| /* |
| * Copyright 2018 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/ganesh/ops/QuadPerEdgeAA.h" |
| |
| #include "src/base/SkVx.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ganesh/GrCaps.h" |
| #include "src/gpu/ganesh/GrMeshDrawTarget.h" |
| #include "src/gpu/ganesh/GrResourceProvider.h" |
| #include "src/gpu/ganesh/SkGr.h" |
| #include "src/gpu/ganesh/geometry/GrQuadUtils.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLColorSpaceXformHelper.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVarying.h" |
| #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h" |
| |
| static_assert((int)GrQuadAAFlags::kLeft == SkCanvas::kLeft_QuadAAFlag); |
| static_assert((int)GrQuadAAFlags::kTop == SkCanvas::kTop_QuadAAFlag); |
| static_assert((int)GrQuadAAFlags::kRight == SkCanvas::kRight_QuadAAFlag); |
| static_assert((int)GrQuadAAFlags::kBottom == SkCanvas::kBottom_QuadAAFlag); |
| static_assert((int)GrQuadAAFlags::kNone == SkCanvas::kNone_QuadAAFlags); |
| static_assert((int)GrQuadAAFlags::kAll == SkCanvas::kAll_QuadAAFlags); |
| |
| namespace skgpu::ganesh::QuadPerEdgeAA { |
| |
| namespace { |
| |
| using VertexSpec = skgpu::ganesh::QuadPerEdgeAA::VertexSpec; |
| using CoverageMode = skgpu::ganesh::QuadPerEdgeAA::CoverageMode; |
| using ColorType = skgpu::ganesh::QuadPerEdgeAA::ColorType; |
| |
| // Generic WriteQuadProc that can handle any VertexSpec. It writes the 4 vertices in triangle strip |
| // order, although the data per-vertex is dependent on the VertexSpec. |
| void write_quad_generic(VertexWriter* vb, |
| const VertexSpec& spec, |
| const GrQuad* deviceQuad, |
| const GrQuad* localQuad, |
| const float coverage[4], |
| const SkPMColor4f& color, |
| const SkRect& geomSubset, |
| const SkRect& texSubset) { |
| static constexpr auto If = VertexWriter::If<float>; |
| |
| SkASSERT(!spec.hasLocalCoords() || localQuad); |
| |
| CoverageMode mode = spec.coverageMode(); |
| for (int i = 0; i < 4; ++i) { |
| // save position, this is a float2 or float3 or float4 depending on the combination of |
| // perspective and coverage mode. |
| *vb << deviceQuad->x(i) |
| << deviceQuad->y(i) |
| << If(spec.deviceQuadType() == GrQuad::Type::kPerspective, deviceQuad->w(i)) |
| << If(mode == CoverageMode::kWithPosition, coverage[i]); |
| |
| // save color |
| if (spec.hasVertexColors()) { |
| bool wide = spec.colorType() == ColorType::kFloat; |
| *vb << VertexColor(color * (mode == CoverageMode::kWithColor ? coverage[i] : 1), wide); |
| } |
| |
| // save local position |
| if (spec.hasLocalCoords()) { |
| *vb << localQuad->x(i) |
| << localQuad->y(i) |
| << If(spec.localQuadType() == GrQuad::Type::kPerspective, localQuad->w(i)); |
| } |
| |
| // save the geometry subset |
| if (spec.requiresGeometrySubset()) { |
| *vb << geomSubset; |
| } |
| |
| // save the texture subset |
| if (spec.hasSubset()) { |
| *vb << texSubset; |
| } |
| } |
| } |
| |
| // Specialized WriteQuadProcs for particular VertexSpecs that show up frequently (determined |
| // experimentally through recorded GMs, SKPs, and SVGs, as well as SkiaRenderer's usage patterns): |
| |
| // 2D (XY), no explicit coverage, vertex color, no locals, no geometry subset, no texture subsetn |
| // This represents simple, solid color or shader, non-AA (or AA with cov. as alpha) rects. |
| void write_2d_color(VertexWriter* vb, |
| const VertexSpec& spec, |
| const GrQuad* deviceQuad, |
| const GrQuad* localQuad, |
| const float coverage[4], |
| const SkPMColor4f& color, |
| const SkRect& geomSubset, |
| const SkRect& texSubset) { |
| // Assert assumptions about VertexSpec |
| SkASSERT(spec.deviceQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(!spec.hasLocalCoords()); |
| SkASSERT(spec.coverageMode() == CoverageMode::kNone || |
| spec.coverageMode() == CoverageMode::kWithColor); |
| SkASSERT(spec.hasVertexColors()); |
| SkASSERT(!spec.requiresGeometrySubset()); |
| SkASSERT(!spec.hasSubset()); |
| // We don't assert that localQuad == nullptr, since it is possible for FillRectOp to |
| // accumulate local coords conservatively (paint not trivial), and then after analysis realize |
| // the processors don't need local coordinates. |
| |
| bool wide = spec.colorType() == ColorType::kFloat; |
| for (int i = 0; i < 4; ++i) { |
| // If this is not coverage-with-alpha, make sure coverage == 1 so it doesn't do anything |
| SkASSERT(spec.coverageMode() == CoverageMode::kWithColor || coverage[i] == 1.f); |
| *vb << deviceQuad->x(i) |
| << deviceQuad->y(i) |
| << VertexColor(color * coverage[i], wide); |
| } |
| } |
| |
| // 2D (XY), no explicit coverage, UV locals, no color, no geometry subset, no texture subset |
| // This represents opaque, non AA, textured rects |
