blob: a096947787e8a7ec1e211ce50e1fdefc71e9ed1a [file] [log] [blame]
/*
* Copyright 2023 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tools/window/VulkanWindowContext.h"
#include "include/core/SkSurface.h"
#include "include/gpu/GrBackendSemaphore.h"
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/ganesh/SkSurfaceGanesh.h"
#include "include/gpu/ganesh/vk/GrVkBackendSemaphore.h"
#include "include/gpu/ganesh/vk/GrVkBackendSurface.h"
#include "include/gpu/ganesh/vk/GrVkDirectContext.h"
#include "include/gpu/vk/GrVkTypes.h"
#include "include/gpu/vk/VulkanExtensions.h"
#include "include/gpu/vk/VulkanMutableTextureState.h"
#include "src/base/SkAutoMalloc.h"
#include "src/gpu/ganesh/vk/GrVkImage.h"
#include "src/gpu/ganesh/vk/GrVkUtil.h"
#include "src/gpu/vk/VulkanInterface.h"
#ifdef VK_USE_PLATFORM_WIN32_KHR
// windows wants to define this as CreateSemaphoreA or CreateSemaphoreW
#undef CreateSemaphore
#endif
#define GET_PROC(F) f ## F = \
(PFN_vk ## F) backendContext.fGetProc("vk" #F, fInstance, VK_NULL_HANDLE)
#define GET_DEV_PROC(F) f ## F = \
(PFN_vk ## F) backendContext.fGetProc("vk" #F, VK_NULL_HANDLE, fDevice)
namespace skwindow::internal {
VulkanWindowContext::VulkanWindowContext(const DisplayParams& params,
CreateVkSurfaceFn createVkSurface,
CanPresentFn canPresent,
PFN_vkGetInstanceProcAddr instProc)
: WindowContext(params)
, fCreateVkSurfaceFn(std::move(createVkSurface))
, fCanPresentFn(std::move(canPresent))
, fSurface(VK_NULL_HANDLE)
, fSwapchain(VK_NULL_HANDLE)
, fImages(nullptr)
, fImageLayouts(nullptr)
, fSurfaces(nullptr)
, fBackbuffers(nullptr) {
fGetInstanceProcAddr = instProc;
this->initializeContext();
}
void VulkanWindowContext::initializeContext() {
SkASSERT(!fContext);
// any config code here (particularly for msaa)?
PFN_vkGetInstanceProcAddr getInstanceProc = fGetInstanceProcAddr;
GrVkBackendContext backendContext;
skgpu::VulkanExtensions extensions;
VkPhysicalDeviceFeatures2 features;
if (!sk_gpu_test::CreateVkBackendContext(getInstanceProc, &backendContext, &extensions,
&features, &fDebugCallback, &fPresentQueueIndex,
fCanPresentFn,
fDisplayParams.fCreateProtectedNativeBackend)) {
sk_gpu_test::FreeVulkanFeaturesStructs(&features);
return;
}
if (!extensions.hasExtension(VK_KHR_SURFACE_EXTENSION_NAME, 25) ||
!extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 68)) {
sk_gpu_test::FreeVulkanFeaturesStructs(&features);
return;
}
fInstance = backendContext.fInstance;
fPhysicalDevice = backendContext.fPhysicalDevice;
fDevice = backendContext.fDevice;
fGraphicsQueueIndex = backendContext.fGraphicsQueueIndex;
fGraphicsQueue = backendContext.fQueue;
PFN_vkGetPhysicalDeviceProperties localGetPhysicalDeviceProperties =
reinterpret_cast<PFN_vkGetPhysicalDeviceProperties>(
backendContext.fGetProc("vkGetPhysicalDeviceProperties",
backendContext.fInstance,
VK_NULL_HANDLE));
if (!localGetPhysicalDeviceProperties) {
sk_gpu_test::FreeVulkanFeaturesStructs(&features);
return;
}
VkPhysicalDeviceProperties physDeviceProperties;
localGetPhysicalDeviceProperties(backendContext.fPhysicalDevice, &physDeviceProperties);
uint32_t physDevVersion = physDeviceProperties.apiVersion;
fInterface.reset(new skgpu::VulkanInterface(backendContext.fGetProc, fInstance, fDevice,
backendContext.fInstanceVersion, physDevVersion,
&extensions));
GET_PROC(DestroyInstance);
if (fDebugCallback != VK_NULL_HANDLE) {
GET_PROC(DestroyDebugReportCallbackEXT);
}
GET_PROC(DestroySurfaceKHR);
GET_PROC(GetPhysicalDeviceSurfaceSupportKHR);
GET_PROC(GetPhysicalDeviceSurfaceCapabilitiesKHR);
GET_PROC(GetPhysicalDeviceSurfaceFormatsKHR);
GET_PROC(GetPhysicalDeviceSurfacePresentModesKHR);
GET_DEV_PROC(DeviceWaitIdle);
GET_DEV_PROC(QueueWaitIdle);
GET_DEV_PROC(DestroyDevice);
GET_DEV_PROC(CreateSwapchainKHR);
