blob: fa4a018a085a049424a769cd2220b532c3392de4 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrDrawOpAtlas_DEFINED
#define GrDrawOpAtlas_DEFINED
#include <cmath>
#include <vector>
#include "include/gpu/GrBackendSurface.h"
#include "src/core/SkIPoint16.h"
#include "src/core/SkTInternalLList.h"
#include "src/gpu/AtlasTypes.h"
#include "src/gpu/RectanizerSkyline.h"
#include "src/gpu/ganesh/GrDeferredUpload.h"
#include "src/gpu/ganesh/GrSurfaceProxyView.h"
class GrOnFlushResourceProvider;
class GrProxyProvider;
class GrResourceProvider;
class GrTextureProxy;
/**
* This class manages one or more atlas textures on behalf of GrDrawOps. The draw ops that use the
* atlas perform texture uploads when preparing their draws during flush. The class provides
* facilities for using GrDrawOpUploadToken to detect data hazards. Op's uploads are performed in
* "ASAP" mode until it is impossible to add data without overwriting texels read by draws that
* have not yet executed on the gpu. At that point, the atlas will attempt to allocate a new
* atlas texture (or "page") of the same size, up to a maximum number of textures, and upload
* to that texture. If that's not possible, the uploads are performed "inline" between draws. If a
* single draw would use enough subimage space to overflow the atlas texture then the atlas will
* fail to add a subimage. This gives the op the chance to end the draw and begin a new one.
* Additional uploads will then succeed in inline mode.
*
* When the atlas has multiple pages, new uploads are prioritized to the lower index pages, i.e.,
* it will try to upload to page 0 before page 1 or 2. To keep the atlas from continually using
* excess space, periodic garbage collection is needed to shift data from the higher index pages to
* the lower ones, and then eventually remove any pages that are no longer in use. "In use" is
* determined by using the GrDrawUploadToken system: After a flush each subarea of the page
* is checked to see whether it was used in that flush; if it is not, a counter is incremented.
* Once that counter reaches a threshold that subarea is considered to be no longer in use.
*
* Garbage collection is initiated by the GrDrawOpAtlas's client via the compact() method. One
* solution is to make the client a subclass of GrOnFlushCallbackObject, register it with the
* GrContext via addOnFlushCallbackObject(), and the client's postFlush() method calls compact()
* and passes in the given GrDrawUploadToken.
*/
class GrDrawOpAtlas {
public:
/** Is the atlas allowed to use more than one texture? */
enum class AllowMultitexturing : bool { kNo, kYes };
/**
* Returns a GrDrawOpAtlas. This function can be called anywhere, but the returned atlas
* should only be used inside of GrMeshDrawOp::onPrepareDraws.
* @param ct The colorType which this atlas will store
* @param bpp Size in bytes of each pixel
* @param width width in pixels of the atlas
* @param height height in pixels of the atlas
* @param numPlotsX The number of plots the atlas should be broken up into in the X
* direction
* @param numPlotsY The number of plots the atlas should be broken up into in the Y
* direction
* @param atlasGeneration a pointer to the context's generation counter.
* @param allowMultitexturing Can the atlas use more than one texture.
* @param evictor A pointer to an eviction callback class.
*
* @return An initialized GrDrawOpAtlas, or nullptr if creation fails
*/
static std::unique_ptr<GrDrawOpAtlas> Make(GrProxyProvider*,
const GrBackendFormat& format,
SkColorType ct, size_t bpp,
int width, int height,
int plotWidth, int plotHeight,
skgpu::AtlasGenerationCounter* generationCounter,
AllowMultitexturing allowMultitexturing,
skgpu::PlotEvictionCallback* evictor,
std::string_view label);
/**
* Adds a width x height subimage to the atlas. Upon success it returns 'kSucceeded' and returns
* the ID and the subimage's coordinates in the backing texture. 'kTryAgain' is returned if
* the subimage cannot fit in the atlas without overwriting texels that will be read in the
* current draw. This indicates that the op should end its current draw and begin another
* before adding more data. Upon success, an upload of the provided image data will have
* been added to the GrDrawOp::Target, in "asap" mode if possible, otherwise in "inline" mode.
* Successive uploads in either mode may be consolidated.
* 'kError' will be returned when some unrecoverable error was encountered while trying to
* add the subimage. In this case the op being created should be discarded.
*
* NOTE: When the GrDrawOp prepares a draw that reads from the atlas, it must immediately call
* 'setUseToken' with the currentToken from the GrDrawOp::Target, otherwise the next call to
* addToAtlas might cause the previous data to be overwritten before it has been read.
