blob: 8299749f8e1434fc628294dbf1c21e766de19f3f [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkColor.h"
#include "include/core/SkColorPriv.h"
#include "include/core/SkColorType.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPixmap.h"
#include "include/core/SkRect.h"
#include "include/core/SkTypes.h"
#include "include/private/SkColorData.h"
#include "include/private/base/SkCPUTypes.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkTo.h"
#include "src/base/SkUtils.h"
#include "src/base/SkVx.h"
#include "src/core/SkBlitMask.h"
#include "src/core/SkBlitRow.h"
#include "src/core/SkCoreBlitters.h"
#include "src/core/SkMask.h"
#include "src/core/SkMemset.h"
#include "src/shaders/SkShaderBase.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
static inline int upscale_31_to_32(int value) {
SkASSERT((unsigned)value <= 31);
return value + (value >> 4);
}
static inline int blend_32(int src, int dst, int scale) {
SkASSERT((unsigned)src <= 0xFF);
SkASSERT((unsigned)dst <= 0xFF);
SkASSERT((unsigned)scale <= 32);
return dst + ((src - dst) * scale >> 5);
}
static inline SkPMColor blend_lcd16(int srcA, int srcR, int srcG, int srcB,
SkPMColor dst, uint16_t mask) {
if (mask == 0) {
return dst;
}
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = upscale_31_to_32(maskR);
maskG = upscale_31_to_32(maskG);
maskB = upscale_31_to_32(maskB);
// srcA has been upscaled to 256 before passed into this function
maskR = maskR * srcA >> 8;
maskG = maskG * srcA >> 8;
maskB = maskB * srcA >> 8;
int dstA = SkGetPackedA32(dst);
int dstR = SkGetPackedR32(dst);
int dstG = SkGetPackedG32(dst);
int dstB = SkGetPackedB32(dst);
// Subtract 1 from srcA to bring it back to [0-255] to compare against dstA, alpha needs to
// use either the min or the max of the LCD coverages. See https:/skbug.com/40037823
int maskA = (srcA-1) < dstA ? std::min(maskR, std::min(maskG, maskB))
: std::max(maskR, std::max(maskG, maskB));
return SkPackARGB32(blend_32(0xFF, dstA, maskA),
blend_32(srcR, dstR, maskR),
blend_32(srcG, dstG, maskG),
blend_32(srcB, dstB, maskB));
}
static inline SkPMColor blend_lcd16_opaque(int srcR, int srcG, int srcB,
SkPMColor dst, uint16_t mask,
SkPMColor opaqueDst) {
if (mask == 0) {
return dst;
}
if (0xFFFF == mask) {
return opaqueDst;
}
/* We want all of these in 5bits, hence the shifts in case one of them
* (green) is 6bits.
*/
int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend32
maskR = upscale_31_to_32(maskR);
maskG = upscale_31_to_32(maskG);
maskB = upscale_31_to_32(maskB);
int dstA = SkGetPackedA32(dst);
int dstR = SkGetPackedR32(dst);
int dstG = SkGetPackedG32(dst);
int dstB = SkGetPackedB32(dst);
// Opaque src alpha always uses the max of the LCD coverages.
int maskA = std::max(maskR, std::max(maskG, maskB));
// LCD blitting is only supported if the dst is known/required
// to be opaque
return SkPackARGB32(blend_32(0xFF, dstA, maskA),
blend_32(srcR, dstR, maskR),
blend_32(srcG, dstG, maskG),
blend_32(srcB, dstB, maskB));
}
// TODO: rewrite at least the SSE code here. It's miserable.
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include <emmintrin.h>
// The following (left) shifts cause the top 5 bits of the mask components to
// line up with the corresponding components in an SkPMColor.
// Note that the mask's RGB16 order may differ from the SkPMColor order.
