| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkReadBuffer.h" |
| |
| #include "include/core/SkAlphaType.h" |
| #include "include/core/SkData.h" |
| #include "include/core/SkImage.h" |
| #include "include/core/SkImageGenerator.h" |
| #include "include/core/SkImageInfo.h" |
| #include "include/core/SkM44.h" |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkPath.h" |
| #include "include/core/SkPixmap.h" |
| #include "include/core/SkPoint3.h" |
| #include "include/core/SkRRect.h" |
| #include "include/core/SkRegion.h" |
| #include "include/core/SkSize.h" |
| #include "include/core/SkString.h" |
| #include "include/core/SkTypeface.h" |
| #include "include/private/base/SkMalloc.h" |
| #include "src/base/SkAutoMalloc.h" |
| #include "src/base/SkMathPriv.h" |
| #include "src/base/SkSafeMath.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "src/core/SkMipmapBuilder.h" |
| #include "src/core/SkWriteBuffer.h" |
| |
| #include <memory> |
| #include <optional> |
| #include <utility> |
| |
| namespace { |
| // This generator intentionally should always fail on all attempts to get its pixels, |
| // simulating a bad or empty codec stream. |
| class EmptyImageGenerator final : public SkImageGenerator { |
| public: |
| EmptyImageGenerator(const SkImageInfo& info) : SkImageGenerator(info) { } |
| |
| }; |
| |
| static sk_sp<SkImage> MakeEmptyImage(int width, int height) { |
| return SkImages::DeferredFromGenerator( |
| std::make_unique<EmptyImageGenerator>(SkImageInfo::MakeN32Premul(width, height))); |
| } |
| |
| } // anonymous namespace |
| |
| void SkReadBuffer::setMemory(const void* data, size_t size) { |
| this->validate(IsPtrAlign4(data) && (SkAlign4(size) == size)); |
| if (!fError) { |
| fBase = fCurr = (const char*)data; |
| fStop = fBase + size; |
| } |
| } |
| |
| void SkReadBuffer::setInvalid() { |
| if (!fError) { |
| // When an error is found, send the read cursor to the end of the stream |
| fCurr = fStop; |
| fError = true; |
| } |
| } |
| |
| const void* SkReadBuffer::skip(size_t size) { |
| size_t inc = SkAlign4(size); |
| this->validate(inc >= size); |
| const void* addr = fCurr; |
| this->validate(IsPtrAlign4(addr) && this->isAvailable(inc)); |
| if (fError) { |
| return nullptr; |
| } |
| |
| fCurr += inc; |
| return addr; |
| } |
| |
| const void* SkReadBuffer::skip(size_t count, size_t size) { |
| return this->skip(SkSafeMath::Mul(count, size)); |
| } |
| |
| void SkReadBuffer::setDeserialProcs(const SkDeserialProcs& procs) { |
| fProcs = procs; |
| this->setAllowSkSL(procs.fAllowSkSL); |
| } |
| |
| bool SkReadBuffer::readBool() { |
| uint32_t value = this->readUInt(); |
| // Boolean value should be either 0 or 1 |
| this->validate(!(value & ~1)); |
| return value != 0; |
| } |
| |
| SkColor SkReadBuffer::readColor() { |
| return this->readUInt(); |
| } |
| |
| int32_t SkReadBuffer::readInt() { |
| const size_t inc = sizeof(int32_t); |
| if (!this->validate(IsPtrAlign4(fCurr) && this->isAvailable(inc))) { |
| return 0; |
| } |
| int32_t value = *((const int32_t*)fCurr); |
| fCurr += inc; |
| return value; |
| } |
| |
| SkScalar SkReadBuffer::readScalar() { |
| const size_t inc = sizeof(SkScalar); |
| if (!this->validate(IsPtrAlign4(fCurr) && this->isAvailable(inc))) { |
