| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkWriteBuffer.h" |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkData.h" |
| #include "include/core/SkFlattenable.h" |
| #include "include/core/SkImage.h" |
| #include "include/core/SkPoint.h" |
| #include "include/core/SkPoint3.h" |
| #include "include/core/SkRect.h" |
| #include "include/core/SkTypeface.h" |
| #include "include/private/base/SkAssert.h" |
| #include "include/private/base/SkTFitsIn.h" |
| #include "include/private/base/SkTo.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkMipmap.h" |
| #include "src/core/SkPaintPriv.h" |
| #include "src/core/SkPtrRecorder.h" |
| #include "src/image/SkImage_Base.h" |
| |
| #if !defined(SK_DISABLE_LEGACY_PNG_WRITEBUFFER) |
| #include "include/core/SkBitmap.h" |
| #include "include/core/SkStream.h" |
| #include "include/encode/SkPngEncoder.h" |
| #endif |
| |
| #include <cstring> |
| #include <utility> |
| |
| class SkMatrix; |
| class SkPaint; |
| class SkRegion; |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkBinaryWriteBuffer::SkBinaryWriteBuffer(const SkSerialProcs& p) |
| : SkWriteBuffer(p), fFactorySet(nullptr), fTFSet(nullptr) {} |
| |
| SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize, const SkSerialProcs& p) |
| : SkWriteBuffer(p), fFactorySet(nullptr), fTFSet(nullptr), fWriter(storage, storageSize) {} |
| |
| SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {} |
| |
| bool SkBinaryWriteBuffer::usingInitialStorage() const { |
| return fWriter.usingInitialStorage(); |
| } |
| |
| void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { |
| fWriter.write32(SkToU32(size)); |
| fWriter.writePad(data, size); |
| } |
| |
| void SkBinaryWriteBuffer::writeBool(bool value) { |
| fWriter.writeBool(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeScalar(SkScalar value) { |
| fWriter.writeScalar(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(value, count * sizeof(SkScalar)); |
| } |
| |
| void SkBinaryWriteBuffer::writeInt(int32_t value) { |
| fWriter.write32(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(value, count * sizeof(int32_t)); |
| } |
| |
| void SkBinaryWriteBuffer::writeUInt(uint32_t value) { |
| fWriter.write32(value); |
| } |
| |
| void SkBinaryWriteBuffer::writeString(std::string_view value) { |
| fWriter.writeString(value.data(), value.size()); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor(SkColor color) { |
| fWriter.write32(color); |
| } |
| |
| void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(color, count * sizeof(SkColor)); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { |
| fWriter.write(&color, sizeof(SkColor4f)); |
| } |
| |
| void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(color, count * sizeof(SkColor4f)); |
| } |
| |
| void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { |
| fWriter.writeScalar(point.fX); |
| fWriter.writeScalar(point.fY); |
| } |
| |
| void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) { |
| this->writePad32(&point, sizeof(SkPoint3)); |
| } |
| |
| void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { |
| fWriter.write32(count); |
| fWriter.write(point, count * sizeof(SkPoint)); |
| } |
| |
| void SkBinaryWriteBuffer::write(const SkM44& matrix) { |
| fWriter.write(SkMatrixPriv::M44ColMajor(matrix), sizeof(float) * 16); |
| } |
| |
| void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { |
| fWriter.writeMatrix(matrix); |
| } |
| |
| void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { |
| fWriter.write(&rect, sizeof(SkIRect)); |
| } |
| |
| void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { |
| fWriter.writeRect(rect); |
| } |
| |
| void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { |
| fWriter.writeRegion(region); |
| } |
| |
| void SkBinaryWriteBuffer::writeSampling(const SkSamplingOptions& sampling) { |
| fWriter.writeSampling(sampling); |
| } |
| |
| void SkBinaryWriteBuffer::writePath(const SkPath& path) { |
| fWriter.writePath(path); |
| } |
| |
| size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { |
| fWriter.write32(SkToU32(length)); |
| size_t bytesWritten = fWriter.readFromStream(stream, length); |
| if (bytesWritten < length) { |
| fWriter.reservePad(length - bytesWritten); |
| } |
| return bytesWritten; |
| } |
| |
| bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const { |
| return fWriter.writeToStream(stream); |
| } |
| |
| static sk_sp<SkData> serialize_image(const SkImage* image, SkSerialProcs procs) { |
| sk_sp<SkData> data; |
| if (procs.fImageProc) { |
| data = procs.fImageProc(const_cast<SkImage*>(image), procs.fImageCtx); |
| } |
| if (data) { |
| return data; |
| } |
| // Check to see if the image's source was an encoded block of data. |
| // If so, just use that. |
| data = image->refEncodedData(); |
| if (data) { |
| return data; |
| } |
| #if !defined(SK_DISABLE_LEGACY_PNG_WRITEBUFFER) |
| SkBitmap bm; |
| auto ib = as_IB(image); |
| if (!ib->getROPixels(ib->directContext(), &bm)) { |
| return nullptr; |
| } |