#define SK_R16x5_R32x5_SHIFT (SK_R32_SHIFT - SK_R16_SHIFT - SK_R16_BITS + 5)
#define SK_G16x5_G32x5_SHIFT (SK_G32_SHIFT - SK_G16_SHIFT - SK_G16_BITS + 5)
#define SK_B16x5_B32x5_SHIFT (SK_B32_SHIFT - SK_B16_SHIFT - SK_B16_BITS + 5)
#if SK_R16x5_R32x5_SHIFT == 0
#define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (x)
#elif SK_R16x5_R32x5_SHIFT > 0
#define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (_mm_slli_epi32(x, SK_R16x5_R32x5_SHIFT))
#else
#define SkPackedR16x5ToUnmaskedR32x5_SSE2(x) (_mm_srli_epi32(x, -SK_R16x5_R32x5_SHIFT))
#endif
#if SK_G16x5_G32x5_SHIFT == 0
#define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (x)
#elif SK_G16x5_G32x5_SHIFT > 0
#define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (_mm_slli_epi32(x, SK_G16x5_G32x5_SHIFT))
#else
#define SkPackedG16x5ToUnmaskedG32x5_SSE2(x) (_mm_srli_epi32(x, -SK_G16x5_G32x5_SHIFT))
#endif
#if SK_B16x5_B32x5_SHIFT == 0
#define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (x)
#elif SK_B16x5_B32x5_SHIFT > 0
#define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (_mm_slli_epi32(x, SK_B16x5_B32x5_SHIFT))
#else
#define SkPackedB16x5ToUnmaskedB32x5_SSE2(x) (_mm_srli_epi32(x, -SK_B16x5_B32x5_SHIFT))
#endif
static __m128i blend_lcd16_sse2(__m128i &src, __m128i &dst, __m128i &mask, __m128i &srcA) {
// In the following comments, the components of src, dst and mask are
// abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
// by an R, G, B, or A suffix. Components of one of the four pixels that
// are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
// example is the blue channel of the second destination pixel. Memory
// layout is shown for an ARGB byte order in a color value.
// src and srcA store 8-bit values interleaved with zeros.
// src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
// srcA = (srcA, 0, srcA, 0, srcA, 0, srcA, 0,
// srcA, 0, srcA, 0, srcA, 0, srcA, 0)
// mask stores 16-bit values (compressed three channels) interleaved with zeros.
// Lo and Hi denote the low and high bytes of a 16-bit value, respectively.
// mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
// Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
// r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0)
__m128i r = _mm_and_si128(SkPackedR16x5ToUnmaskedR32x5_SSE2(mask),
_mm_set1_epi32(0x1F << SK_R32_SHIFT));
// g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
__m128i g = _mm_and_si128(SkPackedG16x5ToUnmaskedG32x5_SSE2(mask),
_mm_set1_epi32(0x1F << SK_G32_SHIFT));
// b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
__m128i b = _mm_and_si128(SkPackedB16x5ToUnmaskedB32x5_SSE2(mask),
_mm_set1_epi32(0x1F << SK_B32_SHIFT));
// a needs to be either the min or the max of the LCD coverages, depending on srcA < dstA
__m128i aMin = _mm_min_epu8(_mm_slli_epi32(r, SK_A32_SHIFT - SK_R32_SHIFT),
_mm_min_epu8(_mm_slli_epi32(g, SK_A32_SHIFT - SK_G32_SHIFT),
_mm_slli_epi32(b, SK_A32_SHIFT - SK_B32_SHIFT)));
__m128i aMax = _mm_max_epu8(_mm_slli_epi32(r, SK_A32_SHIFT - SK_R32_SHIFT),
_mm_max_epu8(_mm_slli_epi32(g, SK_A32_SHIFT - SK_G32_SHIFT),
_mm_slli_epi32(b, SK_A32_SHIFT - SK_B32_SHIFT)));
// srcA has been biased to [0-256], so compare srcA against (dstA+1)
__m128i a = _mm_cmplt_epi32(srcA,
_mm_and_si128(
_mm_add_epi32(dst, _mm_set1_epi32(1 << SK_A32_SHIFT)),
_mm_set1_epi32(SK_A32_MASK)));
// a = if_then_else(a, aMin, aMax) == (aMin & a) | (aMax & ~a)
a = _mm_or_si128(_mm_and_si128(a, aMin), _mm_andnot_si128(a, aMax));
// Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
// Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
// 8-bit position
// mask = (m0A, m0R, m0G, m0B, m1A, m1R, m1G, m1B,
// m2A, m2R, m2G, m2B, m3A, m3R, m3G, m3B)
mask = _mm_or_si128(_mm_or_si128(a, r), _mm_or_si128(g, b));
// Interleave R,G,B into the lower byte of word.