| return 0; |
| } |
| SkScalar value = *((const SkScalar*)fCurr); |
| fCurr += inc; |
| return value; |
| } |
| |
| uint32_t SkReadBuffer::readUInt() { |
| return this->readInt(); |
| } |
| |
| int32_t SkReadBuffer::read32() { |
| return this->readInt(); |
| } |
| |
| uint8_t SkReadBuffer::peekByte() { |
| if (this->available() <= 0) { |
| fError = true; |
| return 0; |
| } |
| return *((const uint8_t*)fCurr); |
| } |
| |
| bool SkReadBuffer::readPad32(void* buffer, size_t bytes) { |
| if (const void* src = this->skip(bytes)) { |
| // buffer might be null if bytes is zero (see SkAutoMalloc), hence we call |
| // the careful version of memcpy. |
| sk_careful_memcpy(buffer, src, bytes); |
| return true; |
| } |
| return false; |
| } |
| |
| const char* SkReadBuffer::readString(size_t* len) { |
| *len = this->readUInt(); |
| |
| // The string is len characters and a terminating \0. |
| const char* c_str = this->skipT<char>(*len+1); |
| |
| if (this->validate(c_str && c_str[*len] == '\0')) { |
| return c_str; |
| } |
| return nullptr; |
| } |
| |
| void SkReadBuffer::readString(SkString* string) { |
| size_t len; |
| if (const char* c_str = this->readString(&len)) { |
| string->set(c_str, len); |
| return; |
| } |
| string->reset(); |
| } |
| |
| void SkReadBuffer::readColor4f(SkColor4f* color) { |
| if (!this->readPad32(color, sizeof(SkColor4f))) { |
| *color = {0, 0, 0, 0}; |
| } |
| } |
| |
| void SkReadBuffer::readPoint(SkPoint* point) { |
| point->fX = this->readScalar(); |
| point->fY = this->readScalar(); |
| } |
| |
| void SkReadBuffer::readPoint3(SkPoint3* point) { |
| this->readPad32(point, sizeof(SkPoint3)); |
| } |
| |
| void SkReadBuffer::read(SkM44* matrix) { |
| if (this->isValid()) { |
| if (const float* m = (const float*)this->skip(sizeof(float) * 16)) { |
| *matrix = SkM44::ColMajor(m); |
| } |
| } |
| if (!this->isValid()) { |
| *matrix = SkM44(); |
| } |
| } |
| |
| void SkReadBuffer::readMatrix(SkMatrix* matrix) { |
| size_t size = 0; |
| if (this->isValid()) { |
| size = SkMatrixPriv::ReadFromMemory(matrix, fCurr, this->available()); |
| (void)this->validate((SkAlign4(size) == size) && (0 != size)); |
| } |
| if (!this->isValid()) { |
| matrix->reset(); |
| } |
| (void)this->skip(size); |
| } |
| |
| void SkReadBuffer::readIRect(SkIRect* rect) { |
| if (!this->readPad32(rect, sizeof(SkIRect))) { |
| rect->setEmpty(); |
| } |
| } |
| |
| void SkReadBuffer::readRect(SkRect* rect) { |
| if (!this->readPad32(rect, sizeof(SkRect))) { |
| rect->setEmpty(); |
| } |
| } |
| |
| SkRect SkReadBuffer::readRect() { |
| SkRect r; |
| if (!this->readPad32(&r, sizeof(SkRect))) { |
| r.setEmpty(); |
| } |
| return r; |
| } |
| |
| SkSamplingOptions SkReadBuffer::readSampling() { |
| if (!this->isVersionLT(SkPicturePriv::kAnisotropicFilter)) { |
| int maxAniso = this->readInt(); |
| if (maxAniso != 0) { |
| return SkSamplingOptions::Aniso(maxAniso); |
| } |
| } |
| if (this->readBool()) { |
| float B = this->readScalar(); |
| float C = this->readScalar(); |
| return SkSamplingOptions({B, C}); |
| } else { |
| SkFilterMode filter = this->read32LE(SkFilterMode::kLinear); |
| SkMipmapMode mipmap = this->read32LE(SkMipmapMode::kLinear); |
| return SkSamplingOptions(filter, mipmap); |
| } |