*/
enum class ErrorCode {
kError,
kSucceeded,
kTryAgain
};
ErrorCode addToAtlas(GrResourceProvider*, GrDeferredUploadTarget*,
int width, int height, const void* image, skgpu::AtlasLocator*);
const GrSurfaceProxyView* getViews() const { return fViews; }
uint64_t atlasGeneration() const { return fAtlasGeneration; }
bool hasID(const skgpu::PlotLocator& plotLocator) {
if (!plotLocator.isValid()) {
return false;
}
uint32_t plot = plotLocator.plotIndex();
uint32_t page = plotLocator.pageIndex();
uint64_t plotGeneration = fPages[page].fPlotArray[plot]->genID();
uint64_t locatorGeneration = plotLocator.genID();
return plot < fNumPlots && page < fNumActivePages && plotGeneration == locatorGeneration;
}
/** To ensure the atlas does not evict a given entry, the client must set the last use token. */
void setLastUseToken(const skgpu::AtlasLocator& atlasLocator, GrDeferredUploadToken token) {
SkASSERT(this->hasID(atlasLocator.plotLocator()));
uint32_t plotIdx = atlasLocator.plotIndex();
SkASSERT(plotIdx < fNumPlots);
uint32_t pageIdx = atlasLocator.pageIndex();
SkASSERT(pageIdx < fNumActivePages);
Plot* plot = fPages[pageIdx].fPlotArray[plotIdx].get();
this->makeMRU(plot, pageIdx);
plot->setLastUseToken(token);
}
uint32_t numActivePages() { return fNumActivePages; }
void setLastUseTokenBulk(const skgpu::BulkUsePlotUpdater& updater,
GrDeferredUploadToken token) {
int count = updater.count();
for (int i = 0; i < count; i++) {
const skgpu::BulkUsePlotUpdater::PlotData& pd = updater.plotData(i);
// it's possible we've added a plot to the updater and subsequently the plot's page
// was deleted -- so we check to prevent a crash
if (pd.fPageIndex < fNumActivePages) {
Plot* plot = fPages[pd.fPageIndex].fPlotArray[pd.fPlotIndex].get();
this->makeMRU(plot, pd.fPageIndex);
plot->setLastUseToken(token);
}
}
}
void compact(GrDeferredUploadToken startTokenForNextFlush);
void instantiate(GrOnFlushResourceProvider*);
uint32_t maxPages() const {
return fMaxPages;
}
int numAllocated_TestingOnly() const;
void setMaxPages_TestingOnly(uint32_t maxPages);
private:
GrDrawOpAtlas(GrProxyProvider*, const GrBackendFormat& format, SkColorType, size_t bpp,
int width, int height, int plotWidth, int plotHeight,
skgpu::AtlasGenerationCounter* generationCounter,
AllowMultitexturing allowMultitexturing, std::string_view label);
/**
* The backing GrTexture for a GrDrawOpAtlas is broken into a spatial grid of Plots. The Plots
* keep track of subimage placement via their Rectanizer. A Plot manages the lifetime of its
* data using two tokens, a last use token and a last upload token. Once a Plot is "full" (i.e.
* there is no room for the new subimage according to the Rectanizer), it can no longer be
* used unless the last use of the Plot has already been flushed through to the gpu.
*/
class Plot final : public skgpu::Plot {
SK_DECLARE_INTERNAL_LLIST_INTERFACE(Plot);
public:
Plot(int pageIndex, int plotIndex, skgpu::AtlasGenerationCounter* generationCounter,
int offX, int offY, int width, int height, SkColorType colorType, size_t bpp);
/**
* To manage the lifetime of a plot, we use two tokens. We use the last upload token to
* know when we can 'piggy back' uploads, i.e. if the last upload hasn't been flushed to
* the gpu, we don't need to issue a new upload even if we update the cpu backing store. We
* use lastUse to determine when we can evict a plot from the cache, i.e. if the last use
* has already flushed through the gpu then we can reuse the plot.