| void write_2d_uv(VertexWriter* vb, |
| const VertexSpec& spec, |
| const GrQuad* deviceQuad, |
| const GrQuad* localQuad, |
| const float coverage[4], |
| const SkPMColor4f& color, |
| const SkRect& geomSubset, |
| const SkRect& texSubset) { |
| // Assert assumptions about VertexSpec |
| SkASSERT(spec.deviceQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.hasLocalCoords() && spec.localQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.coverageMode() == CoverageMode::kNone); |
| SkASSERT(!spec.hasVertexColors()); |
| SkASSERT(!spec.requiresGeometrySubset()); |
| SkASSERT(!spec.hasSubset()); |
| SkASSERT(localQuad); |
| |
| for (int i = 0; i < 4; ++i) { |
| *vb << deviceQuad->x(i) |
| << deviceQuad->y(i) |
| << localQuad->x(i) |
| << localQuad->y(i); |
| } |
| } |
| |
| // 2D (XY), no explicit coverage, UV locals, vertex color, no geometry or texture subsets |
| // This represents transparent, non AA (or AA with cov. as alpha), textured rects |
| void write_2d_color_uv(VertexWriter* vb, |
| const VertexSpec& spec, |
| const GrQuad* deviceQuad, |
| const GrQuad* localQuad, |
| const float coverage[4], |
| const SkPMColor4f& color, |
| const SkRect& geomSubset, |
| const SkRect& texSubset) { |
| // Assert assumptions about VertexSpec |
| SkASSERT(spec.deviceQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.hasLocalCoords() && spec.localQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.coverageMode() == CoverageMode::kNone || |
| spec.coverageMode() == CoverageMode::kWithColor); |
| SkASSERT(spec.hasVertexColors()); |
| SkASSERT(!spec.requiresGeometrySubset()); |
| SkASSERT(!spec.hasSubset()); |
| SkASSERT(localQuad); |
| |
| bool wide = spec.colorType() == ColorType::kFloat; |
| for (int i = 0; i < 4; ++i) { |
| // If this is not coverage-with-alpha, make sure coverage == 1 so it doesn't do anything |
| SkASSERT(spec.coverageMode() == CoverageMode::kWithColor || coverage[i] == 1.f); |
| *vb << deviceQuad->x(i) |
| << deviceQuad->y(i) |
| << VertexColor(color * coverage[i], wide) |
| << localQuad->x(i) |
| << localQuad->y(i); |
| } |
| } |
| |
| // 2D (XY), explicit coverage, UV locals, no color, no geometry subset, no texture subset |
| // This represents opaque, AA, textured rects |
| void write_2d_cov_uv(VertexWriter* vb, |
| const VertexSpec& spec, |
| const GrQuad* deviceQuad, |
| const GrQuad* localQuad, |
| const float coverage[4], |
| const SkPMColor4f& color, |
| const SkRect& geomSubset, |
| const SkRect& texSubset) { |
| // Assert assumptions about VertexSpec |
| SkASSERT(spec.deviceQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.hasLocalCoords() && spec.localQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.coverageMode() == CoverageMode::kWithPosition); |
| SkASSERT(!spec.hasVertexColors()); |
| SkASSERT(!spec.requiresGeometrySubset()); |
| SkASSERT(!spec.hasSubset()); |
| SkASSERT(localQuad); |
| |
| for (int i = 0; i < 4; ++i) { |
| *vb << deviceQuad->x(i) |
| << deviceQuad->y(i) |
| << coverage[i] |
| << localQuad->x(i) |
| << localQuad->y(i); |
| } |
| } |
| |
| // NOTE: The three _strict specializations below match the non-strict uv functions above, except |
| // that they also write the UV subset. These are included to benefit SkiaRenderer, which must make |
| // use of both fast and strict constrained subsets. When testing _strict was not that common across |
| // GMS, SKPs, and SVGs but we have little visibility into actual SkiaRenderer statistics. If |
| // SkiaRenderer can avoid subsets more, these 3 functions should probably be removed for simplicity. |
| |
| // 2D (XY), no explicit coverage, UV locals, no color, tex subset but no geometry subset |
| // This represents opaque, non AA, textured rects with strict uv sampling |
| void write_2d_uv_strict(VertexWriter* vb, |
| const VertexSpec& spec, |
| const GrQuad* deviceQuad, |
| const GrQuad* localQuad, |
| const float coverage[4], |
| const SkPMColor4f& color, |
| const SkRect& geomSubset, |
| const SkRect& texSubset) { |
| // Assert assumptions about VertexSpec |
| SkASSERT(spec.deviceQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.hasLocalCoords() && spec.localQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.coverageMode() == CoverageMode::kNone); |
| SkASSERT(!spec.hasVertexColors()); |
| SkASSERT(!spec.requiresGeometrySubset()); |
| SkASSERT(spec.hasSubset()); |
| SkASSERT(localQuad); |
| |
| for (int i = 0; i < 4; ++i) { |
| *vb << deviceQuad->x(i) |
| << deviceQuad->y(i) |
| << localQuad->x(i) |
| << localQuad->y(i) |
| << texSubset; |
| } |
| } |
| |
| // 2D (XY), no explicit coverage, UV locals, vertex color, tex subset but no geometry subset |
| // This represents transparent, non AA (or AA with cov. as alpha), textured rects with strict sample |