GET_DEV_PROC(DestroySwapchainKHR);
GET_DEV_PROC(GetSwapchainImagesKHR);
GET_DEV_PROC(AcquireNextImageKHR);
GET_DEV_PROC(QueuePresentKHR);
GET_DEV_PROC(GetDeviceQueue);
fContext = GrDirectContexts::MakeVulkan(backendContext, fDisplayParams.fGrContextOptions);
fSurface = fCreateVkSurfaceFn(fInstance);
if (VK_NULL_HANDLE == fSurface) {
this->destroyContext();
sk_gpu_test::FreeVulkanFeaturesStructs(&features);
return;
}
VkBool32 supported;
VkResult res = fGetPhysicalDeviceSurfaceSupportKHR(fPhysicalDevice, fPresentQueueIndex,
fSurface, &supported);
if (VK_SUCCESS != res) {
this->destroyContext();
sk_gpu_test::FreeVulkanFeaturesStructs(&features);
return;
}
if (!this->createSwapchain(-1, -1, fDisplayParams)) {
this->destroyContext();
sk_gpu_test::FreeVulkanFeaturesStructs(&features);
return;
}
// create presentQueue
fGetDeviceQueue(fDevice, fPresentQueueIndex, 0, &fPresentQueue);
sk_gpu_test::FreeVulkanFeaturesStructs(&features);
}
bool VulkanWindowContext::createSwapchain(int width, int height,
const DisplayParams& params) {
// check for capabilities
VkSurfaceCapabilitiesKHR caps;
VkResult res = fGetPhysicalDeviceSurfaceCapabilitiesKHR(fPhysicalDevice, fSurface, &caps);
if (VK_SUCCESS != res) {
return false;
}
uint32_t surfaceFormatCount;
res = fGetPhysicalDeviceSurfaceFormatsKHR(fPhysicalDevice, fSurface, &surfaceFormatCount,
nullptr);
if (VK_SUCCESS != res) {
return false;
}
SkAutoMalloc surfaceFormatAlloc(surfaceFormatCount * sizeof(VkSurfaceFormatKHR));
VkSurfaceFormatKHR* surfaceFormats = (VkSurfaceFormatKHR*)surfaceFormatAlloc.get();
res = fGetPhysicalDeviceSurfaceFormatsKHR(fPhysicalDevice, fSurface, &surfaceFormatCount,
surfaceFormats);
if (VK_SUCCESS != res) {
return false;
}
uint32_t presentModeCount;
res = fGetPhysicalDeviceSurfacePresentModesKHR(fPhysicalDevice, fSurface, &presentModeCount,
nullptr);
if (VK_SUCCESS != res) {
return false;
}
SkAutoMalloc presentModeAlloc(presentModeCount * sizeof(VkPresentModeKHR));
VkPresentModeKHR* presentModes = (VkPresentModeKHR*)presentModeAlloc.get();
res = fGetPhysicalDeviceSurfacePresentModesKHR(fPhysicalDevice, fSurface, &presentModeCount,
presentModes);
if (VK_SUCCESS != res) {
return false;
}
VkExtent2D extent = caps.currentExtent;
// use the hints
if (extent.width == (uint32_t)-1) {
extent.width = width;
extent.height = height;
}
// clamp width; to protect us from broken hints
if (extent.width < caps.minImageExtent.width) {
extent.width = caps.minImageExtent.width;
} else if (extent.width > caps.maxImageExtent.width) {
extent.width = caps.maxImageExtent.width;
}
// clamp height
if (extent.height < caps.minImageExtent.height) {
extent.height = caps.minImageExtent.height;
} else if (extent.height > caps.maxImageExtent.height) {
extent.height = caps.maxImageExtent.height;
}
fWidth = (int)extent.width;
fHeight = (int)extent.height;
uint32_t imageCount = caps.minImageCount + 2;
if (caps.maxImageCount > 0 && imageCount > caps.maxImageCount) {
// Application must settle for fewer images than desired:
imageCount = caps.maxImageCount;
}
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
SkASSERT((caps.supportedUsageFlags & usageFlags) == usageFlags);
if (caps.supportedUsageFlags & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) {
usageFlags |= VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
}
if (caps.supportedUsageFlags & VK_IMAGE_USAGE_SAMPLED_BIT) {
usageFlags |= VK_IMAGE_USAGE_SAMPLED_BIT;
}
SkASSERT(caps.supportedTransforms & caps.currentTransform);
SkASSERT(caps.supportedCompositeAlpha & (VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR |
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR));
VkCompositeAlphaFlagBitsKHR composite_alpha =
(caps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR) ?