| SkDynamicMemoryWStream stream; |
| if (SkPngEncoder::Encode(&stream, bm.pixmap(), SkPngEncoder::Options())) { |
| return stream.detachAsData(); |
| } |
| #endif |
| return nullptr; |
| } |
| |
| static sk_sp<SkData> serialize_mipmap(const SkMipmap* mipmap, SkSerialProcs procs) { |
| /* Format |
| count_levels:32 |
| for each level, starting with the biggest (index 0 in our iterator) |
| encoded_size:32 |
| encoded_data (padded) |
| */ |
| const int count = mipmap->countLevels(); |
| |
| // This buffer does not need procs because it is just writing SkDatas |
| SkBinaryWriteBuffer buffer({}); |
| buffer.write32(count); |
| for (int i = 0; i < count; ++i) { |
| SkMipmap::Level level; |
| if (mipmap->getLevel(i, &level)) { |
| sk_sp<SkImage> levelImage = SkImages::RasterFromPixmap(level.fPixmap, nullptr, nullptr); |
| sk_sp<SkData> levelData = serialize_image(levelImage.get(), procs); |
| buffer.writeDataAsByteArray(levelData.get()); |
| } else { |
| return nullptr; |
| } |
| } |
| return buffer.snapshotAsData(); |
| } |
| |
| /* Format: |
| * flags: U32 |
| * encoded : size_32 + data[] |
| * [subset: IRect] |
| * [mips] : size_32 + data[] |
| */ |
| void SkBinaryWriteBuffer::writeImage(const SkImage* image) { |
| uint32_t flags = 0; |
| const SkMipmap* mips = as_IB(image)->onPeekMips(); |
| if (mips) { |
| flags |= SkWriteBufferImageFlags::kHasMipmap; |
| } |
| if (image->alphaType() == kUnpremul_SkAlphaType) { |
| flags |= SkWriteBufferImageFlags::kUnpremul; |
| } |
| |
| this->write32(flags); |
| |
| sk_sp<SkData> data = serialize_image(image, fProcs); |
| SkASSERT(data); |
| this->writeDataAsByteArray(data.get()); |
| |
| if (flags & SkWriteBufferImageFlags::kHasMipmap) { |
| sk_sp<SkData> mipData = serialize_mipmap(mips, fProcs); |
| this->writeDataAsByteArray(mipData.get()); |
| } |
| } |
| |
| void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { |
| // Write 32 bits (signed) |
| // 0 -- empty font |
| // >0 -- index |
| // <0 -- custom (serial procs) |
| |
| if (obj == nullptr) { |
| fWriter.write32(0); |
| } else if (fProcs.fTypefaceProc) { |
| auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); |
| if (data) { |
| size_t size = data->size(); |
| if (!SkTFitsIn<int32_t>(size)) { |
| size = 0; // fall back to default font |
| } |
| int32_t ssize = SkToS32(size); |
| fWriter.write32(-ssize); // negative to signal custom |
| if (size) { |
| this->writePad32(data->data(), size); |
| } |
| return; |
| } |
| // no data means fall through for std behavior |
| } |
| fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); |
| } |
| |
| void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { |
| SkPaintPriv::Flatten(paint, *this); |
| } |
| |
| void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) { |
| fFactorySet = std::move(rec); |
| } |
| |
| void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) { |
| fTFSet = std::move(rec); |
| } |
| |
| void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { |
| if (nullptr == flattenable) { |
| this->write32(0); |
| return; |
| } |
| |
| /* |
| * We can write 1 of 2 versions of the flattenable: |
| * |
| * 1. index into fFactorySet: This assumes the writer will later resolve the function-ptrs |
| * into strings for its reader. SkPicture does exactly this, by writing a table of names |
| * (matching the indices) up front in its serialized form. |
| * |
| * 2. string name of the flattenable or index into fFlattenableDict: We store the string to |
| * allow the reader to specify its own factories after write time. In order to improve |
| * compression, if we have already written the string, we write its index instead. |
| */ |
| |
| if (SkFlattenable::Factory factory = flattenable->getFactory(); factory && fFactorySet) { |
| this->write32(fFactorySet->add(factory)); |
| } else { |
| const char* name = flattenable->getTypeName(); |
| SkASSERT(name); |
| SkASSERT(0 != strcmp("", name)); |
| |
| if (uint32_t* indexPtr = fFlattenableDict.find(name)) { |
| // We will write the index as a 32-bit int. We want the first byte |
| // that we send to be zero - this will act as a sentinel that we |
| // have an index (not a string). This means that we will send the |
| // the index shifted left by 8. The remaining 24-bits should be |
| // plenty to store the index. Note that this strategy depends on |
| // being little endian, and type names being non-empty. |
| SkASSERT(0 == *indexPtr >> 24); |
| this->write32(*indexPtr << 8); |
| } else { |
| this->writeString(name); |
| fFlattenableDict.set(name, fFlattenableDict.count() + 1); |
| } |
| } |
| |
| // make room for the size of the flattened object |
| (void)fWriter.reserve(sizeof(uint32_t)); |
| // record the current size, so we can subtract after the object writes. |
| size_t offset = fWriter.bytesWritten(); |
| // now flatten the object |
| flattenable->flatten(*this); |
| size_t objSize = fWriter.bytesWritten() - offset; |
| // record the obj's size |
| fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); |
| } |