blob: 8805aa4cc56b33aa79ef4bf8e8d574543e558dc3 [file] [log] [blame]
/*
* Copyright 2021 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/graphite/DrawPass.h"
#include "include/gpu/graphite/GraphiteTypes.h"
#include "include/gpu/graphite/Recorder.h"
#include "src/gpu/graphite/Buffer.h"
#include "src/gpu/graphite/ContextPriv.h"
#include "src/gpu/graphite/ContextUtils.h"
#include "src/gpu/graphite/DrawBufferManager.h"
#include "src/gpu/graphite/DrawContext.h"
#include "src/gpu/graphite/DrawList.h"
#include "src/gpu/graphite/DrawWriter.h"
#include "src/gpu/graphite/GlobalCache.h"
#include "src/gpu/graphite/GraphicsPipeline.h"
#include "src/gpu/graphite/GraphicsPipelineDesc.h"
#include "src/gpu/graphite/PipelineDataCache.h"
#include "src/gpu/graphite/RecorderPriv.h"
#include "src/gpu/graphite/Renderer.h"
#include "src/gpu/graphite/ResourceProvider.h"
#include "src/gpu/graphite/Sampler.h"
#include "src/gpu/graphite/Texture.h"
#include "src/gpu/graphite/TextureProxy.h"
#include "src/gpu/graphite/UniformManager.h"
#include "src/gpu/graphite/geom/BoundsManager.h"
#include "src/core/SkMathPriv.h"
#include "src/core/SkPaintParamsKey.h"
#include "src/core/SkPipelineData.h"
#include "src/core/SkTBlockList.h"
#include <algorithm>
#include <unordered_map>
namespace skgpu::graphite {
// Helper to manage packed fields within a uint64_t
template <uint64_t Bits, uint64_t Offset>
struct Bitfield {
static constexpr uint64_t kMask = ((uint64_t) 1 << Bits) - 1;
static constexpr uint64_t kOffset = Offset;
static constexpr uint64_t kBits = Bits;
static uint32_t get(uint64_t v) { return static_cast<uint32_t>((v >> kOffset) & kMask); }
static uint64_t set(uint32_t v) { return (v & kMask) << kOffset; }
};
/**
* Each Draw in a DrawList might be processed by multiple RenderSteps (determined by the Draw's
* Renderer), which can be sorted independently. Each (step, draw) pair produces its own SortKey.
*
* The goal of sorting draws for the DrawPass is to minimize pipeline transitions and dynamic binds
* within a pipeline, while still respecting the overall painter's order. This decreases the number
* of low-level draw commands in a command buffer and increases the size of those, allowing the GPU
* to operate more efficiently and have fewer bubbles within its own instruction stream.
*
* The Draw's CompresssedPaintersOrder and DisjointStencilINdex represent the most significant bits
* of the key, and are shared by all SortKeys produced by the same draw. Next, the pipeline
* description is encoded in two steps:
* 1. The index of the RenderStep packed in the high bits to ensure each step for a draw is
* ordered correctly.
* 2. An index into a cache of pipeline descriptions is used to encode the identity of the
* pipeline (SortKeys that differ in the bits from #1 necessarily would have different
* descriptions, but then the specific ordering of the RenderSteps isn't enforced).
* Last, the SortKey encodes an index into the set of uniform bindings accumulated for a DrawPass.
* This allows the SortKey to cluster draw steps that have both a compatible pipeline and do not
* require rebinding uniform data or other state (e.g. scissor). Since the uniform data index and
* the pipeline description index are packed into indices and not actual pointers, a given SortKey
* is only valid for the a specific DrawList->DrawPass conversion.