*/
GrDeferredUploadToken lastUploadToken() const { return fLastUpload; }
GrDeferredUploadToken lastUseToken() const { return fLastUse; }
void setLastUploadToken(GrDeferredUploadToken token) { fLastUpload = token; }
void setLastUseToken(GrDeferredUploadToken token) { fLastUse = token; }
void uploadToTexture(GrDeferredTextureUploadWritePixelsFn&, GrTextureProxy*);
void resetRects();
int flushesSinceLastUsed() { return fFlushesSinceLastUse; }
void resetFlushesSinceLastUsed() { fFlushesSinceLastUse = 0; }
void incFlushesSinceLastUsed() { fFlushesSinceLastUse++; }
/**
* Create a clone of this plot. The cloned plot will take the place of the current plot in
* the atlas
*/
Plot* clone() const {
return new Plot(
fPageIndex, fPlotIndex, fGenerationCounter, fX, fY, fWidth, fHeight, fColorType,
fBytesPerPixel);
}
#ifdef SK_DEBUG
void resetListPtrs() {
fPrev = fNext = nullptr;
fList = nullptr;
}
#endif
private:
GrDeferredUploadToken fLastUpload;
GrDeferredUploadToken fLastUse;
// the number of flushes since this plot has been last used
int fFlushesSinceLastUse;
};
typedef SkTInternalLList<Plot> PlotList;
inline bool updatePlot(GrDeferredUploadTarget*, skgpu::AtlasLocator*, Plot*);
inline void makeMRU(Plot* plot, int pageIdx) {
if (fPages[pageIdx].fPlotList.head() == plot) {
return;
}
fPages[pageIdx].fPlotList.remove(plot);
fPages[pageIdx].fPlotList.addToHead(plot);
// No MRU update for pages -- since we will always try to add from
// the front and remove from the back there is no need for MRU.
}
bool uploadToPage(unsigned int pageIdx, GrDeferredUploadTarget*, int width, int height,
const void* image, skgpu::AtlasLocator*);
bool createPages(GrProxyProvider*, skgpu::AtlasGenerationCounter*);
bool activateNewPage(GrResourceProvider*);
void deactivateLastPage();
void processEviction(skgpu::PlotLocator);
inline void processEvictionAndResetRects(Plot* plot) {
this->processEviction(plot->plotLocator());
plot->resetRects();
}
GrBackendFormat fFormat;
SkColorType fColorType;
size_t fBytesPerPixel;
int fTextureWidth;
int fTextureHeight;
int fPlotWidth;
int fPlotHeight;
unsigned int fNumPlots;
const std::string fLabel;
skgpu::AtlasGenerationCounter* const fGenerationCounter;
uint64_t fAtlasGeneration;
// nextTokenToFlush() value at the end of the previous flush
GrDeferredUploadToken fPrevFlushToken;
// the number of flushes since this atlas has been last used
int fFlushesSinceLastUse;
std::vector<skgpu::PlotEvictionCallback*> fEvictionCallbacks;
struct Page {
// allocated array of Plots
std::unique_ptr<sk_sp<Plot>[]> fPlotArray;
// LRU list of Plots (MRU at head - LRU at tail)
PlotList fPlotList;
};
// proxies kept separate to make it easier to pass them up to client
GrSurfaceProxyView fViews[skgpu::PlotLocator::kMaxMultitexturePages];
Page fPages[skgpu::PlotLocator::kMaxMultitexturePages];
uint32_t fMaxPages;
uint32_t fNumActivePages;
SkDEBUGCODE(void validate(const skgpu::AtlasLocator& atlasLocator) const;)
};
// There are three atlases (A8, 565, ARGB) that are kept in relation with one another. In
// general, the A8 dimensions are 2x the 565 and ARGB dimensions with the constraint that an atlas
// size will always contain at least one plot. Since the ARGB atlas takes the most space, its
// dimensions are used to size the other two atlases.
class GrDrawOpAtlasConfig {
public:
// The capabilities of the GPU define maxTextureSize. The client provides maxBytes, and this
// represents the largest they want a single atlas texture to be. Due to multitexturing, we
// may expand temporarily to use more space as needed.
GrDrawOpAtlasConfig(int maxTextureSize, size_t maxBytes);
// For testing only - make minimum sized atlases -- a single plot for ARGB, four for A8
GrDrawOpAtlasConfig() : GrDrawOpAtlasConfig(kMaxAtlasDim, 0) {}
SkISize atlasDimensions(skgpu::MaskFormat type) const;
SkISize plotDimensions(skgpu::MaskFormat type) const;
private:
// On some systems texture coordinates are represented using half-precision floating point,
// which limits the largest atlas dimensions to 2048x2048.
// For simplicity we'll use this constraint for all of our atlas textures.
// This can be revisited later if we need larger atlases.
inline static constexpr int kMaxAtlasDim = 2048;
SkISize fARGBDimensions;
int fMaxTextureSize;
};
#endif