blob: 8e2a0086cd41861924129ccf0ae719b359e3de73 [file] [log] [blame]
/*
* Copyright 2019 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSLByteCodeGenerator.h"
namespace SkSL {
static int slot_count(const Type& type) {
return type.columns() * type.rows();
}
bool ByteCodeGenerator::generateCode() {
for (const auto& e : fProgram) {
switch (e.fKind) {
case ProgramElement::kFunction_Kind: {
std::unique_ptr<ByteCodeFunction> f = this->writeFunction((FunctionDefinition&) e);
if (!f) {
return false;
}
fOutput->fFunctions.push_back(std::move(f));
break;
}
case ProgramElement::kVar_Kind: {
VarDeclarations& decl = (VarDeclarations&) e;
for (const auto& v : decl.fVars) {
const Variable* declVar = ((VarDeclaration&) *v).fVar;
if (declVar->fModifiers.fLayout.fBuiltin >= 0) {
continue;
}
if (declVar->fModifiers.fFlags & Modifiers::kIn_Flag) {
for (int i = slot_count(declVar->fType); i > 0; --i) {
fOutput->fInputSlots.push_back(fOutput->fGlobalCount++);
}
} else {
fOutput->fGlobalCount += slot_count(declVar->fType);
}
}
break;
}
default:
; // ignore
}
}
return true;
}
std::unique_ptr<ByteCodeFunction> ByteCodeGenerator::writeFunction(const FunctionDefinition& f) {
fFunction = &f;
std::unique_ptr<ByteCodeFunction> result(new ByteCodeFunction(fOutput, &f.fDeclaration));
fParameterCount = 0;
for (const auto& p : f.fDeclaration.fParameters) {
fParameterCount += p->fType.columns() * p->fType.rows();
}
fCode = &result->fCode;
this->writeStatement(*f.fBody);
result->fParameterCount = fParameterCount;
result->fLocalCount = fLocals.size();
fLocals.clear();
fFunction = nullptr;
return result;
}
enum class TypeCategory {
kBool,
kSigned,
kUnsigned,
kFloat,
};
static TypeCategory type_category(const Type& type) {
switch (type.kind()) {
case Type::Kind::kVector_Kind:
case Type::Kind::kMatrix_Kind:
return type_category(type.componentType());
default:
if (type.fName == "bool") {
return TypeCategory::kBool;
} else if (type.fName == "int" || type.fName == "short") {
return TypeCategory::kSigned;
} else if (type.fName == "uint" || type.fName == "ushort") {
return TypeCategory::kUnsigned;
} else {
SkASSERT(type.fName == "float" || type.fName == "half");
return TypeCategory::kFloat;
}
ABORT("unsupported type: %s\n", type.description().c_str());
}
}
int ByteCodeGenerator::getLocation(const Variable& var) {
// given that we seldom have more than a couple of variables, linear search is probably the most
// efficient way to handle lookups
switch (var.fStorage) {
case Variable::kLocal_Storage: {
for (int i = fLocals.size() - 1; i >= 0; --i) {
if (fLocals[i] == &var) {
return fParameterCount + i;
}
}
int result = fParameterCount + fLocals.size();
fLocals.push_back(&var);
for (int i = 0; i < slot_count(var.fType) - 1; ++i) {
fLocals.push_back(nullptr);
}
return result;
}
case Variable::kParameter_Storage: {
int offset = 0;
for (const auto& p : fFunction->fDeclaration.fParameters) {
if (p == &var) {
return offset;
}
offset += slot_count(p->fType);
}
SkASSERT(false);
return -1;
}
case Variable::kGlobal_Storage: {
int offset = 0;
for (const auto& e : fProgram) {
if (e.fKind == ProgramElement::kVar_Kind) {
VarDeclarations& decl = (VarDeclarations&) e;
for (const auto& v : decl.fVars) {
const Variable* declVar = ((VarDeclaration&) *v).fVar;
if (declVar->fModifiers.fLayout.fBuiltin >= 0) {
continue;
}
if (declVar == &var) {
return offset;
}
offset += slot_count(declVar->fType);
}