| void write_2d_color_uv_strict(VertexWriter* vb, |
| const VertexSpec& spec, |
| const GrQuad* deviceQuad, |
| const GrQuad* localQuad, |
| const float coverage[4], |
| const SkPMColor4f& color, |
| const SkRect& geomSubset, |
| const SkRect& texSubset) { |
| // Assert assumptions about VertexSpec |
| SkASSERT(spec.deviceQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.hasLocalCoords() && spec.localQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.coverageMode() == CoverageMode::kNone || |
| spec.coverageMode() == CoverageMode::kWithColor); |
| SkASSERT(spec.hasVertexColors()); |
| SkASSERT(!spec.requiresGeometrySubset()); |
| SkASSERT(spec.hasSubset()); |
| SkASSERT(localQuad); |
| |
| bool wide = spec.colorType() == ColorType::kFloat; |
| for (int i = 0; i < 4; ++i) { |
| // If this is not coverage-with-alpha, make sure coverage == 1 so it doesn't do anything |
| SkASSERT(spec.coverageMode() == CoverageMode::kWithColor || coverage[i] == 1.f); |
| *vb << deviceQuad->x(i) |
| << deviceQuad->y(i) |
| << VertexColor(color * coverage[i], wide) |
| << localQuad->x(i) |
| << localQuad->y(i) |
| << texSubset; |
| } |
| } |
| |
| // 2D (XY), explicit coverage, UV locals, no color, tex subset but no geometry subset |
| // This represents opaque, AA, textured rects with strict uv sampling |
| void write_2d_cov_uv_strict(VertexWriter* vb, |
| const VertexSpec& spec, |
| const GrQuad* deviceQuad, |
| const GrQuad* localQuad, |
| const float coverage[4], |
| const SkPMColor4f& color, |
| const SkRect& geomSubset, |
| const SkRect& texSubset) { |
| // Assert assumptions about VertexSpec |
| SkASSERT(spec.deviceQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.hasLocalCoords() && spec.localQuadType() != GrQuad::Type::kPerspective); |
| SkASSERT(spec.coverageMode() == CoverageMode::kWithPosition); |
| SkASSERT(!spec.hasVertexColors()); |
| SkASSERT(!spec.requiresGeometrySubset()); |
| SkASSERT(spec.hasSubset()); |
| SkASSERT(localQuad); |
| |
| for (int i = 0; i < 4; ++i) { |
| *vb << deviceQuad->x(i) |
| << deviceQuad->y(i) |
| << coverage[i] |
| << localQuad->x(i) |
| << localQuad->y(i) |
| << texSubset; |
| } |
| } |
| |
| } // anonymous namespace |
| |
| IndexBufferOption CalcIndexBufferOption(GrAAType aa, int numQuads) { |
| if (aa == GrAAType::kCoverage) { |
| return IndexBufferOption::kPictureFramed; |
| } else if (numQuads > 1) { |
| return IndexBufferOption::kIndexedRects; |
| } else { |
| return IndexBufferOption::kTriStrips; |
| } |
| } |
| |
| // This is a more elaborate version of fitsInBytes() that allows "no color" for white |
| ColorType MinColorType(SkPMColor4f color) { |
| if (color == SK_PMColor4fWHITE) { |
| return ColorType::kNone; |
| } else { |
| return color.fitsInBytes() ? ColorType::kByte : ColorType::kFloat; |
| } |
| } |
| |
| ////////////////// Tessellator Implementation |
| |
| Tessellator::WriteQuadProc Tessellator::GetWriteQuadProc(const VertexSpec& spec) { |
| // All specialized writing functions requires 2D geometry and no geometry subset. This is not |
| // the same as just checking device type vs. kRectilinear since non-AA general 2D quads do not |
| // require a geometry subset and could then go through a fast path. |
| if (spec.deviceQuadType() != GrQuad::Type::kPerspective && !spec.requiresGeometrySubset()) { |
| CoverageMode mode = spec.coverageMode(); |
| if (spec.hasVertexColors()) { |
| if (mode != CoverageMode::kWithPosition) { |
| // Vertex colors, but no explicit coverage |
| if (!spec.hasLocalCoords()) { |
| // Non-UV with vertex colors (possibly with coverage folded into alpha) |
| return write_2d_color; |
| } else if (spec.localQuadType() != GrQuad::Type::kPerspective) { |
| // UV locals with vertex colors (possibly with coverage-as-alpha) |
| return spec.hasSubset() ? write_2d_color_uv_strict : write_2d_color_uv; |
| } |
| } |
| // Else fall through; this is a spec that requires vertex colors and explicit coverage, |
| // which means it's anti-aliased and the FPs don't support coverage as alpha, or |
| // it uses 3D local coordinates. |
| } else if (spec.hasLocalCoords() && spec.localQuadType() != GrQuad::Type::kPerspective) { |
| if (mode == CoverageMode::kWithPosition) { |
| // UV locals with explicit coverage |
| return spec.hasSubset() ? write_2d_cov_uv_strict : write_2d_cov_uv; |
| } else { |
| SkASSERT(mode == CoverageMode::kNone); |
| return spec.hasSubset() ? write_2d_uv_strict : write_2d_uv; |
| } |
| } |
| // Else fall through to generic vertex function; this is a spec that has no vertex colors |
| // and [no|uvr] local coords, which doesn't happen often enough to warrant specialization. |
| } |
| |
