case SkBlendMode::kDstOut:
case SkBlendMode::kXor:
flags = kNone_OptimizationFlags;
break;
// Is opaque if the dst is opaque.
case SkBlendMode::kSrcATop:
flags = (dst ? ProcessorOptimizationFlags(dst) : kAll_OptimizationFlags) &
kPreservesOpaqueInput_OptimizationFlag;
break;
// DstATop is the converse of kSrcATop. Screen is also opaque if the src is a opaque.
case SkBlendMode::kDstATop:
case SkBlendMode::kScreen:
flags = (src ? ProcessorOptimizationFlags(src) : kAll_OptimizationFlags) &
kPreservesOpaqueInput_OptimizationFlag;
break;
// These modes are all opaque if either src or dst is opaque. All the advanced modes
// compute alpha as src-over.
case SkBlendMode::kSrcOver:
case SkBlendMode::kDstOver:
case SkBlendMode::kPlus:
case SkBlendMode::kOverlay:
case SkBlendMode::kDarken:
case SkBlendMode::kLighten:
case SkBlendMode::kColorDodge:
case SkBlendMode::kColorBurn:
case SkBlendMode::kHardLight:
case SkBlendMode::kSoftLight:
case SkBlendMode::kDifference:
case SkBlendMode::kExclusion:
case SkBlendMode::kMultiply:
case SkBlendMode::kHue:
case SkBlendMode::kSaturation:
case SkBlendMode::kColor:
case SkBlendMode::kLuminosity:
flags = ((src ? ProcessorOptimizationFlags(src) : kAll_OptimizationFlags) |
(dst ? ProcessorOptimizationFlags(dst) : kAll_OptimizationFlags)) &
kPreservesOpaqueInput_OptimizationFlag;
break;
}
if (does_cpu_blend_impl_match_gpu(mode) &&
(src ? src->hasConstantOutputForConstantInput() : true) &&
(dst ? dst->hasConstantOutputForConstantInput() : true)) {
flags |= kConstantOutputForConstantInput_OptimizationFlag;
}
return flags;
}
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
b->add32((int)fMode);
}
bool onIsEqual(const GrFragmentProcessor& other) const override {
const BlendFragmentProcessor& cs = other.cast<BlendFragmentProcessor>();
return fMode == cs.fMode;
}
SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
const auto* src = this->childProcessor(0);
const auto* dst = this->childProcessor(1);
switch (fBlendBehavior) {
case BlendBehavior::kComposeOneBehavior: {
SkPMColor4f srcColor = src ? ConstantOutputForConstantInput(src, SK_PMColor4fWHITE)
: input;
SkPMColor4f dstColor = dst ? ConstantOutputForConstantInput(dst, SK_PMColor4fWHITE)
: input;
return SkBlendMode_Apply(fMode, srcColor, dstColor);
}
case BlendBehavior::kComposeTwoBehavior: {
SkPMColor4f opaqueInput = { input.fR, input.fG, input.fB, 1 };
SkPMColor4f srcColor = ConstantOutputForConstantInput(src, opaqueInput);
SkPMColor4f dstColor = ConstantOutputForConstantInput(dst, opaqueInput);
SkPMColor4f result = SkBlendMode_Apply(fMode, srcColor, dstColor);
return result * input.fA;
}
case BlendBehavior::kSkModeBehavior: {
SkPMColor4f srcColor = src ? ConstantOutputForConstantInput(src, SK_PMColor4fWHITE)
: input;
SkPMColor4f dstColor = dst ? ConstantOutputForConstantInput(dst, input)
: input;
return SkBlendMode_Apply(fMode, srcColor, dstColor);
}
default:
SK_ABORT("unrecognized blend behavior");
return input;
}
}
std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override;
SkBlendMode fMode;
BlendBehavior fBlendBehavior;
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
using INHERITED = GrFragmentProcessor;
};
/////////////////////////////////////////////////////////////////////
class GLBlendFragmentProcessor : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs&) override;
private:
using INHERITED = GrGLSLFragmentProcessor;
};
/////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BlendFragmentProcessor);
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> BlendFragmentProcessor::TestCreate(GrProcessorTestData* d) {
// Create one or two random fragment processors.