// i.e. split the sixteen 8-bit values from mask into two sets of eight
// 16-bit values, padded by zero.
__m128i maskLo, maskHi;
// maskLo = (m0A, 0, m0R, 0, m0G, 0, m0B, 0, m1A, 0, m1R, 0, m1G, 0, m1B, 0)
maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128());
// maskHi = (m2A, 0, m2R, 0, m2G, 0, m2B, 0, m3A, 0, m3R, 0, m3G, 0, m3B, 0)
maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128());
// Upscale from 0..31 to 0..32
// (allows to replace division by left-shift further down)
// Left-shift each component by 4 and add the result back to that component,
// mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4));
maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4));
// Multiply each component of maskLo and maskHi by srcA
maskLo = _mm_mullo_epi16(maskLo, srcA);
maskHi = _mm_mullo_epi16(maskHi, srcA);
// Left shift mask components by 8 (divide by 256)
maskLo = _mm_srli_epi16(maskLo, 8);
maskHi = _mm_srli_epi16(maskHi, 8);
// Interleave R,G,B into the lower byte of the word
// dstLo = (d0A, 0, d0R, 0, d0G, 0, d0B, 0, d1A, 0, d1R, 0, d1G, 0, d1B, 0)
__m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
// dstLo = (d2A, 0, d2R, 0, d2G, 0, d2B, 0, d3A, 0, d3R, 0, d3G, 0, d3B, 0)
__m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128());
// mask = (src - dst) * mask
maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(src, dstLo));
maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(src, dstHi));
// mask = (src - dst) * mask >> 5
maskLo = _mm_srai_epi16(maskLo, 5);
maskHi = _mm_srai_epi16(maskHi, 5);
// Add two pixels into result.
// result = dst + ((src - dst) * mask >> 5)
__m128i resultLo = _mm_add_epi16(dstLo, maskLo);
__m128i resultHi = _mm_add_epi16(dstHi, maskHi);
// Pack into 4 32bit dst pixels.
// resultLo and resultHi contain eight 16-bit components (two pixels) each.
// Merge into one SSE regsiter with sixteen 8-bit values (four pixels),
// clamping to 255 if necessary.
return _mm_packus_epi16(resultLo, resultHi);
}
static __m128i blend_lcd16_opaque_sse2(__m128i &src, __m128i &dst, __m128i &mask) {
// In the following comments, the components of src, dst and mask are
// abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
// by an R, G, B, or A suffix. Components of one of the four pixels that
// are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
// example is the blue channel of the second destination pixel. Memory
// layout is shown for an ARGB byte order in a color value.
// src and srcA store 8-bit values interleaved with zeros.
// src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
// mask stores 16-bit values (shown as high and low bytes) interleaved with
// zeros
// mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
// Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
// r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0)
__m128i r = _mm_and_si128(SkPackedR16x5ToUnmaskedR32x5_SSE2(mask),
_mm_set1_epi32(0x1F << SK_R32_SHIFT));
// g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
__m128i g = _mm_and_si128(SkPackedG16x5ToUnmaskedG32x5_SSE2(mask),
_mm_set1_epi32(0x1F << SK_G32_SHIFT));
// b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
__m128i b = _mm_and_si128(SkPackedB16x5ToUnmaskedB32x5_SSE2(mask),
_mm_set1_epi32(0x1F << SK_B32_SHIFT));
// a = max(r, g, b) since opaque src alpha uses max of LCD coverages
__m128i a = _mm_max_epu8(_mm_slli_epi32(r, SK_A32_SHIFT - SK_R32_SHIFT),
_mm_max_epu8(_mm_slli_epi32(g, SK_A32_SHIFT - SK_G32_SHIFT),
_mm_slli_epi32(b, SK_A32_SHIFT - SK_B32_SHIFT)));
// Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
// Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
// 8-bit position
// mask = (m0A, m0R, m0G, m0B, m1A, m1R, m1G, m1B,
// m2A, m2R, m2G, m2B, m3A, m3R, m3G, m3B)
mask = _mm_or_si128(_mm_or_si128(a, r), _mm_or_si128(g, b));
// Interleave R,G,B into the lower byte of word.