| // Arbitrary spec hits the slow path |
| return write_quad_generic; |
| } |
| |
| Tessellator::Tessellator(const VertexSpec& spec, char* vertices) |
| : fVertexSpec(spec) |
| , fVertexWriter{vertices} |
| , fWriteProc(Tessellator::GetWriteQuadProc(spec)) {} |
| |
| void Tessellator::append(GrQuad* deviceQuad, GrQuad* localQuad, |
| const SkPMColor4f& color, const SkRect& uvSubset, GrQuadAAFlags aaFlags) { |
| // We allow Tessellator to be created with a null vertices pointer for convenience, but it is |
| // assumed it will never actually be used in those cases. |
| SkASSERT(fVertexWriter); |
| SkASSERT(deviceQuad->quadType() <= fVertexSpec.deviceQuadType()); |
| SkASSERT(localQuad || !fVertexSpec.hasLocalCoords()); |
| SkASSERT(!fVertexSpec.hasLocalCoords() || localQuad->quadType() <= fVertexSpec.localQuadType()); |
| |
| static const float kFullCoverage[4] = {1.f, 1.f, 1.f, 1.f}; |
| static const float kZeroCoverage[4] = {0.f, 0.f, 0.f, 0.f}; |
| static const SkRect kIgnoredSubset = SkRect::MakeEmpty(); |
| |
| if (fVertexSpec.usesCoverageAA()) { |
| SkASSERT(fVertexSpec.coverageMode() == CoverageMode::kWithColor || |
| fVertexSpec.coverageMode() == CoverageMode::kWithPosition); |
| // Must calculate inner and outer quadrilaterals for the vertex coverage ramps, and possibly |
| // a geometry subset if corners are not right angles |
| SkRect geomSubset; |
| if (fVertexSpec.requiresGeometrySubset()) { |
| // Our GP code expects a 0.5 outset rect (coverage is computed as 0 at the values of |
| // the uniform). However, if we have quad edges that aren't supposed to be antialiased |
| // they may lie close to the bounds. So in that case we outset by an additional 0.5. |
| // This is a sort of backup clipping mechanism for cases where quad outsetting of nearly |
| // parallel edges produces long thin extrusions from the original geometry. |
| float outset = aaFlags == GrQuadAAFlags::kAll ? 0.5f : 1.f; |
| geomSubset = deviceQuad->bounds().makeOutset(outset, outset); |
| } |
| |
| if (aaFlags == GrQuadAAFlags::kNone) { |
| // Have to write the coverage AA vertex structure, but there's no math to be done for a |
| // non-aa quad batched into a coverage AA op. |
| fWriteProc(&fVertexWriter, fVertexSpec, deviceQuad, localQuad, kFullCoverage, color, |
| geomSubset, uvSubset); |
| // Since we pass the same corners in, the outer vertex structure will have 0 area and |
| // the coverage interpolation from 1 to 0 will not be visible. |
| fWriteProc(&fVertexWriter, fVertexSpec, deviceQuad, localQuad, kZeroCoverage, color, |
| geomSubset, uvSubset); |
| } else { |
| // Reset the tessellation helper to match the current geometry |
| fAAHelper.reset(*deviceQuad, localQuad); |
| |
| // Edge inset/outset distance ordered LBTR, set to 0.5 for a half pixel if the AA flag |
| // is turned on, or 0.0 if the edge is not anti-aliased. |
| skvx::Vec<4, float> edgeDistances; |
| if (aaFlags == GrQuadAAFlags::kAll) { |
| edgeDistances = 0.5f; |
| } else { |
| edgeDistances = { (aaFlags & GrQuadAAFlags::kLeft) ? 0.5f : 0.f, |
| (aaFlags & GrQuadAAFlags::kBottom) ? 0.5f : 0.f, |
| (aaFlags & GrQuadAAFlags::kTop) ? 0.5f : 0.f, |
| (aaFlags & GrQuadAAFlags::kRight) ? 0.5f : 0.f }; |
| } |
| |
| // Write inner vertices first |
| float coverage[4]; |
| fAAHelper.inset(edgeDistances, deviceQuad, localQuad).store(coverage); |
| fWriteProc(&fVertexWriter, fVertexSpec, deviceQuad, localQuad, coverage, color, |
| geomSubset, uvSubset); |
| |
| // Then outer vertices, which use 0.f for their coverage. If the inset was degenerate |
| // to a line (had all coverages < 1), tweak the outset distance so the outer frame's |
| // narrow axis reaches out to 2px, which gives better animation under translation. |
| const bool hairline = aaFlags == GrQuadAAFlags::kAll && |
| coverage[0] < 1.f && |
| coverage[1] < 1.f && |
| coverage[2] < 1.f && |
| coverage[3] < 1.f; |
| if (hairline) { |
| skvx::Vec<4, float> len = fAAHelper.getEdgeLengths(); |
| // Using max guards us against trying to scale a degenerate triangle edge of 0 len |
| // up to 2px. The shuffles are so that edge 0's adjustment is based on the lengths |
| // of its connecting edges (1 and 2), and so forth. |
| skvx::Vec<4, float> maxWH = max(skvx::shuffle<1, 0, 3, 2>(len), |
| skvx::shuffle<2, 3, 0, 1>(len)); |
| // wh + 2e' = 2, so e' = (2 - wh) / 2 => e' = e * (2 - wh). But if w or h > 1, then |
| // 2 - wh < 1 and represents the non-narrow axis so clamp to 1. |
| edgeDistances *= max(1.f, 2.f - maxWH); |
| } |
| fAAHelper.outset(edgeDistances, deviceQuad, localQuad); |
| fWriteProc(&fVertexWriter, fVertexSpec, deviceQuad, localQuad, kZeroCoverage, color, |
| geomSubset, uvSubset); |
| } |
| } else { |