*/
class DrawPass::SortKey {
public:
SortKey(const DrawList::Draw* draw,
int renderStep,
uint32_t pipelineIndex,
UniformDataCache::Index geomUniformIndex,
UniformDataCache::Index shadingUniformIndex,
TextureDataCache::Index textureDataIndex)
: fPipelineKey(ColorDepthOrderField::set(draw->fGeometry.order().paintOrder().bits()) |
StencilIndexField::set(draw->fGeometry.order().stencilIndex().bits()) |
RenderStepField::set(static_cast<uint32_t>(renderStep)) |
PipelineField::set(pipelineIndex))
, fUniformKey(GeometryUniformField::set(geomUniformIndex.asUInt()) |
ShadingUniformField::set(shadingUniformIndex.asUInt()) |
TextureBindingsField::set(textureDataIndex.asUInt()))
, fDraw(draw) {
SkASSERT(renderStep <= draw->fRenderer.numRenderSteps());
}
bool operator<(const SortKey& k) const {
return fPipelineKey < k.fPipelineKey ||
(fPipelineKey == k.fPipelineKey && fUniformKey < k.fUniformKey);
}
const RenderStep& renderStep() const {
return *fDraw->fRenderer.steps()[RenderStepField::get(fPipelineKey)];
}
const DrawList::Draw* draw() const { return fDraw; }
uint32_t pipeline() const { return PipelineField::get(fPipelineKey); }
UniformDataCache::Index geometryUniforms() const {
return UniformDataCache::Index(GeometryUniformField::get(fUniformKey));
}
UniformDataCache::Index shadingUniforms() const {
return UniformDataCache::Index(ShadingUniformField::get(fUniformKey));
}
TextureDataCache::Index textureBindings() const {
return TextureDataCache::Index(TextureBindingsField::get(fUniformKey));
}
private:
// Fields are ordered from most-significant to least when sorting by 128-bit value.
// NOTE: We don't use bit fields because field ordering is implementation defined and we need
// to sort consistently.
using ColorDepthOrderField = Bitfield<16, 48>; // sizeof(CompressedPaintersOrder)
using StencilIndexField = Bitfield<16, 32>; // sizeof(DisjointStencilIndex)
using RenderStepField = Bitfield<2, 30>; // bits >= log2(Renderer::kMaxRenderSteps)
using PipelineField = Bitfield<30, 0>; // bits >= log2(max steps*DrawList::kMaxDraws)
uint64_t fPipelineKey;
using GeometryUniformField = Bitfield<22, 42>; // bits >= log2(max steps * max draw count)
using ShadingUniformField = Bitfield<21, 21>; // ""
using TextureBindingsField = Bitfield<21, 0>; // ""
uint64_t fUniformKey;
// Backpointer to the draw that produced the sort key
const DrawList::Draw* fDraw;
static_assert(ColorDepthOrderField::kBits >= sizeof(CompressedPaintersOrder));
static_assert(StencilIndexField::kBits >= sizeof(DisjointStencilIndex));
static_assert(RenderStepField::kBits >= SkNextLog2_portable(Renderer::kMaxRenderSteps));
static_assert(PipelineField::kBits >=
SkNextLog2_portable(Renderer::kMaxRenderSteps * DrawList::kMaxDraws));
static_assert(GeometryUniformField::kBits >=
SkNextLog2_portable(Renderer::kMaxRenderSteps * DrawList::kMaxDraws));
static_assert(ShadingUniformField::kBits >=
SkNextLog2_portable(Renderer::kMaxRenderSteps * DrawList::kMaxDraws));
static_assert(TextureBindingsField::kBits >=
SkNextLog2_portable(Renderer::kMaxRenderSteps * DrawList::kMaxDraws));
};
class DrawPass::Drawer final : public DrawDispatcher {
public:
Drawer(DrawPass* drawPass) : fPass(drawPass) {}
~Drawer() override = default;
void bindDrawBuffers(BindBufferInfo vertexAttribs,
BindBufferInfo instanceAttribs,
BindBufferInfo indices) override {
fPass->fCommands.emplace_back(BindDrawBuffers{vertexAttribs, instanceAttribs, indices});
}
void draw(PrimitiveType type, unsigned int baseVertex, unsigned int vertexCount) override {
fPass->fCommands.emplace_back(Draw{type, baseVertex, vertexCount});
}
void drawIndexed(PrimitiveType type, unsigned int baseIndex,
unsigned int indexCount, unsigned int baseVertex) override {