}
}
SkASSERT(false);
return -1;
}
default:
SkASSERT(false);
return 0;
}
}
void ByteCodeGenerator::write8(uint8_t b) {
fCode->push_back(b);
}
void ByteCodeGenerator::write16(uint16_t i) {
this->write8(i >> 8);
this->write8(i);
}
void ByteCodeGenerator::write32(uint32_t i) {
this->write8((i >> 24) & 0xFF);
this->write8((i >> 16) & 0xFF);
this->write8((i >> 8) & 0xFF);
this->write8((i >> 0) & 0xFF);
}
void ByteCodeGenerator::write(ByteCodeInstruction i) {
this->write8((uint8_t) i);
}
void ByteCodeGenerator::writeTypedInstruction(const Type& type, ByteCodeInstruction s,
ByteCodeInstruction u, ByteCodeInstruction f) {
switch (type_category(type)) {
case TypeCategory::kSigned:
this->write(s);
break;
case TypeCategory::kUnsigned:
this->write(u);
break;
case TypeCategory::kFloat:
this->write(f);
break;
default:
SkASSERT(false);
}
}
void ByteCodeGenerator::writeBinaryExpression(const BinaryExpression& b) {
if (b.fOperator == Token::Kind::EQ) {
std::unique_ptr<LValue> lvalue = this->getLValue(*b.fLeft);
this->writeExpression(*b.fRight);
this->write(ByteCodeInstruction::kDupDown);
this->write8(slot_count(b.fRight->fType));
lvalue->store();
return;
}
Token::Kind op;
std::unique_ptr<LValue> lvalue;
if (is_assignment(b.fOperator)) {
lvalue = this->getLValue(*b.fLeft);
lvalue->load();
op = remove_assignment(b.fOperator);
} else {
this->writeExpression(*b.fLeft);
op = b.fOperator;
if (b.fLeft->fType.kind() == Type::kScalar_Kind &&
b.fRight->fType.kind() == Type::kVector_Kind) {
for (int i = b.fRight->fType.columns(); i > 1; --i) {
this->write(ByteCodeInstruction::kDup);
}
}
}
this->writeExpression(*b.fRight);
if (b.fLeft->fType.kind() == Type::kVector_Kind &&
b.fRight->fType.kind() == Type::kScalar_Kind) {
for (int i = b.fLeft->fType.columns(); i > 1; --i) {
this->write(ByteCodeInstruction::kDup);
}
}
int count = slot_count(b.fType);
if (count > 1) {
this->write(ByteCodeInstruction::kVector);
this->write8(count);
}
switch (op) {
case Token::Kind::EQEQ:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kCompareIEQ,
ByteCodeInstruction::kCompareIEQ,
ByteCodeInstruction::kCompareFEQ);
break;
case Token::Kind::GT:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kCompareSGT,
ByteCodeInstruction::kCompareUGT,
ByteCodeInstruction::kCompareFGT);
break;
case Token::Kind::GTEQ:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kCompareSGTEQ,
ByteCodeInstruction::kCompareUGTEQ,
ByteCodeInstruction::kCompareFGTEQ);
break;
case Token::Kind::LT:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kCompareSLT,
ByteCodeInstruction::kCompareULT,
ByteCodeInstruction::kCompareFLT);
break;
case Token::Kind::LTEQ:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kCompareSLTEQ,
ByteCodeInstruction::kCompareULTEQ,
ByteCodeInstruction::kCompareFLTEQ);
break;
case Token::Kind::MINUS:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractF);
break;
case Token::Kind::NEQ:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kCompareINEQ,
ByteCodeInstruction::kCompareINEQ,
ByteCodeInstruction::kCompareFNEQ);
break;
case Token::Kind::PERCENT:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kRemainderS,
ByteCodeInstruction::kRemainderU,
ByteCodeInstruction::kInvalid);
break;
case Token::Kind::PLUS:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddF);
break;
case Token::Kind::SLASH:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kDivideS,
ByteCodeInstruction::kDivideU,