| } |
| |
| void SkReadBuffer::readRRect(SkRRect* rrect) { |
| size_t size = 0; |
| if (!fError) { |
| size = rrect->readFromMemory(fCurr, this->available()); |
| if (!this->validate((SkAlign4(size) == size) && (0 != size))) { |
| rrect->setEmpty(); |
| } |
| } |
| (void)this->skip(size); |
| } |
| |
| void SkReadBuffer::readRegion(SkRegion* region) { |
| size_t size = 0; |
| if (!fError) { |
| size = region->readFromMemory(fCurr, this->available()); |
| if (!this->validate((SkAlign4(size) == size) && (0 != size))) { |
| region->setEmpty(); |
| } |
| } |
| (void)this->skip(size); |
| } |
| |
| void SkReadBuffer::readPath(SkPath* path) { |
| size_t size = 0; |
| if (!fError) { |
| size = path->readFromMemory(fCurr, this->available()); |
| if (!this->validate((SkAlign4(size) == size) && (0 != size))) { |
| path->reset(); |
| } |
| } |
| (void)this->skip(size); |
| } |
| |
| bool SkReadBuffer::readArray(void* value, size_t size, size_t elementSize) { |
| const uint32_t count = this->readUInt(); |
| return this->validate(size == count) && |
| this->readPad32(value, SkSafeMath::Mul(size, elementSize)); |
| } |
| |
| bool SkReadBuffer::readByteArray(void* value, size_t size) { |
| return this->readArray(value, size, sizeof(uint8_t)); |
| } |
| |
| bool SkReadBuffer::readColorArray(SkColor* colors, size_t size) { |
| return this->readArray(colors, size, sizeof(SkColor)); |
| } |
| |
| bool SkReadBuffer::readColor4fArray(SkColor4f* colors, size_t size) { |
| return this->readArray(colors, size, sizeof(SkColor4f)); |
| } |
| |
| bool SkReadBuffer::readIntArray(int32_t* values, size_t size) { |
| return this->readArray(values, size, sizeof(int32_t)); |
| } |
| |
| bool SkReadBuffer::readPointArray(SkPoint* points, size_t size) { |
| return this->readArray(points, size, sizeof(SkPoint)); |
| } |
| |
| bool SkReadBuffer::readScalarArray(SkScalar* values, size_t size) { |
| return this->readArray(values, size, sizeof(SkScalar)); |
| } |
| |
| const void* SkReadBuffer::skipByteArray(size_t* size) { |
| const uint32_t count = this->readUInt(); |
| const void* buf = this->skip(count); |
| if (size) { |
| *size = this->isValid() ? count : 0; |
| } |
| return buf; |
| } |
| |
| sk_sp<SkData> SkReadBuffer::readByteArrayAsData() { |
| size_t numBytes = this->getArrayCount(); |
| if (!this->validate(this->isAvailable(numBytes))) { |
| return nullptr; |
| } |
| |
| SkAutoMalloc buffer(numBytes); |
| if (!this->readByteArray(buffer.get(), numBytes)) { |
| return nullptr; |
| } |
| return SkData::MakeFromMalloc(buffer.release(), numBytes); |
| } |
| |
| uint32_t SkReadBuffer::getArrayCount() { |
| const size_t inc = sizeof(uint32_t); |
| if (!this->validate(IsPtrAlign4(fCurr) && this->isAvailable(inc))) { |
| return 0; |
| } |
| return *((const uint32_t*)fCurr); |
| } |
| |
| static sk_sp<SkImage> deserialize_image(sk_sp<SkData> data, SkDeserialProcs dProcs, |
| std::optional<SkAlphaType> alphaType) { |
| sk_sp<SkImage> image; |
| if (dProcs.fImageDataProc) { |
| image = dProcs.fImageDataProc(data, alphaType, dProcs.fImageCtx); |
| } else if (dProcs.fImageProc) { |
| #if !defined(SK_LEGACY_DESERIAL_IMAGE_PROC) |
| image = dProcs.fImageProc(data->data(), data->size(), dProcs.fImageCtx); |
| #else |