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR :
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
// Pick our surface format.
VkFormat surfaceFormat = VK_FORMAT_UNDEFINED;
VkColorSpaceKHR colorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
for (uint32_t i = 0; i < surfaceFormatCount; ++i) {
VkFormat localFormat = surfaceFormats[i].format;
if (GrVkFormatIsSupported(localFormat)) {
surfaceFormat = localFormat;
colorSpace = surfaceFormats[i].colorSpace;
break;
}
}
fDisplayParams = params;
fSampleCount = std::max(1, params.fMSAASampleCount);
fStencilBits = 8;
if (VK_FORMAT_UNDEFINED == surfaceFormat) {
return false;
}
SkColorType colorType;
switch (surfaceFormat) {
case VK_FORMAT_R8G8B8A8_UNORM: // fall through
case VK_FORMAT_R8G8B8A8_SRGB:
colorType = kRGBA_8888_SkColorType;
break;
case VK_FORMAT_B8G8R8A8_UNORM: // fall through
colorType = kBGRA_8888_SkColorType;
break;
default:
return false;
}
// If mailbox mode is available, use it, as it is the lowest-latency non-
// tearing mode. If not, fall back to FIFO which is always available.
VkPresentModeKHR mode = VK_PRESENT_MODE_FIFO_KHR;
bool hasImmediate = false;
for (uint32_t i = 0; i < presentModeCount; ++i) {
// use mailbox
if (VK_PRESENT_MODE_MAILBOX_KHR == presentModes[i]) {
mode = VK_PRESENT_MODE_MAILBOX_KHR;
}
if (VK_PRESENT_MODE_IMMEDIATE_KHR == presentModes[i]) {
hasImmediate = true;
}
}
if (params.fDisableVsync && hasImmediate) {
mode = VK_PRESENT_MODE_IMMEDIATE_KHR;
}
VkSwapchainCreateInfoKHR swapchainCreateInfo;
memset(&swapchainCreateInfo, 0, sizeof(VkSwapchainCreateInfoKHR));
swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchainCreateInfo.flags = fDisplayParams.fCreateProtectedNativeBackend
? VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR
: 0;
swapchainCreateInfo.surface = fSurface;
swapchainCreateInfo.minImageCount = imageCount;
swapchainCreateInfo.imageFormat = surfaceFormat;
swapchainCreateInfo.imageColorSpace = colorSpace;
swapchainCreateInfo.imageExtent = extent;
swapchainCreateInfo.imageArrayLayers = 1;
swapchainCreateInfo.imageUsage = usageFlags;
uint32_t queueFamilies[] = { fGraphicsQueueIndex, fPresentQueueIndex };
if (fGraphicsQueueIndex != fPresentQueueIndex) {
swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
swapchainCreateInfo.queueFamilyIndexCount = 2;
swapchainCreateInfo.pQueueFamilyIndices = queueFamilies;
} else {
swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchainCreateInfo.queueFamilyIndexCount = 0;
swapchainCreateInfo.pQueueFamilyIndices = nullptr;
}
swapchainCreateInfo.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
swapchainCreateInfo.compositeAlpha = composite_alpha;
swapchainCreateInfo.presentMode = mode;
swapchainCreateInfo.clipped = true;
swapchainCreateInfo.oldSwapchain = fSwapchain;
res = fCreateSwapchainKHR(fDevice, &swapchainCreateInfo, nullptr, &fSwapchain);
if (VK_SUCCESS != res) {
return false;
}
// destroy the old swapchain
if (swapchainCreateInfo.oldSwapchain != VK_NULL_HANDLE) {
fDeviceWaitIdle(fDevice);
this->destroyBuffers();
fDestroySwapchainKHR(fDevice, swapchainCreateInfo.oldSwapchain, nullptr);