ByteCodeInstruction::kDivideF);
break;
case Token::Kind::STAR:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kMultiplyS,
ByteCodeInstruction::kMultiplyU,
ByteCodeInstruction::kMultiplyF);
break;
default:
SkASSERT(false);
}
if (lvalue) {
this->write(ByteCodeInstruction::kDupDown);
this->write8(slot_count(b.fType));
lvalue->store();
}
}
void ByteCodeGenerator::writeBoolLiteral(const BoolLiteral& b) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(1);
}
void ByteCodeGenerator::writeConstructor(const Constructor& c) {
if (c.fArguments.size() == 1 &&
type_category(c.fType) == type_category(c.fArguments[0]->fType)) {
// cast from float to half or similar no-op
this->writeExpression(*c.fArguments[0]);
return;
}
for (const auto& arg : c.fArguments) {
this->writeExpression(*arg);
}
if (c.fArguments.size() == 1) {
TypeCategory inCategory = type_category(c.fArguments[0]->fType);
TypeCategory outCategory = type_category(c.fType);
if (inCategory != outCategory) {
int count = c.fType.columns();
if (count > 1) {
this->write(ByteCodeInstruction::kVector);
this->write8(count);
}
if (inCategory == TypeCategory::kFloat) {
SkASSERT(outCategory == TypeCategory::kSigned ||
outCategory == TypeCategory::kUnsigned);
this->write(ByteCodeInstruction::kFloatToInt);
} else if (outCategory == TypeCategory::kFloat) {
if (inCategory == TypeCategory::kSigned) {
this->write(ByteCodeInstruction::kSignedToFloat);
} else {
SkASSERT(inCategory == TypeCategory::kUnsigned);
this->write(ByteCodeInstruction::kUnsignedToFloat);
}
} else {
SkASSERT(false);
}
}
}
}
void ByteCodeGenerator::writeFieldAccess(const FieldAccess& f) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
this->write(ByteCodeInstruction::kPushImmediate);
union { float f; uint32_t u; } pun = { (float) f.fValue };
this->write32(pun.u);
}
void ByteCodeGenerator::writeFunctionCall(const FunctionCall& f) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeIndexExpression(const IndexExpression& i) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeIntLiteral(const IntLiteral& i) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(i.fValue);
}
void ByteCodeGenerator::writeNullLiteral(const NullLiteral& n) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writePrefixExpression(const PrefixExpression& p) {
switch (p.fOperator) {
case Token::Kind::PLUSPLUS: // fall through
case Token::Kind::MINUSMINUS: {
std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand);
lvalue->load();
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(1);
if (p.fOperator == Token::Kind::PLUSPLUS) {
this->writeTypedInstruction(p.fType,
ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddI,
ByteCodeInstruction::kAddF);
} else {
this->writeTypedInstruction(p.fType,
ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractI,
ByteCodeInstruction::kSubtractF);
}
this->write(ByteCodeInstruction::kDupDown);
this->write8(slot_count(p.fType));
lvalue->store();
break;
}
case Token::Kind::MINUS:
this->writeTypedInstruction(p.fType,
ByteCodeInstruction::kNegateS,
ByteCodeInstruction::kInvalid,
ByteCodeInstruction::kNegateF);
break;
default:
SkASSERT(false);
}
}
void ByteCodeGenerator::writePostfixExpression(const PostfixExpression& p) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeSwizzle(const Swizzle& s) {
switch (s.fBase->fKind) {
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference&) *s.fBase).fVariable;