| image = dProcs.fImageProc(data->data(), data->size(), alphaType, dProcs.fImageCtx); |
| #endif |
| } |
| if (image) { |
| return image; |
| } |
| #if !defined(SK_DISABLE_LEGACY_IMAGE_READBUFFER) |
| // The default implementation will encode to PNG unless the input SkImages came from |
| // a codec that was built-in (e.g. JPEG/WEBP). Thus, we should be sure to try all |
| // available codecs when reading images out of an SKP. |
| return SkImages::DeferredFromEncodedData(std::move(data), alphaType); |
| #else |
| SkDEBUGFAIL("Need to set image proc in SkDeserialProcs"); |
| return nullptr; |
| #endif |
| } |
| |
| static sk_sp<SkImage> add_mipmaps(sk_sp<SkImage> img, sk_sp<SkData> data, |
| SkDeserialProcs dProcs, std::optional<SkAlphaType> alphaType) { |
| SkMipmapBuilder builder(img->imageInfo()); |
| |
| SkReadBuffer buffer(data->data(), data->size()); |
| int count = buffer.read32(); |
| if (builder.countLevels() != count) { |
| return img; |
| } |
| for (int i = 0; i < count; ++i) { |
| size_t size = buffer.read32(); |
| const void* ptr = buffer.skip(size); |
| if (!ptr) { |
| return img; |
| } |
| // This use of SkData::MakeWithoutCopy is safe because the image goes |
| // out of scope after we read the pixels from it, so we are sure the |
| // data (from buffer) outlives the image. |
| sk_sp<SkImage> mip = deserialize_image(SkData::MakeWithoutCopy(ptr, size), dProcs, |
| alphaType); |
| if (!mip) { |
| return img; |
| } |
| |
| SkPixmap pm = builder.level(i); |
| if (mip->dimensions() != pm.dimensions()) { |
| return img; |
| } |
| if (!mip->readPixels(nullptr, pm, 0, 0)) { |
| return img; |
| } |
| } |
| if (!buffer.isValid()) { |
| return img; |
| } |
| sk_sp<SkImage> raster = img->makeRasterImage(); |
| if (!raster) { |
| return img; |
| } |
| sk_sp<SkImage> rasterWithMips = builder.attachTo(raster); |
| SkASSERT(rasterWithMips); // attachTo should never return null |
| return rasterWithMips; |
| } |
| |
| |
| // If we see a corrupt stream, we return null (fail). If we just fail trying to decode |
| // the image, we don't fail, but return a 1x1 empty image. |
| sk_sp<SkImage> SkReadBuffer::readImage() { |
| uint32_t flags = this->read32(); |
| |
| std::optional<SkAlphaType> alphaType = std::nullopt; |
| if (flags & SkWriteBufferImageFlags::kUnpremul) { |
| alphaType = kUnpremul_SkAlphaType; |
| } |
| sk_sp<SkImage> image; |
| { |
| sk_sp<SkData> data = this->readByteArrayAsData(); |
| if (!data) { |
| this->validate(false); |
| return nullptr; |
| } |
| image = deserialize_image(data, fProcs, alphaType); |
| } |
| |
| // This flag is not written by new SKPs anymore. |
| if (flags & SkWriteBufferImageFlags::kHasSubsetRect) { |
| SkIRect subset; |
| this->readIRect(&subset); |
| if (image) { |
| image = image->makeSubset(nullptr, subset); |
| } |
| } |
| |
| if (flags & SkWriteBufferImageFlags::kHasMipmap) { |
| sk_sp<SkData> data = this->readByteArrayAsData(); |
| if (!data) { |
| this->validate(false); |
| return nullptr; |
| } |
| if (image) { |
| image = add_mipmaps(image, std::move(data), fProcs, alphaType); |
| } |
| } |
| return image ? image : MakeEmptyImage(1, 1); |
| } |
| |
| sk_sp<SkTypeface> SkReadBuffer::readTypeface() { |
| // Read 32 bits (signed) |
| // 0 -- return null (empty font) |