}
if (!this->createBuffers(swapchainCreateInfo.imageFormat, usageFlags, colorType,
swapchainCreateInfo.imageSharingMode)) {
fDeviceWaitIdle(fDevice);
this->destroyBuffers();
fDestroySwapchainKHR(fDevice, swapchainCreateInfo.oldSwapchain, nullptr);
}
return true;
}
bool VulkanWindowContext::createBuffers(VkFormat format,
VkImageUsageFlags usageFlags,
SkColorType colorType,
VkSharingMode sharingMode) {
fGetSwapchainImagesKHR(fDevice, fSwapchain, &fImageCount, nullptr);
SkASSERT(fImageCount);
fImages = new VkImage[fImageCount];
fGetSwapchainImagesKHR(fDevice, fSwapchain, &fImageCount, fImages);
// set up initial image layouts and create surfaces
fImageLayouts = new VkImageLayout[fImageCount];
fSurfaces = new sk_sp<SkSurface>[fImageCount];
for (uint32_t i = 0; i < fImageCount; ++i) {
fImageLayouts[i] = VK_IMAGE_LAYOUT_UNDEFINED;
GrVkImageInfo info;
info.fImage = fImages[i];
info.fAlloc = skgpu::VulkanAlloc();
info.fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
info.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
info.fFormat = format;
info.fImageUsageFlags = usageFlags;
info.fLevelCount = 1;
info.fCurrentQueueFamily = fPresentQueueIndex;
info.fProtected = skgpu::Protected(fDisplayParams.fCreateProtectedNativeBackend);
info.fSharingMode = sharingMode;
if (usageFlags & VK_IMAGE_USAGE_SAMPLED_BIT) {
GrBackendTexture backendTexture = GrBackendTextures::MakeVk(fWidth, fHeight, info);
fSurfaces[i] = SkSurfaces::WrapBackendTexture(fContext.get(),
backendTexture,
kTopLeft_GrSurfaceOrigin,
fDisplayParams.fMSAASampleCount,
colorType,
fDisplayParams.fColorSpace,
&fDisplayParams.fSurfaceProps);
} else {
if (fDisplayParams.fMSAASampleCount > 1) {
return false;
}
info.fSampleCount = fSampleCount;
GrBackendRenderTarget backendRT = GrBackendRenderTargets::MakeVk(fWidth, fHeight, info);
fSurfaces[i] = SkSurfaces::WrapBackendRenderTarget(fContext.get(),
backendRT,
kTopLeft_GrSurfaceOrigin,
colorType,
fDisplayParams.fColorSpace,
&fDisplayParams.fSurfaceProps);
}
if (!fSurfaces[i]) {
return false;
}
}
// set up the backbuffers
VkSemaphoreCreateInfo semaphoreInfo;
memset(&semaphoreInfo, 0, sizeof(VkSemaphoreCreateInfo));
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
// we create one additional backbuffer structure here, because we want to
// give the command buffers they contain a chance to finish before we cycle back
fBackbuffers = new BackbufferInfo[fImageCount + 1];
for (uint32_t i = 0; i < fImageCount + 1; ++i) {
fBackbuffers[i].fImageIndex = -1;
SkDEBUGCODE(VkResult result = )GR_VK_CALL(fInterface,
CreateSemaphore(fDevice, &semaphoreInfo, nullptr,
&fBackbuffers[i].fRenderSemaphore));
SkASSERT(result == VK_SUCCESS);
}
fCurrentBackbufferIndex = fImageCount;
return true;
}
void VulkanWindowContext::destroyBuffers() {
if (fBackbuffers) {
for (uint32_t i = 0; i < fImageCount + 1; ++i) {
fBackbuffers[i].fImageIndex = -1;
GR_VK_CALL(fInterface,
DestroySemaphore(fDevice,
fBackbuffers[i].fRenderSemaphore,
nullptr));
}
}
delete[] fBackbuffers;
fBackbuffers = nullptr;
// Does this actually free the surfaces?