| // No outsetting needed, just write a single quad with full coverage |
| SkASSERT(fVertexSpec.coverageMode() == CoverageMode::kNone && |
| !fVertexSpec.requiresGeometrySubset()); |
| fWriteProc(&fVertexWriter, fVertexSpec, deviceQuad, localQuad, kFullCoverage, color, |
| kIgnoredSubset, uvSubset); |
| } |
| } |
| |
| sk_sp<const GrBuffer> GetIndexBuffer(GrMeshDrawTarget* target, |
| IndexBufferOption indexBufferOption) { |
| auto resourceProvider = target->resourceProvider(); |
| |
| switch (indexBufferOption) { |
| case IndexBufferOption::kPictureFramed: return resourceProvider->refAAQuadIndexBuffer(); |
| case IndexBufferOption::kIndexedRects: return resourceProvider->refNonAAQuadIndexBuffer(); |
| case IndexBufferOption::kTriStrips: // fall through |
| default: return nullptr; |
| } |
| } |
| |
| int QuadLimit(IndexBufferOption option) { |
| switch (option) { |
| case IndexBufferOption::kPictureFramed: return GrResourceProvider::MaxNumAAQuads(); |
| case IndexBufferOption::kIndexedRects: return GrResourceProvider::MaxNumNonAAQuads(); |
| case IndexBufferOption::kTriStrips: return SK_MaxS32; // not limited by an indexBuffer |
| } |
| |
| SkUNREACHABLE; |
| } |
| |
| void IssueDraw(const GrCaps& caps, GrOpsRenderPass* renderPass, const VertexSpec& spec, |
| int runningQuadCount, int quadsInDraw, int maxVerts, int absVertBufferOffset) { |
| if (spec.indexBufferOption() == IndexBufferOption::kTriStrips) { |
| int offset = absVertBufferOffset + |
| runningQuadCount * GrResourceProvider::NumVertsPerNonAAQuad(); |
| renderPass->draw(4, offset); |
| return; |
| } |
| |
| SkASSERT(spec.indexBufferOption() == IndexBufferOption::kPictureFramed || |
| spec.indexBufferOption() == IndexBufferOption::kIndexedRects); |
| |
| int maxNumQuads, numIndicesPerQuad, numVertsPerQuad; |
| |
| if (spec.indexBufferOption() == IndexBufferOption::kPictureFramed) { |
| // AA uses 8 vertices and 30 indices per quad, basically nested rectangles |
| maxNumQuads = GrResourceProvider::MaxNumAAQuads(); |
| numIndicesPerQuad = GrResourceProvider::NumIndicesPerAAQuad(); |
| numVertsPerQuad = GrResourceProvider::NumVertsPerAAQuad(); |
| } else { |
| // Non-AA uses 4 vertices and 6 indices per quad |
| maxNumQuads = GrResourceProvider::MaxNumNonAAQuads(); |
| numIndicesPerQuad = GrResourceProvider::NumIndicesPerNonAAQuad(); |
| numVertsPerQuad = GrResourceProvider::NumVertsPerNonAAQuad(); |
| } |
| |
| SkASSERT(runningQuadCount + quadsInDraw <= maxNumQuads); |
| |
| if (caps.avoidLargeIndexBufferDraws()) { |
| // When we need to avoid large index buffer draws we modify the base vertex of the draw |
| // which, in GL, requires rebinding all vertex attrib arrays, so a base index is generally |
| // preferred. |
| int offset = absVertBufferOffset + runningQuadCount * numVertsPerQuad; |
| |
| renderPass->drawIndexPattern(numIndicesPerQuad, quadsInDraw, maxNumQuads, numVertsPerQuad, |
| offset); |
| } else { |
| int baseIndex = runningQuadCount * numIndicesPerQuad; |
| int numIndicesToDraw = quadsInDraw * numIndicesPerQuad; |
| |
| int minVertex = runningQuadCount * numVertsPerQuad; |
| int maxVertex = (runningQuadCount + quadsInDraw) * numVertsPerQuad - 1; // inclusive |
| |
| renderPass->drawIndexed(numIndicesToDraw, baseIndex, minVertex, maxVertex, |
| absVertBufferOffset); |
| } |
| } |
| |
| ////////////////// VertexSpec Implementation |
| |
| int VertexSpec::deviceDimensionality() const { |
| return this->deviceQuadType() == GrQuad::Type::kPerspective ? 3 : 2; |
| } |
| |
| int VertexSpec::localDimensionality() const { |
| return fHasLocalCoords ? (this->localQuadType() == GrQuad::Type::kPerspective ? 3 : 2) : 0; |
| } |
| |
| CoverageMode VertexSpec::coverageMode() const { |
| if (this->usesCoverageAA()) { |
| if (this->compatibleWithCoverageAsAlpha() && this->hasVertexColors() && |
| !this->requiresGeometrySubset()) { |
| // Using a geometric subset acts as a second source of coverage and folding |
| // the original coverage into color makes it impossible to apply the color's |
| // alpha to the geometric subset's coverage when the original shape is clipped. |
| return CoverageMode::kWithColor; |
| } else { |
| return CoverageMode::kWithPosition; |
| } |
| } else { |
| return CoverageMode::kNone; |
| } |
| } |
| |
| // This needs to stay in sync w/ QuadPerEdgeAAGeometryProcessor::initializeAttrs |
| size_t VertexSpec::vertexSize() const { |
| bool needsPerspective = (this->deviceDimensionality() == 3); |
| CoverageMode coverageMode = this->coverageMode(); |
| |
| size_t count = 0; |
| |
| if (coverageMode == CoverageMode::kWithPosition) { |
| if (needsPerspective) { |
| count += GrVertexAttribTypeSize(kFloat4_GrVertexAttribType); |
| } else { |
| count += GrVertexAttribTypeSize(kFloat2_GrVertexAttribType) + |