int location = this->getLocation(var);
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(location);
this->write(ByteCodeInstruction::kLoadSwizzle);
this->write8(s.fComponents.size());
for (int c : s.fComponents) {
this->write8(c);
}
break;
}
default:
this->writeExpression(*s.fBase);
this->write(ByteCodeInstruction::kSwizzle);
this->write8(s.fBase->fType.columns());
this->write8(s.fComponents.size());
for (int c : s.fComponents) {
this->write8(c);
}
}
}
void ByteCodeGenerator::writeVariableReference(const VariableReference& v) {
if (v.fVariable.fStorage == Variable::kGlobal_Storage) {
this->write(ByteCodeInstruction::kLoadGlobal);
int location = this->getLocation(v.fVariable);
SkASSERT(location <= 255);
this->write8(location);
} else {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(this->getLocation(v.fVariable));
int count = slot_count(v.fType);
if (count > 1) {
this->write(ByteCodeInstruction::kVector);
this->write8(count);
}
this->write(ByteCodeInstruction::kLoad);
}
}
void ByteCodeGenerator::writeTernaryExpression(const TernaryExpression& t) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeExpression(const Expression& e) {
switch (e.fKind) {
case Expression::kBinary_Kind:
this->writeBinaryExpression((BinaryExpression&) e);
break;
case Expression::kBoolLiteral_Kind:
this->writeBoolLiteral((BoolLiteral&) e);
break;
case Expression::kConstructor_Kind:
this->writeConstructor((Constructor&) e);
break;
case Expression::kFieldAccess_Kind:
this->writeFieldAccess((FieldAccess&) e);
break;
case Expression::kFloatLiteral_Kind:
this->writeFloatLiteral((FloatLiteral&) e);
break;
case Expression::kFunctionCall_Kind:
this->writeFunctionCall((FunctionCall&) e);
break;
case Expression::kIndex_Kind:
this->writeIndexExpression((IndexExpression&) e);
break;
case Expression::kIntLiteral_Kind:
this->writeIntLiteral((IntLiteral&) e);
break;
case Expression::kNullLiteral_Kind:
this->writeNullLiteral((NullLiteral&) e);
break;
case Expression::kPrefix_Kind:
this->writePrefixExpression((PrefixExpression&) e);
break;
case Expression::kPostfix_Kind:
this->writePostfixExpression((PostfixExpression&) e);
break;
case Expression::kSwizzle_Kind:
this->writeSwizzle((Swizzle&) e);
break;
case Expression::kVariableReference_Kind:
this->writeVariableReference((VariableReference&) e);
break;
case Expression::kTernary_Kind:
this->writeTernaryExpression((TernaryExpression&) e);
break;
default:
printf("unsupported expression %s\n", e.description().c_str());
SkASSERT(false);
}
}
void ByteCodeGenerator::writeTarget(const Expression& e) {
switch (e.fKind) {
case Expression::kVariableReference_Kind:
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(this->getLocation(((VariableReference&) e).fVariable));
break;
case Expression::kIndex_Kind:
case Expression::kTernary_Kind:
default:
printf("unsupported target %s\n", e.description().c_str());
SkASSERT(false);
}
}
class ByteCodeSwizzleLValue : public ByteCodeGenerator::LValue {
public:
ByteCodeSwizzleLValue(ByteCodeGenerator* generator, const Swizzle& swizzle)
: INHERITED(*generator)
, fSwizzle(swizzle) {
fGenerator.writeTarget(*swizzle.fBase);
}
void load() override {
fGenerator.write(ByteCodeInstruction::kDup);
fGenerator.write(ByteCodeInstruction::kLoadSwizzle);
fGenerator.write8(fSwizzle.fComponents.size());
for (int c : fSwizzle.fComponents) {
fGenerator.write8(c);
}
}
void store() override {