fPass->fCommands.emplace_back(DrawIndexed{type, baseIndex, indexCount, baseVertex});
}
void drawInstanced(PrimitiveType type,
unsigned int baseVertex, unsigned int vertexCount,
unsigned int baseInstance, unsigned int instanceCount) override {
fPass->fCommands.emplace_back(DrawInstanced{type, baseVertex, vertexCount,
baseInstance, instanceCount});
}
void drawIndexedInstanced(PrimitiveType type,
unsigned int baseIndex, unsigned int indexCount,
unsigned int baseVertex, unsigned int baseInstance,
unsigned int instanceCount) override {
fPass->fCommands.emplace_back(DrawIndexedInstanced{type, baseIndex, indexCount, baseVertex,
baseInstance, instanceCount});
}
private:
DrawPass* fPass;
};
///////////////////////////////////////////////////////////////////////////////////////////////////
namespace {
class UniformBindingCache {
public:
UniformBindingCache(DrawBufferManager* bufferMgr, UniformDataCache* uniformDataCache)
: fBufferMgr(bufferMgr)
, fUniformDataCache(uniformDataCache) {
}
UniformDataCache::Index addUniforms(UniformDataCache::Index uIndex) {
if (!uIndex.isValid()) {
return {};
}
const SkUniformDataBlock* udb = fUniformDataCache->lookup(uIndex);
SkASSERT(udb);
if (fBindings.find(uIndex.asUInt()) == fBindings.end()) {
// First time encountering this data, so upload to the GPU
SkASSERT(udb->size());
auto[writer, bufferInfo] = fBufferMgr->getUniformWriter(udb->size());
writer.write(udb->data(), udb->size());
fBindings.insert({uIndex.asUInt(), bufferInfo});
}
return uIndex;
}
BindBufferInfo getBinding(UniformDataCache::Index uniformDataIndex) {
auto lookup = fBindings.find(uniformDataIndex.asUInt());
SkASSERT(lookup != fBindings.end());
return lookup->second;
}
private:
DrawBufferManager* fBufferMgr;
UniformDataCache* fUniformDataCache;
std::unordered_map<uint32_t, BindBufferInfo> fBindings;
};
// std::unordered_map implementation for GraphicsPipelineDesc* that de-reference the pointers.
struct Hash {
size_t operator()(const GraphicsPipelineDesc* desc) const noexcept {
return GraphicsPipelineDesc::Hash()(*desc);
}
};
struct Eq {
bool operator()(const GraphicsPipelineDesc* a,
const GraphicsPipelineDesc* b) const noexcept {
return *a == *b;
}
};
} // anonymous namespace
DrawPass::DrawPass(sk_sp<TextureProxy> target,
std::pair<LoadOp, StoreOp> ops,
std::array<float, 4> clearColor,
int renderStepCount)
: fCommands(std::max(1, renderStepCount / 4), SkBlockAllocator::GrowthPolicy::kFibonacci)
, fTarget(std::move(target))
, fBounds(SkIRect::MakeEmpty())
, fOps(ops)
, fClearColor(clearColor) {
// TODO: Tune this estimate and the above "itemPerBlock" value for the command buffer sequence
// After merging, etc. one pipeline per recorded draw+step combo is likely unnecessary.
fPipelineDescs.reserve(renderStepCount);
fCommands.reserve(renderStepCount);
}
DrawPass::~DrawPass() = default;
std::unique_ptr<DrawPass> DrawPass::Make(Recorder* recorder,
std::unique_ptr<DrawList> draws,
sk_sp<TextureProxy> target,
std::pair<LoadOp, StoreOp> ops,
std::array<float, 4> clearColor,
const BoundsManager* occlusionCuller) {
// NOTE: This assert is here to ensure SortKey is as tightly packed as possible. Any change to
// its size should be done with care and good reason. The performance of sorting the keys is
// heavily tied to the total size.
//
// At 24 bytes (current), sorting is about 30% slower than if SortKey could be packed into just
// 16 bytes. There are several ways this could be done if necessary:
// - Restricting the max draw count to 16k (14-bits) and only using a single index to refer to
// the uniform data => 8 bytes of key, 8 bytes of pointer.
// - Restrict the max draw count to 32k (15-bits), use a single uniform index, and steal the
// 4 low bits from the Draw* pointer since it's 16 byte aligned.