| GrVertexAttribTypeSize(kFloat_GrVertexAttribType); |
| } |
| } else { |
| if (needsPerspective) { |
| count += GrVertexAttribTypeSize(kFloat3_GrVertexAttribType); |
| } else { |
| count += GrVertexAttribTypeSize(kFloat2_GrVertexAttribType); |
| } |
| } |
| |
| if (this->requiresGeometrySubset()) { |
| count += GrVertexAttribTypeSize(kFloat4_GrVertexAttribType); |
| } |
| |
| count += this->localDimensionality() * GrVertexAttribTypeSize(kFloat_GrVertexAttribType); |
| |
| if (ColorType::kByte == this->colorType()) { |
| count += GrVertexAttribTypeSize(kUByte4_norm_GrVertexAttribType); |
| } else if (ColorType::kFloat == this->colorType()) { |
| count += GrVertexAttribTypeSize(kFloat4_GrVertexAttribType); |
| } |
| |
| if (this->hasSubset()) { |
| count += GrVertexAttribTypeSize(kFloat4_GrVertexAttribType); |
| } |
| |
| return count; |
| } |
| |
| ////////////////// Geometry Processor Implementation |
| |
| class QuadPerEdgeAAGeometryProcessor : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, const VertexSpec& spec) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) QuadPerEdgeAAGeometryProcessor(spec); |
| }); |
| } |
| |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, |
| const VertexSpec& vertexSpec, |
| const GrShaderCaps& caps, |
| const GrBackendFormat& backendFormat, |
| GrSamplerState samplerState, |
| const skgpu::Swizzle& swizzle, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform, |
| Saturate saturate) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) QuadPerEdgeAAGeometryProcessor( |
| vertexSpec, caps, backendFormat, samplerState, swizzle, |
| std::move(textureColorSpaceXform), saturate); |
| }); |
| } |
| |
| const char* name() const override { return "QuadPerEdgeAAGeometryProcessor"; } |
| |
| void addToKey(const GrShaderCaps&, KeyBuilder* b) const override { |
| // texturing, device-dimensions are single bit flags |
| b->addBool(fTexSubset.isInitialized(), "subset"); |
| b->addBool(fSampler.isInitialized(), "textured"); |
| b->addBool(fNeedsPerspective, "perspective"); |
| b->addBool((fSaturate == Saturate::kYes), "saturate"); |
| |
| b->addBool(fLocalCoord.isInitialized(), "hasLocalCoords"); |
| if (fLocalCoord.isInitialized()) { |
| // 2D (0) or 3D (1) |
| b->addBits(1, (kFloat3_GrVertexAttribType == fLocalCoord.cpuType()), "localCoordsType"); |
| } |
| b->addBool(fColor.isInitialized(), "hasColor"); |
| if (fColor.isInitialized()) { |
| // bytes (0) or floats (1) |
| b->addBits(1, (kFloat4_GrVertexAttribType == fColor.cpuType()), "colorType"); |
| } |
| // and coverage mode, 00 for none, 01 for withposition, 10 for withcolor, 11 for |
| // position+geomsubset |
| uint32_t coverageKey = 0; |
| SkASSERT(!fGeomSubset.isInitialized() || fCoverageMode == CoverageMode::kWithPosition); |
| if (fCoverageMode != CoverageMode::kNone) { |
| coverageKey = fGeomSubset.isInitialized() |
| ? 0x3 |
| : (CoverageMode::kWithPosition == fCoverageMode ? 0x1 : 0x2); |
| } |
| b->addBits(2, coverageKey, "coverageMode"); |
| |
| b->add32(GrColorSpaceXform::XformKey(fTextureColorSpaceXform.get()), "colorSpaceXform"); |
| } |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const override { |
| class Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps&, |
| const GrGeometryProcessor& geomProc) override { |
| const auto& gp = geomProc.cast<QuadPerEdgeAAGeometryProcessor>(); |
| fTextureColorSpaceXformHelper.setData(pdman, gp.fTextureColorSpaceXform.get()); |
| } |
| |
| private: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| using Interpolation = GrGLSLVaryingHandler::Interpolation; |
| |
| const auto& gp = args.fGeomProc.cast<QuadPerEdgeAAGeometryProcessor>(); |
| fTextureColorSpaceXformHelper.emitCode(args.fUniformHandler, |
| gp.fTextureColorSpaceXform.get()); |
| |
| args.fVaryingHandler->emitAttributes(gp); |
| |
| if (gp.fCoverageMode == CoverageMode::kWithPosition) { |
| // Strip last channel from the vertex attribute to remove coverage and get the |
| // actual position |
| if (gp.fNeedsPerspective) { |
| args.fVertBuilder->codeAppendf("float3 position = %s.xyz;", |
| gp.fPosition.name()); |
| } else { |
| args.fVertBuilder->codeAppendf("float2 position = %s.xy;", |
| gp.fPosition.name()); |
| } |
| gpArgs->fPositionVar = {"position", |
| gp.fNeedsPerspective ? SkSLType::kFloat3 |
| : SkSLType::kFloat2, |
| GrShaderVar::TypeModifier::None}; |
| } else { |
| // No coverage to eliminate |
| gpArgs->fPositionVar = gp.fPosition.asShaderVar(); |
| } |
| |
| // This attribute will be uninitialized if earlier FP analysis determined no |
| // local coordinates are needed (and this will not include the inline texture |
| // fetch this GP does before invoking FPs). |