fGenerator.write(ByteCodeInstruction::kStoreSwizzle);
fGenerator.write8(fSwizzle.fComponents.size());
for (int c : fSwizzle.fComponents) {
fGenerator.write8(c);
}
}
private:
const Swizzle& fSwizzle;
typedef LValue INHERITED;
};
class ByteCodeVariableLValue : public ByteCodeGenerator::LValue {
public:
ByteCodeVariableLValue(ByteCodeGenerator* generator, const Variable& var)
: INHERITED(*generator)
, fCount(slot_count(var.fType))
, fIsGlobal(var.fStorage == Variable::kGlobal_Storage) {
fGenerator.write(ByteCodeInstruction::kPushImmediate);
fGenerator.write32(generator->getLocation(var));
}
void load() override {
fGenerator.write(ByteCodeInstruction::kDup);
if (fCount > 1) {
fGenerator.write(ByteCodeInstruction::kVector);
fGenerator.write8(fCount);
}
fGenerator.write(fIsGlobal ? ByteCodeInstruction::kLoadGlobal : ByteCodeInstruction::kLoad);
}
void store() override {
if (fCount > 1) {
fGenerator.write(ByteCodeInstruction::kVector);
fGenerator.write8(fCount);
}
fGenerator.write(fIsGlobal ? ByteCodeInstruction::kStoreGlobal
: ByteCodeInstruction::kStore);
}
private:
typedef LValue INHERITED;
int fCount;
bool fIsGlobal;
};
std::unique_ptr<ByteCodeGenerator::LValue> ByteCodeGenerator::getLValue(const Expression& e) {
switch (e.fKind) {
case Expression::kIndex_Kind:
// not yet implemented
abort();
case Expression::kVariableReference_Kind:
return std::unique_ptr<LValue>(new ByteCodeVariableLValue(this,
((VariableReference&) e).fVariable));
case Expression::kSwizzle_Kind:
return std::unique_ptr<LValue>(new ByteCodeSwizzleLValue(this, (Swizzle&) e));
case Expression::kTernary_Kind:
default:
printf("unsupported lvalue %s\n", e.description().c_str());
return nullptr;
}
}
void ByteCodeGenerator::writeBlock(const Block& b) {
for (const auto& s : b.fStatements) {
this->writeStatement(*s);
}
}
void ByteCodeGenerator::setBreakTargets() {
std::vector<DeferredLocation>& breaks = fBreakTargets.top();
for (DeferredLocation& b : breaks) {
b.set();
}
fBreakTargets.pop();
}
void ByteCodeGenerator::setContinueTargets() {
std::vector<DeferredLocation>& continues = fContinueTargets.top();
for (DeferredLocation& c : continues) {
c.set();
}
fContinueTargets.pop();
}
void ByteCodeGenerator::writeBreakStatement(const BreakStatement& b) {
this->write(ByteCodeInstruction::kBranch);
fBreakTargets.top().emplace_back(this);
}
void ByteCodeGenerator::writeContinueStatement(const ContinueStatement& c) {
this->write(ByteCodeInstruction::kBranch);
fContinueTargets.top().emplace_back(this);
}
void ByteCodeGenerator::writeDoStatement(const DoStatement& d) {
fContinueTargets.emplace();
fBreakTargets.emplace();
size_t start = fCode->size();
this->writeStatement(*d.fStatement);
this->setContinueTargets();
this->writeExpression(*d.fTest);
this->write(ByteCodeInstruction::kConditionalBranch);
this->write16(start);
this->setBreakTargets();
}
void ByteCodeGenerator::writeForStatement(const ForStatement& f) {
fContinueTargets.emplace();
fBreakTargets.emplace();
if (f.fInitializer) {
this->writeStatement(*f.fInitializer);
}
size_t start = fCode->size();
if (f.fTest) {
this->writeExpression(*f.fTest);
this->write(ByteCodeInstruction::kNot);
this->write(ByteCodeInstruction::kConditionalBranch);
DeferredLocation endLocation(this);
this->writeStatement(*f.fStatement);
this->setContinueTargets();
if (f.fNext) {
this->writeExpression(*f.fNext);
this->write(ByteCodeInstruction::kPop);
this->write8(slot_count(f.fNext->fType));