// - Compact the Draw* to an index into the original collection, although that has extra
// indirection and does not work as well with SkTBlockList.
// In pseudo tests, manipulating the pointer or having to mask out indices was about 15% slower
// than an 8 byte key and unmodified pointer.
static_assert(sizeof(DrawPass::SortKey) == 16 + sizeof(void*));
// The DrawList is converted directly into the DrawPass' data structures, but once the DrawPass
// is returned from Make(), it is considered immutable.
std::unique_ptr<DrawPass> drawPass(new DrawPass(std::move(target), ops, clearColor,
draws->renderStepCount()));
Rect passBounds = Rect::InfiniteInverted();
DrawBufferManager* bufferMgr = recorder->priv().drawBufferManager();
// We don't expect the uniforms from the renderSteps to reappear multiple times across a
// recorder's lifetime so we only de-dupe them w/in a given DrawPass.
UniformDataCache geometryUniformDataCache;
UniformBindingCache geometryUniformBindings(bufferMgr, &geometryUniformDataCache);
UniformBindingCache shadingUniformBindings(bufferMgr, recorder->priv().uniformDataCache());
TextureDataCache* textureDataCache = recorder->priv().textureDataCache();
std::unordered_map<const GraphicsPipelineDesc*, uint32_t, Hash, Eq> pipelineDescToIndex;
std::vector<SortKey> keys;
keys.reserve(draws->renderStepCount()); // will not exceed but may use less with occluded draws
SkShaderCodeDictionary* dict = recorder->priv().resourceProvider()->shaderCodeDictionary();
SkPaintParamsKeyBuilder builder(dict, SkBackend::kGraphite);
SkPipelineDataGatherer gatherer(Layout::kMetal); // TODO: get the layout from the recorder
for (const DrawList::Draw& draw : draws->fDraws.items()) {
if (occlusionCuller && occlusionCuller->isOccluded(draw.fGeometry.clip().drawBounds(),
draw.fGeometry.order().depth())) {
continue;
}
// If we have two different descriptors, such that the uniforms from the PaintParams can be
// bound independently of those used by the rest of the RenderStep, then we can upload now
// and remember the location for re-use on any RenderStep that does shading.
SkUniquePaintParamsID shaderID;
UniformDataCache::Index shadingUniformIndex;
TextureDataCache::Index textureBindingIndex;
if (draw.fPaintParams.has_value()) {
UniformDataCache::Index uniformDataIndex;
std::tie(shaderID, uniformDataIndex, textureBindingIndex) =
ExtractPaintData(recorder, &gatherer, &builder,
draw.fGeometry.transform().inverse(),
draw.fPaintParams.value());
shadingUniformIndex = shadingUniformBindings.addUniforms(uniformDataIndex);
} // else depth-only
for (int stepIndex = 0; stepIndex < draw.fRenderer.numRenderSteps(); ++stepIndex) {
const RenderStep* const step = draw.fRenderer.steps()[stepIndex];
const bool performsShading = draw.fPaintParams.has_value() && step->performsShading();
SkUniquePaintParamsID stepShaderID;
UniformDataCache::Index stepShadingUniformIndex;
TextureDataCache::Index stepTextureBindingIndex;
if (performsShading) {
stepShaderID = shaderID;
stepShadingUniformIndex = shadingUniformIndex;
stepTextureBindingIndex = textureBindingIndex;
} // else depth-only draw or stencil-only step of renderer so no shading is needed
UniformDataCache::Index geometryUniformIndex;
if (step->numUniforms() > 0) {
UniformDataCache::Index uniformDataIndex;
uniformDataIndex = ExtractRenderStepData(&geometryUniformDataCache,
&gatherer,
step,
draw.fGeometry);
geometryUniformIndex = geometryUniformBindings.addUniforms(uniformDataIndex);
}
GraphicsPipelineDesc desc;
desc.setProgram(step, stepShaderID);
uint32_t pipelineIndex = 0;
auto pipelineLookup = pipelineDescToIndex.find(&desc);
if (pipelineLookup == pipelineDescToIndex.end()) {
// Assign new index to first appearance of this pipeline description
pipelineIndex = SkTo<uint32_t>(drawPass->fPipelineDescs.count());
const GraphicsPipelineDesc& finalDesc = drawPass->fPipelineDescs.push_back(desc);
pipelineDescToIndex.insert({&finalDesc, pipelineIndex});
} else {
// Reuse the existing pipeline description for better batching after sorting
pipelineIndex = pipelineLookup->second;
}
keys.push_back({&draw, stepIndex, pipelineIndex,
geometryUniformIndex,
stepShadingUniformIndex,
stepTextureBindingIndex});
}
passBounds.join(draw.fGeometry.clip().drawBounds());
drawPass->fDepthStencilFlags |= draw.fRenderer.depthStencilFlags();
drawPass->fRequiresMSAA |= draw.fRenderer.requiresMSAA();
}
// TODO: Explore sorting algorithms; in all likelihood this will be mostly sorted already, so
// algorithms that approach O(n) in that condition may be favorable. Alternatively, could
// explore radix sort that is always O(n). Brief testing suggested std::sort was faster than
// std::stable_sort and SkTQSort on my [ml]'s Windows desktop. Also worth considering in-place
// vs. algorithms that require an extra O(n) storage.