| gpArgs->fLocalCoordVar = gp.fLocalCoord.asShaderVar(); |
| |
| // Solid color before any texturing gets modulated in |
| const char* blendDst; |
| if (gp.fColor.isInitialized()) { |
| SkASSERT(gp.fCoverageMode != CoverageMode::kWithColor || !gp.fNeedsPerspective); |
| // The color cannot be flat if the varying coverage has been modulated into it |
| args.fFragBuilder->codeAppendf("half4 %s;", args.fOutputColor); |
| args.fVaryingHandler->addPassThroughAttribute( |
| gp.fColor.asShaderVar(), |
| args.fOutputColor, |
| gp.fCoverageMode == CoverageMode::kWithColor |
| ? Interpolation::kInterpolated |
| : Interpolation::kCanBeFlat); |
| blendDst = args.fOutputColor; |
| } else { |
| // Output color must be initialized to something |
| args.fFragBuilder->codeAppendf("half4 %s = half4(1);", args.fOutputColor); |
| blendDst = nullptr; |
| } |
| |
| // If there is a texture, must also handle texture coordinates and reading from |
| // the texture in the fragment shader before continuing to fragment processors. |
| if (gp.fSampler.isInitialized()) { |
| // Texture coordinates clamped by the subset on the fragment shader; if the GP |
| // has a texture, it's guaranteed to have local coordinates |
| args.fFragBuilder->codeAppend("float2 texCoord;"); |
| if (gp.fLocalCoord.cpuType() == kFloat3_GrVertexAttribType) { |
| // Can't do a pass through since we need to perform perspective division |
| GrGLSLVarying v(gp.fLocalCoord.gpuType()); |
| args.fVaryingHandler->addVarying(gp.fLocalCoord.name(), &v); |
| args.fVertBuilder->codeAppendf("%s = %s;", |
| v.vsOut(), gp.fLocalCoord.name()); |
| args.fFragBuilder->codeAppendf("texCoord = %s.xy / %s.z;", |
| v.fsIn(), v.fsIn()); |
| } else { |
| args.fVaryingHandler->addPassThroughAttribute(gp.fLocalCoord.asShaderVar(), |
| "texCoord"); |
| } |
| |
| // Clamp the now 2D localCoordName variable by the subset if it is provided |
| if (gp.fTexSubset.isInitialized()) { |
| args.fFragBuilder->codeAppend("float4 subset;"); |
| args.fVaryingHandler->addPassThroughAttribute(gp.fTexSubset.asShaderVar(), |
| "subset", |
| Interpolation::kCanBeFlat); |
| args.fFragBuilder->codeAppend( |
| "texCoord = clamp(texCoord, subset.LT, subset.RB);"); |
| } |
| |
| // Now modulate the starting output color by the texture lookup |
| args.fFragBuilder->codeAppendf( |
| "%s = %s(", |
| args.fOutputColor, |
| (gp.fSaturate == Saturate::kYes) ? "saturate" : ""); |
| args.fFragBuilder->appendTextureLookupAndBlend( |
| blendDst, SkBlendMode::kModulate, args.fTexSamplers[0], |
| "texCoord", &fTextureColorSpaceXformHelper); |
| args.fFragBuilder->codeAppend(");"); |
| } else { |
| // Saturate is only intended for use with a proxy to account for the fact |
| // that TextureOp skips SkPaint conversion, which normally handles this. |
| SkASSERT(gp.fSaturate == Saturate::kNo); |
| } |
| |
| // And lastly, output the coverage calculation code |
| if (gp.fCoverageMode == CoverageMode::kWithPosition) { |
| GrGLSLVarying coverage(SkSLType::kFloat); |
| args.fVaryingHandler->addVarying("coverage", &coverage); |
| if (gp.fNeedsPerspective) { |
| // Multiply by "W" in the vertex shader, then by 1/w (sk_FragCoord.w) in |
| // the fragment shader to get screen-space linear coverage. |
| args.fVertBuilder->codeAppendf("%s = %s.w * %s.z;", |
| coverage.vsOut(), gp.fPosition.name(), |
| gp.fPosition.name()); |
| args.fFragBuilder->codeAppendf("float coverage = %s * sk_FragCoord.w;", |
| coverage.fsIn()); |
| } else { |
| args.fVertBuilder->codeAppendf("%s = %s;", |
| coverage.vsOut(), gp.fCoverage.name()); |
| args.fFragBuilder->codeAppendf("float coverage = %s;", coverage.fsIn()); |
| } |
| |
| if (gp.fGeomSubset.isInitialized()) { |
| // Calculate distance from sk_FragCoord to the 4 edges of the subset |
| // and clamp them to (0, 1). Use the minimum of these and the original |
| // coverage. This only has to be done in the exterior triangles, the |
| // interior of the quad geometry can never be clipped by the subset box. |
| args.fFragBuilder->codeAppend("float4 geoSubset;"); |
| args.fVaryingHandler->addPassThroughAttribute(gp.fGeomSubset.asShaderVar(), |
| "geoSubset", |
| Interpolation::kCanBeFlat); |
| args.fFragBuilder->codeAppend( |
| // This is lifted from GrFragmentProcessor::Rect. |
| "float4 dists4 = saturate(float4(1, 1, -1, -1) * " |
| "(sk_FragCoord.xyxy - geoSubset));" |
| "float2 dists2 = dists4.xy + dists4.zw - 1;" |
| "coverage = min(coverage, dists2.x * dists2.y);"); |
| } |
| |
| args.fFragBuilder->codeAppendf("half4 %s = half4(coverage);", |
| args.fOutputCoverage); |
| } else { |
| // Set coverage to 1, since it's either non-AA or the coverage was already |
| // folded into the output color |