}
this->write(ByteCodeInstruction::kBranch);
this->write16(start);
endLocation.set();
} else {
this->writeStatement(*f.fStatement);
this->setContinueTargets();
if (f.fNext) {
this->writeExpression(*f.fNext);
this->write(ByteCodeInstruction::kPop);
this->write8(slot_count(f.fNext->fType));
}
this->write(ByteCodeInstruction::kBranch);
this->write16(start);
}
this->setBreakTargets();
}
void ByteCodeGenerator::writeIfStatement(const IfStatement& i) {
this->writeExpression(*i.fTest);
this->write(ByteCodeInstruction::kNot);
this->write(ByteCodeInstruction::kConditionalBranch);
DeferredLocation elseLocation(this);
this->writeStatement(*i.fIfTrue);
this->write(ByteCodeInstruction::kBranch);
DeferredLocation endLocation(this);
elseLocation.set();
if (i.fIfFalse) {
this->writeStatement(*i.fIfFalse);
}
endLocation.set();
}
void ByteCodeGenerator::writeReturnStatement(const ReturnStatement& r) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeSwitchStatement(const SwitchStatement& r) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeVarDeclarations(const VarDeclarations& v) {
for (const auto& declStatement : v.fVars) {
const VarDeclaration& decl = (VarDeclaration&) *declStatement;
// we need to grab the location even if we don't use it, to ensure it
// has been allocated
int location = getLocation(*decl.fVar);
if (decl.fValue) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(location);
this->writeExpression(*decl.fValue);
int count = slot_count(decl.fValue->fType);
if (count > 1) {
this->write(ByteCodeInstruction::kVector);
this->write8(count);
}
this->write(ByteCodeInstruction::kStore);
}
}
}
void ByteCodeGenerator::writeWhileStatement(const WhileStatement& w) {
fContinueTargets.emplace();
fBreakTargets.emplace();
size_t start = fCode->size();
this->writeExpression(*w.fTest);
this->write(ByteCodeInstruction::kNot);
this->write(ByteCodeInstruction::kConditionalBranch);
DeferredLocation endLocation(this);
this->writeStatement(*w.fStatement);
this->setContinueTargets();
this->write(ByteCodeInstruction::kBranch);
this->write16(start);
endLocation.set();
this->setBreakTargets();
}
void ByteCodeGenerator::writeStatement(const Statement& s) {
switch (s.fKind) {
case Statement::kBlock_Kind:
this->writeBlock((Block&) s);
break;
case Statement::kBreak_Kind:
this->writeBreakStatement((BreakStatement&) s);
break;
case Statement::kContinue_Kind:
this->writeContinueStatement((ContinueStatement&) s);
break;
case Statement::kDiscard_Kind:
// not yet implemented
abort();
case Statement::kDo_Kind:
this->writeDoStatement((DoStatement&) s);
break;
case Statement::kExpression_Kind: {
const Expression& expr = *((ExpressionStatement&) s).fExpression;
this->writeExpression(expr);
this->write(ByteCodeInstruction::kPop);
this->write8(slot_count(expr.fType));
break;
}
case Statement::kFor_Kind:
this->writeForStatement((ForStatement&) s);
break;
case Statement::kIf_Kind:
this->writeIfStatement((IfStatement&) s);
break;
case Statement::kNop_Kind:
break;
case Statement::kReturn_Kind:
this->writeReturnStatement((ReturnStatement&) s);
break;
case Statement::kSwitch_Kind:
this->writeSwitchStatement((SwitchStatement&) s);
break;
case Statement::kVarDeclarations_Kind:
this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration);
break;
case Statement::kWhile_Kind:
this->writeWhileStatement((WhileStatement&) s);
break;
default:
SkASSERT(false);
}
}
}