| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkPoint3.h" |
| #include "include/private/base/SkFloatingPoint.h" |
| |
| #include <cmath> |
| |
| // Returns the square of the Euclidian distance to (x,y,z). |
| static inline float get_length_squared(float x, float y, float z) { |
| return x * x + y * y + z * z; |
| } |
| |
| // Calculates the square of the Euclidian distance to (x,y,z) and stores it in |
| // *lengthSquared. Returns true if the distance is judged to be "nearly zero". |
| // |
| // This logic is encapsulated in a helper method to make it explicit that we |
| // always perform this check in the same manner, to avoid inconsistencies |
| // (see http://code.google.com/p/skia/issues/detail?id=560 ). |
| static inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) { |
| *lengthSquared = get_length_squared(x, y, z); |
| return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
| } |
| |
| SkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) { |
| float magSq = get_length_squared(x, y, z); |
| if (SkIsFinite(magSq)) { |
| return std::sqrt(magSq); |
| } else { |
| double xx = x; |
| double yy = y; |
| double zz = z; |
| return (float)sqrt(xx * xx + yy * yy + zz * zz); |
| } |
| } |
| |
| /* |
| * We have to worry about 2 tricky conditions: |
| * 1. underflow of magSq (compared against nearlyzero^2) |
| * 2. overflow of magSq (compared w/ isfinite) |
| * |
| * If we underflow, we return false. If we overflow, we compute again using |
| * doubles, which is much slower (3x in a desktop test) but will not overflow. |
| */ |
| bool SkPoint3::normalize() { |
| float magSq; |
| if (is_length_nearly_zero(fX, fY, fZ, &magSq)) { |
| this->set(0, 0, 0); |
| return false; |
| } |
| // sqrtf does not provide enough precision; since sqrt takes a double, |
| // there's no additional penalty to storing invScale in a double |
| double invScale; |
| if (SkIsFinite(magSq)) { |
| invScale = magSq; |
| } else { |
| // our magSq step overflowed to infinity, so use doubles instead. |
| // much slower, but needed when x, y or z is very large, otherwise we |
| // divide by inf. and return (0,0,0) vector. |
| double xx = fX; |
| double yy = fY; |
| double zz = fZ; |
| invScale = xx * xx + yy * yy + zz * zz; |
| } |
| // using a float instead of a double for scale loses too much precision |
| double scale = 1 / sqrt(invScale); |
| fX *= scale; |
| fY *= scale; |
| fZ *= scale; |
| if (!SkIsFinite(fX, fY, fZ)) { |
| this->set(0, 0, 0); |
| return false; |
| } |
| return true; |
| } |