| SkASSERT(!gp.fGeomSubset.isInitialized()); |
| args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", |
| args.fOutputCoverage); |
| } |
| } |
| |
| GrGLSLColorSpaceXformHelper fTextureColorSpaceXformHelper; |
| }; |
| |
| return std::make_unique<Impl>(); |
| } |
| |
| private: |
| using Saturate = skgpu::ganesh::TextureOp::Saturate; |
| |
| QuadPerEdgeAAGeometryProcessor(const VertexSpec& spec) |
| : INHERITED(kQuadPerEdgeAAGeometryProcessor_ClassID) |
| , fTextureColorSpaceXform(nullptr) { |
| SkASSERT(!spec.hasSubset()); |
| this->initializeAttrs(spec); |
| this->setTextureSamplerCnt(0); |
| } |
| |
| QuadPerEdgeAAGeometryProcessor(const VertexSpec& spec, |
| const GrShaderCaps& caps, |
| const GrBackendFormat& backendFormat, |
| GrSamplerState samplerState, |
| const skgpu::Swizzle& swizzle, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform, |
| Saturate saturate) |
| : INHERITED(kQuadPerEdgeAAGeometryProcessor_ClassID) |
| , fSaturate(saturate) |
| , fTextureColorSpaceXform(std::move(textureColorSpaceXform)) |
| , fSampler(samplerState, backendFormat, swizzle) { |
| SkASSERT(spec.hasLocalCoords()); |
| this->initializeAttrs(spec); |
| this->setTextureSamplerCnt(1); |
| } |
| |
| // This needs to stay in sync w/ VertexSpec::vertexSize |
| void initializeAttrs(const VertexSpec& spec) { |
| fNeedsPerspective = spec.deviceDimensionality() == 3; |
| fCoverageMode = spec.coverageMode(); |
| |
| if (fCoverageMode == CoverageMode::kWithPosition) { |
| if (fNeedsPerspective) { |
| fPosition = {"positionWithCoverage", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| } else { |
| fPosition = {"position", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| fCoverage = {"coverage", kFloat_GrVertexAttribType, SkSLType::kFloat}; |
| } |
| } else { |
| if (fNeedsPerspective) { |
| fPosition = {"position", kFloat3_GrVertexAttribType, SkSLType::kFloat3}; |
| } else { |
| fPosition = {"position", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| } |
| } |
| |
| // Need a geometry subset when the quads are AA and not rectilinear, since their AA |
| // outsetting can go beyond a half pixel. |
| if (spec.requiresGeometrySubset()) { |
| fGeomSubset = {"geomSubset", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| } |
| |
| int localDim = spec.localDimensionality(); |
| if (localDim == 3) { |
| fLocalCoord = {"localCoord", kFloat3_GrVertexAttribType, SkSLType::kFloat3}; |
| } else if (localDim == 2) { |
| fLocalCoord = {"localCoord", kFloat2_GrVertexAttribType, SkSLType::kFloat2}; |
| } // else localDim == 0 and attribute remains uninitialized |
| |
| if (spec.hasVertexColors()) { |
| fColor = MakeColorAttribute("color", ColorType::kFloat == spec.colorType()); |
| } |
| |
| if (spec.hasSubset()) { |
| fTexSubset = {"texSubset", kFloat4_GrVertexAttribType, SkSLType::kFloat4}; |
| } |
| |
| this->setVertexAttributesWithImplicitOffsets(&fPosition, 6); |
| } |
| |
| const TextureSampler& onTextureSampler(int) const override { return fSampler; } |
| |
| Attribute fPosition; // May contain coverage as last channel |
| Attribute fCoverage; // Used for non-perspective position to avoid Intel Metal issues |
| Attribute fColor; // May have coverage modulated in if the FPs support it |
| Attribute fLocalCoord; |
| Attribute fGeomSubset; // Screen-space bounding box on geometry+aa outset |
| Attribute fTexSubset; // Texture-space bounding box on local coords |
| |
| // The positions attribute may have coverage built into it, so float3 is an ambiguous type |
| // and may mean 2d with coverage, or 3d with no coverage |
| bool fNeedsPerspective; |
| // Should saturate() be called on the color? Only relevant when created with a texture. |
| Saturate fSaturate = Saturate::kNo; |
| CoverageMode fCoverageMode; |
| |
| // Color space will be null and fSampler.isInitialized() returns false when the GP is configured |
| // to skip texturing. |
| sk_sp<GrColorSpaceXform> fTextureColorSpaceXform; |
| TextureSampler fSampler; |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| |
| GrGeometryProcessor* MakeProcessor(SkArenaAlloc* arena, const VertexSpec& spec) { |
| return QuadPerEdgeAAGeometryProcessor::Make(arena, spec); |
| } |
| |
| GrGeometryProcessor* MakeTexturedProcessor(SkArenaAlloc* arena, |
| const VertexSpec& spec, |
| const GrShaderCaps& caps, |
| const GrBackendFormat& backendFormat, |
| GrSamplerState samplerState, |
| const skgpu::Swizzle& swizzle, |
| sk_sp<GrColorSpaceXform> textureColorSpaceXform, |
| Saturate saturate) { |
| return QuadPerEdgeAAGeometryProcessor::Make(arena, spec, caps, backendFormat, samplerState, |
| swizzle, std::move(textureColorSpaceXform), |
| saturate); |
| } |
| |
| } // namespace skgpu::ganesh::QuadPerEdgeAA |