// TODO: It's not strictly necessary, but would a stable sort be useful or just end up hiding
// bugs in the DrawOrder determination code?
std::sort(keys.begin(), keys.end());
// Used to record vertex/instance data, buffer binds, and draw calls
Drawer drawer(drawPass.get());
DrawWriter drawWriter(&drawer, bufferMgr);
// Used to track when a new pipeline or dynamic state needs recording between draw steps.
// Setting to # render steps ensures the very first time through the loop will bind a pipeline.
uint32_t lastPipeline = draws->renderStepCount();
UniformDataCache::Index lastShadingUniforms;
TextureDataCache::Index lastTextureBindings;
UniformDataCache::Index lastGeometryUniforms;
SkIRect lastScissor = SkIRect::MakeSize(drawPass->fTarget->dimensions());
for (const SortKey& key : keys) {
const DrawList::Draw& draw = *key.draw();
const RenderStep& renderStep = key.renderStep();
const bool geometryUniformChange = key.geometryUniforms().isValid() &&
key.geometryUniforms() != lastGeometryUniforms;
const bool shadingUniformChange = key.shadingUniforms().isValid() &&
key.shadingUniforms() != lastShadingUniforms;
const bool textureBindingsChange = key.textureBindings().isValid() &&
key.textureBindings() != lastTextureBindings;
const bool pipelineChange = key.pipeline() != lastPipeline;
const bool stateChange = geometryUniformChange ||
shadingUniformChange ||
textureBindingsChange ||
draw.fGeometry.clip().scissor() != lastScissor;
// Update DrawWriter *before* we actually change any state so that accumulated draws from
// the previous state use the proper state.
if (pipelineChange) {
drawWriter.newPipelineState(renderStep.primitiveType(),
renderStep.vertexStride(),
renderStep.instanceStride());
} else if (stateChange) {
drawWriter.newDynamicState();
}
// Make state changes before accumulating new draw data
if (pipelineChange) {
drawPass->fCommands.emplace_back(BindGraphicsPipeline{key.pipeline()});
lastPipeline = key.pipeline();
}
if (stateChange) {
if (geometryUniformChange) {
auto binding = geometryUniformBindings.getBinding(key.geometryUniforms());
drawPass->fCommands.emplace_back(
BindUniformBuffer{binding, UniformSlot::kRenderStep});
lastGeometryUniforms = key.geometryUniforms();
}
if (shadingUniformChange) {
auto binding = shadingUniformBindings.getBinding(key.shadingUniforms());
drawPass->fCommands.emplace_back(
BindUniformBuffer{binding, UniformSlot::kPaint});
lastShadingUniforms = key.shadingUniforms();
}
if (textureBindingsChange) {
auto textureDataBlock = textureDataCache->lookup(key.textureBindings());
drawPass->fCommands.emplace_back(BindTexturesAndSamplers{textureDataBlock});
lastTextureBindings = key.textureBindings();
}
if (draw.fGeometry.clip().scissor() != lastScissor) {
drawPass->fCommands.emplace_back(SetScissor{draw.fGeometry.clip().scissor()});
lastScissor = draw.fGeometry.clip().scissor();
}
}
renderStep.writeVertices(&drawWriter, draw.fGeometry);
}
// Finish recording draw calls for any collected data at the end of the loop
drawWriter.flush();
passBounds.roundOut();
drawPass->fBounds = SkIRect::MakeLTRB((int) passBounds.left(), (int) passBounds.top(),
(int) passBounds.right(), (int) passBounds.bot());
return drawPass;
}
bool DrawPass::addCommands(ResourceProvider* resourceProvider,
CommandBuffer* buffer,
const RenderPassDesc& renderPassDesc) const {
// TODO: Validate RenderPass state against DrawPass's target and requirements?