| // >0 -- index |
| // <0 -- custom (serial procs) : negative size in bytes |
| |
| int32_t index = this->read32(); |
| if (index == 0) { |
| return nullptr; |
| } else if (index > 0) { |
| if (!this->validate(index <= fTFCount)) { |
| return nullptr; |
| } |
| return fTFArray[index - 1]; |
| } else { // custom |
| size_t size = sk_negate_to_size_t(index); |
| const void* data = this->skip(size); |
| if (!this->validate(data != nullptr && fProcs.fTypefaceProc)) { |
| return nullptr; |
| } |
| return fProcs.fTypefaceProc(data, size, fProcs.fTypefaceCtx); |
| } |
| } |
| |
| SkFlattenable* SkReadBuffer::readRawFlattenable() { |
| SkFlattenable::Factory factory = nullptr; |
| |
| if (fFactoryCount > 0) { |
| int32_t index = this->read32(); |
| if (0 == index || !this->isValid()) { |
| return nullptr; // writer failed to give us the flattenable |
| } |
| if (index < 0) { |
| this->validate(false); |
| return nullptr; |
| } |
| index -= 1; // we stored the index-base-1 |
| if ((unsigned)index >= (unsigned)fFactoryCount) { |
| this->validate(false); |
| return nullptr; |
| } |
| factory = fFactoryArray[index]; |
| } else { |
| if (this->peekByte() != 0) { |
| // If the first byte is non-zero, the flattenable is specified by a string. |
| size_t ignored_length; |
| if (const char* name = this->readString(&ignored_length)) { |
| factory = SkFlattenable::NameToFactory(name); |
| fFlattenableDict.set(fFlattenableDict.count() + 1, factory); |
| } |
| } else { |
| // Read the index. We are guaranteed that the first byte |
| // is zeroed, so we must shift down a byte. |
| uint32_t index = this->readUInt() >> 8; |
| if (index == 0) { |
| return nullptr; // writer failed to give us the flattenable |
| } |
| |
| if (SkFlattenable::Factory* found = fFlattenableDict.find(index)) { |
| factory = *found; |
| } |
| } |
| |
| if (!this->validate(factory != nullptr)) { |
| return nullptr; |
| } |
| } |
| |
| // if we get here, factory may still be null, but if that is the case, the |
| // failure was ours, not the writer. |
| sk_sp<SkFlattenable> obj; |
| uint32_t sizeRecorded = this->read32(); |
| if (factory) { |
| size_t offset = this->offset(); |
| obj = (*factory)(*this); |
| // check that we read the amount we expected |
| size_t sizeRead = this->offset() - offset; |
| if (sizeRecorded != sizeRead) { |
| this->validate(false); |
| return nullptr; |
| } |
| } else { |
| // we must skip the remaining data |
| this->skip(sizeRecorded); |
| } |
| if (!this->isValid()) { |
| return nullptr; |
| } |
| return obj.release(); |
| } |
| |
| SkFlattenable* SkReadBuffer::readFlattenable(SkFlattenable::Type ft) { |
| SkFlattenable* obj = this->readRawFlattenable(); |
| if (obj && obj->getFlattenableType() != ft) { |
| this->validate(false); |
| obj->unref(); |
| return nullptr; |
| } |
| return obj; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| int32_t SkReadBuffer::checkInt(int32_t min, int32_t max) { |
| SkASSERT(min <= max); |
| int32_t value = this->read32(); |
| if (value < min || value > max) { |
| this->validate(false); |
| value = min; |
| } |
| return value; |
| } |
| |
| SkLegacyFQ SkReadBuffer::checkFilterQuality() { |
| return this->checkRange<SkLegacyFQ>(kNone_SkLegacyFQ, kLast_SkLegacyFQ); |
| } |