std::unique_ptr<GrFragmentProcessor> src(GrProcessorUnitTest::MakeOptionalChildFP(d));
std::unique_ptr<GrFragmentProcessor> dst(GrProcessorUnitTest::MakeChildFP(d));
if (d->fRandom->nextBool()) {
std::swap(src, dst);
}
SkBlendMode mode;
BlendBehavior behavior;
do {
mode = static_cast<SkBlendMode>(d->fRandom->nextRangeU(0, (int)SkBlendMode::kLastMode));
behavior = static_cast<BlendBehavior>(
d->fRandom->nextRangeU(0, (int)BlendBehavior::kLastBlendBehavior));
} while (SkBlendMode::kClear == mode || SkBlendMode::kSrc == mode || SkBlendMode::kDst == mode);
return std::unique_ptr<GrFragmentProcessor>(
new BlendFragmentProcessor(std::move(src), std::move(dst), mode, behavior));
}
#endif
std::unique_ptr<GrFragmentProcessor> BlendFragmentProcessor::clone() const {
return std::unique_ptr<GrFragmentProcessor>(new BlendFragmentProcessor(*this));
}
std::unique_ptr<GrGLSLFragmentProcessor> BlendFragmentProcessor::onMakeProgramImpl() const {
return std::make_unique<GLBlendFragmentProcessor>();
}
/////////////////////////////////////////////////////////////////////
void GLBlendFragmentProcessor::emitCode(EmitArgs& args) {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
const BlendFragmentProcessor& cs = args.fFp.cast<BlendFragmentProcessor>();
SkBlendMode mode = cs.getMode();
BlendBehavior behavior = cs.blendBehavior();
// Load the input color and make an opaque copy if needed.
fragBuilder->codeAppendf("// Blend mode: %s (%s behavior)\n",
SkBlendMode_Name(mode), BlendBehavior_Name(behavior));
SkString srcColor, dstColor;
switch (behavior) {
case BlendBehavior::kComposeOneBehavior:
// Compose-one operations historically leave the alpha on the input color.
srcColor = cs.childProcessor(0) ? this->invokeChild(0, "half4(1)", args)
: SkString(args.fInputColor);
dstColor = cs.childProcessor(1) ? this->invokeChild(1, "half4(1)", args)
: SkString(args.fInputColor);
break;
case BlendBehavior::kComposeTwoBehavior:
// Compose-two operations historically have forced the input color to opaque.
// We're going to re-apply the input color's alpha below, so feed the *unpremul* RGB
// to the children, to avoid double-applying alpha.
fragBuilder->codeAppendf("half4 inputOpaque = unpremul(%s).rgb1;\n", args.fInputColor);
srcColor = this->invokeChild(0, "inputOpaque", args);
dstColor = this->invokeChild(1, "inputOpaque", args);
break;
case BlendBehavior::kSkModeBehavior:
// SkModeColorFilter operations act like ComposeOne, but pass the input color to dst.
srcColor = cs.childProcessor(0) ? this->invokeChild(0, "half4(1)", args)
: SkString(args.fInputColor);
dstColor = cs.childProcessor(1) ? this->invokeChild(1, args.fInputColor, args)
: SkString(args.fInputColor);
break;
default:
SK_ABORT("unrecognized blend behavior");
break;
}
// Blend src and dst colors together.
fragBuilder->codeAppendf("return %s(%s, %s)", GrGLSLBlend::BlendFuncName(mode),
srcColor.c_str(), dstColor.c_str());
// Reapply alpha from input color if we are doing a compose-two.
if (behavior == BlendBehavior::kComposeTwoBehavior) {
fragBuilder->codeAppendf(" * %s.a", args.fInputColor);
}
fragBuilder->codeAppendf(";\n");
}
//////////////////////////////////////////////////////////////////////////////
std::unique_ptr<GrFragmentProcessor> GrBlendFragmentProcessor::Make(
std::unique_ptr<GrFragmentProcessor> src,
std::unique_ptr<GrFragmentProcessor> dst,
SkBlendMode mode, BlendBehavior behavior) {
switch (mode) {
case SkBlendMode::kClear:
return GrFragmentProcessor::MakeColor(SK_PMColor4fTRANSPARENT);
case SkBlendMode::kSrc:
return GrFragmentProcessor::OverrideInput(std::move(src), SK_PMColor4fWHITE,
/*useUniform=*/false);
case SkBlendMode::kDst:
return GrFragmentProcessor::OverrideInput(std::move(dst), SK_PMColor4fWHITE,
/*useUniform=*/false);
default:
return BlendFragmentProcessor::Make(std::move(src), std::move(dst), mode, behavior);
}
}