// Generate actual GraphicsPipeline objects combining the target-level properties and each of
// the GraphicsPipelineDesc's referenced in this DrawPass.
// Use a vector instead of SkTBlockList for the full pipelines so that random access is fast.
std::vector<sk_sp<GraphicsPipeline>> fullPipelines;
fullPipelines.reserve(fPipelineDescs.count());
for (const GraphicsPipelineDesc& pipelineDesc : fPipelineDescs.items()) {
fullPipelines.push_back(resourceProvider->findOrCreateGraphicsPipeline(pipelineDesc,
renderPassDesc));
}
// Set viewport to the entire texture for now (eventually, we may have logically smaller bounds
// within an approx-sized texture). It is assumed that this also configures the sk_rtAdjust
// intrinsic for programs (however the backend chooses to do so).
buffer->setViewport(0, 0, fTarget->dimensions().width(), fTarget->dimensions().height());
for (const Command& c : fCommands.items()) {
switch(c.fType) {
case CommandType::kBindGraphicsPipeline: {
auto& d = c.fBindGraphicsPipeline;
buffer->bindGraphicsPipeline(fullPipelines[d.fPipelineIndex]);
} break;
case CommandType::kBindUniformBuffer: {
auto& d = c.fBindUniformBuffer;
buffer->bindUniformBuffer(d.fSlot, sk_ref_sp(d.fInfo.fBuffer), d.fInfo.fOffset);
} break;
case CommandType::kBindTexturesAndSamplers: {
auto& d = c.fBindTexturesAndSamplers;
for (int i = 0; i < d.fTextureBlock->numTextures(); ++i) {
const auto &texture = d.fTextureBlock->texture(i);
if (!texture.fProxy->texture()) {
return false;
}
sk_sp<Sampler> sampler = resourceProvider->findOrCreateCompatibleSampler(
texture.fSamplingOptions, texture.fTileModes[0], texture.fTileModes[1]);
SkASSERT(sampler);
buffer->bindTextureAndSampler(texture.fProxy->refTexture(),
std::move(sampler),
i);
}
} break;
case CommandType::kBindDrawBuffers: {
auto& d = c.fBindDrawBuffers;
buffer->bindDrawBuffers(d.fVertices, d.fInstances, d.fIndices);
break; }
case CommandType::kDraw: {
auto& d = c.fDraw;
buffer->draw(d.fType, d.fBaseVertex, d.fVertexCount);
break; }
case CommandType::kDrawIndexed: {
auto& d = c.fDrawIndexed;
buffer->drawIndexed(d.fType, d.fBaseIndex, d.fIndexCount, d.fBaseVertex);
break; }
case CommandType::kDrawInstanced: {
auto& d = c.fDrawInstanced;
buffer->drawInstanced(d.fType, d.fBaseVertex, d.fVertexCount,
d.fBaseInstance, d.fInstanceCount);
break; }
case CommandType::kDrawIndexedInstanced: {
auto& d = c.fDrawIndexedInstanced;
buffer->drawIndexedInstanced(d.fType, d.fBaseIndex, d.fIndexCount, d.fBaseVertex,
d.fBaseInstance, d.fInstanceCount);
break; }
case CommandType::kSetScissor: {
auto& d = c.fSetScissor;
buffer->setScissor(d.fScissor.fLeft, d.fScissor.fTop,
d.fScissor.width(), d.fScissor.height());
break;
}
}
}
return true;
}
} // namespace skgpu::graphite