// i.e. split the sixteen 8-bit values from mask into two sets of eight
// 16-bit values, padded by zero.
__m128i maskLo, maskHi;
// maskLo = (m0A, 0, m0R, 0, m0G, 0, m0B, 0, m1A, 0, m1R, 0, m1G, 0, m1B, 0)
maskLo = _mm_unpacklo_epi8(mask, _mm_setzero_si128());
// maskHi = (m2A, 0, m2R, 0, m2G, 0, m2B, 0, m3A, 0, m3R, 0, m3G, 0, m3B, 0)
maskHi = _mm_unpackhi_epi8(mask, _mm_setzero_si128());
// Upscale from 0..31 to 0..32
// (allows to replace division by left-shift further down)
// Left-shift each component by 4 and add the result back to that component,
// mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
maskLo = _mm_add_epi16(maskLo, _mm_srli_epi16(maskLo, 4));
maskHi = _mm_add_epi16(maskHi, _mm_srli_epi16(maskHi, 4));
// Interleave R,G,B into the lower byte of the word
// dstLo = (d0A, 0, d0R, 0, d0G, 0, d0B, 0, d1A, 0, d1R, 0, d1G, 0, d1B, 0)
__m128i dstLo = _mm_unpacklo_epi8(dst, _mm_setzero_si128());
// dstLo = (d2A, 0, d2R, 0, d2G, 0, d2B, 0, d3A, 0, d3R, 0, d3G, 0, d3B, 0)
__m128i dstHi = _mm_unpackhi_epi8(dst, _mm_setzero_si128());
// mask = (src - dst) * mask
maskLo = _mm_mullo_epi16(maskLo, _mm_sub_epi16(src, dstLo));
maskHi = _mm_mullo_epi16(maskHi, _mm_sub_epi16(src, dstHi));
// mask = (src - dst) * mask >> 5
maskLo = _mm_srai_epi16(maskLo, 5);
maskHi = _mm_srai_epi16(maskHi, 5);
// Add two pixels into result.
// result = dst + ((src - dst) * mask >> 5)
__m128i resultLo = _mm_add_epi16(dstLo, maskLo);
__m128i resultHi = _mm_add_epi16(dstHi, maskHi);
// Merge into one SSE regsiter with sixteen 8-bit values (four pixels),
// clamping to 255 if necessary.
return _mm_packus_epi16(resultLo, resultHi);
}
void blit_row_lcd16(SkPMColor dst[], const uint16_t mask[], SkColor src, int width, SkPMColor) {
if (width <= 0) {
return;
}
int srcA = SkColorGetA(src);
int srcR = SkColorGetR(src);
int srcG = SkColorGetG(src);
int srcB = SkColorGetB(src);
srcA = SkAlpha255To256(srcA);
if (width >= 4) {
SkASSERT(((size_t)dst & 0x03) == 0);
while (((size_t)dst & 0x0F) != 0) {
*dst = blend_lcd16(srcA, srcR, srcG, srcB, *dst, *mask);
mask++;
dst++;
width--;
}
__m128i *d = reinterpret_cast<__m128i*>(dst);
// Set alpha to 0xFF and replicate source four times in SSE register.
__m128i src_sse = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
// Interleave with zeros to get two sets of four 16-bit values.
src_sse = _mm_unpacklo_epi8(src_sse, _mm_setzero_si128());
// Set srcA_sse to contain eight copies of srcA, padded with zero.
// src_sse=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
__m128i srcA_sse = _mm_set1_epi16(srcA);
while (width >= 4) {
// Load four destination pixels into dst_sse.