delete[] fSurfaces;
fSurfaces = nullptr;
delete[] fImageLayouts;
fImageLayouts = nullptr;
delete[] fImages;
fImages = nullptr;
}
VulkanWindowContext::~VulkanWindowContext() {
this->destroyContext();
}
void VulkanWindowContext::destroyContext() {
if (this->isValid()) {
fQueueWaitIdle(fPresentQueue);
fDeviceWaitIdle(fDevice);
this->destroyBuffers();
if (VK_NULL_HANDLE != fSwapchain) {
fDestroySwapchainKHR(fDevice, fSwapchain, nullptr);
fSwapchain = VK_NULL_HANDLE;
}
if (VK_NULL_HANDLE != fSurface) {
fDestroySurfaceKHR(fInstance, fSurface, nullptr);
fSurface = VK_NULL_HANDLE;
}
}
SkASSERT(fContext->unique());
fContext.reset();
fInterface.reset();
if (VK_NULL_HANDLE != fDevice) {
fDestroyDevice(fDevice, nullptr);
fDevice = VK_NULL_HANDLE;
}
#ifdef SK_ENABLE_VK_LAYERS
if (fDebugCallback != VK_NULL_HANDLE) {
fDestroyDebugReportCallbackEXT(fInstance, fDebugCallback, nullptr);
}
#endif
fPhysicalDevice = VK_NULL_HANDLE;
if (VK_NULL_HANDLE != fInstance) {
fDestroyInstance(fInstance, nullptr);
fInstance = VK_NULL_HANDLE;
}
}
VulkanWindowContext::BackbufferInfo* VulkanWindowContext::getAvailableBackbuffer() {
SkASSERT(fBackbuffers);
++fCurrentBackbufferIndex;
if (fCurrentBackbufferIndex > fImageCount) {
fCurrentBackbufferIndex = 0;
}
BackbufferInfo* backbuffer = fBackbuffers + fCurrentBackbufferIndex;
return backbuffer;
}
sk_sp<SkSurface> VulkanWindowContext::getBackbufferSurface() {
BackbufferInfo* backbuffer = this->getAvailableBackbuffer();
SkASSERT(backbuffer);
// semaphores should be in unsignaled state
VkSemaphoreCreateInfo semaphoreInfo;
memset(&semaphoreInfo, 0, sizeof(VkSemaphoreCreateInfo));
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
VkSemaphore semaphore;
SkDEBUGCODE(VkResult result = )GR_VK_CALL(fInterface, CreateSemaphore(fDevice, &semaphoreInfo,
nullptr, &semaphore));
SkASSERT(result == VK_SUCCESS);
// acquire the image
VkResult res = fAcquireNextImageKHR(fDevice, fSwapchain, UINT64_MAX,
semaphore, VK_NULL_HANDLE,
&backbuffer->fImageIndex);
if (VK_ERROR_SURFACE_LOST_KHR == res) {
// need to figure out how to create a new vkSurface without the platformData*
// maybe use attach somehow? but need a Window
GR_VK_CALL(fInterface, DestroySemaphore(fDevice, semaphore, nullptr));
return nullptr;
}
if (VK_ERROR_OUT_OF_DATE_KHR == res) {
// tear swapchain down and try again
if (!this->createSwapchain(-1, -1, fDisplayParams)) {
GR_VK_CALL(fInterface, DestroySemaphore(fDevice, semaphore, nullptr));
return nullptr;
}
backbuffer = this->getAvailableBackbuffer();
// acquire the image
res = fAcquireNextImageKHR(fDevice, fSwapchain, UINT64_MAX,
semaphore, VK_NULL_HANDLE,
&backbuffer->fImageIndex);
if (VK_SUCCESS != res) {
GR_VK_CALL(fInterface, DestroySemaphore(fDevice, semaphore, nullptr));
return nullptr;
}
}
SkSurface* surface = fSurfaces[backbuffer->fImageIndex].get();
GrBackendSemaphore beSemaphore = GrBackendSemaphores::MakeVk(semaphore);
surface->wait(1, &beSemaphore);
return sk_ref_sp(surface);
}
void VulkanWindowContext::onSwapBuffers() {
BackbufferInfo* backbuffer = fBackbuffers + fCurrentBackbufferIndex;
SkSurface* surface = fSurfaces[backbuffer->fImageIndex].get();
GrBackendSemaphore beSemaphore = GrBackendSemaphores::MakeVk(backbuffer->fRenderSemaphore);
GrFlushInfo info;
info.fNumSemaphores = 1;
info.fSignalSemaphores = &beSemaphore;
skgpu::MutableTextureState presentState = skgpu::MutableTextureStates::MakeVulkan(
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, fPresentQueueIndex);
auto dContext = surface->recordingContext()->asDirectContext();
dContext->flush(surface, info, &presentState);
dContext->submit();
// Submit present operation to present queue
const VkPresentInfoKHR presentInfo =
{
VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, // sType
nullptr, // pNext
1, // waitSemaphoreCount
&backbuffer->fRenderSemaphore, // pWaitSemaphores
1, // swapchainCount
&fSwapchain, // pSwapchains
&backbuffer->fImageIndex, // pImageIndices
nullptr // pResults
};
fQueuePresentKHR(fPresentQueue, &presentInfo);
}
} // namespace skwindow::internal