__m128i dst_sse = _mm_load_si128(d);
// Load four 16-bit masks into lower half of mask_sse.
__m128i mask_sse = _mm_loadu_si64(mask);
// Check whether masks are equal to 0 and get the highest bit
// of each byte of result, if masks are all zero, we will get
// pack_cmp to 0xFFFF
int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_sse,
_mm_setzero_si128()));
// if mask pixels are not all zero, we will blend the dst pixels
if (pack_cmp != 0xFFFF) {
// Unpack 4 16bit mask pixels to
// mask_sse = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
mask_sse = _mm_unpacklo_epi16(mask_sse,
_mm_setzero_si128());
// Process 4 32bit dst pixels
__m128i result = blend_lcd16_sse2(src_sse, dst_sse, mask_sse, srcA_sse);
_mm_store_si128(d, result);
}
d++;
mask += 4;
width -= 4;
}
dst = reinterpret_cast<SkPMColor*>(d);
}
while (width > 0) {
*dst = blend_lcd16(srcA, srcR, srcG, srcB, *dst, *mask);
mask++;
dst++;
width--;
}
}
void blit_row_lcd16_opaque(SkPMColor dst[], const uint16_t mask[],
SkColor src, int width, SkPMColor opaqueDst) {
if (width <= 0) {
return;
}
int srcR = SkColorGetR(src);
int srcG = SkColorGetG(src);
int srcB = SkColorGetB(src);
if (width >= 4) {
SkASSERT(((size_t)dst & 0x03) == 0);
while (((size_t)dst & 0x0F) != 0) {
*dst = blend_lcd16_opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
mask++;
dst++;
width--;
}
__m128i *d = reinterpret_cast<__m128i*>(dst);
// Set alpha to 0xFF and replicate source four times in SSE register.
__m128i src_sse = _mm_set1_epi32(SkPackARGB32(0xFF, srcR, srcG, srcB));
// Set srcA_sse to contain eight copies of srcA, padded with zero.
// src_sse=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
src_sse = _mm_unpacklo_epi8(src_sse, _mm_setzero_si128());
while (width >= 4) {
// Load four destination pixels into dst_sse.
__m128i dst_sse = _mm_load_si128(d);
// Load four 16-bit masks into lower half of mask_sse.
__m128i mask_sse = _mm_loadu_si64(mask);
// Check whether masks are equal to 0 and get the highest bit
// of each byte of result, if masks are all zero, we will get
// pack_cmp to 0xFFFF
int pack_cmp = _mm_movemask_epi8(_mm_cmpeq_epi16(mask_sse,
_mm_setzero_si128()));
// if mask pixels are not all zero, we will blend the dst pixels
if (pack_cmp != 0xFFFF) {
// Unpack 4 16bit mask pixels to
// mask_sse = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
mask_sse = _mm_unpacklo_epi16(mask_sse,
_mm_setzero_si128());
// Process 4 32bit dst pixels
__m128i result = blend_lcd16_opaque_sse2(src_sse, dst_sse, mask_sse);
_mm_store_si128(d, result);
}
d++;
mask += 4;
width -= 4;
}
dst = reinterpret_cast<SkPMColor*>(d);
}
while (width > 0) {
*dst = blend_lcd16_opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
mask++;
dst++;
width--;
}
}
#elif defined(SK_ARM_HAS_NEON)
#include <arm_neon.h>
#define NEON_A (SK_A32_SHIFT / 8)
#define NEON_R (SK_R32_SHIFT / 8)
#define NEON_G (SK_G32_SHIFT / 8)
#define NEON_B (SK_B32_SHIFT / 8)
static inline uint8x8_t blend_32_neon(uint8x8_t src, uint8x8_t dst, uint16x8_t scale) {
int16x8_t src_wide, dst_wide;
src_wide = vreinterpretq_s16_u16(vmovl_u8(src));
dst_wide = vreinterpretq_s16_u16(vmovl_u8(dst));
src_wide = (src_wide - dst_wide) * vreinterpretq_s16_u16(scale);
dst_wide += vshrq_n_s16(src_wide, 5);
return vmovn_u16(vreinterpretq_u16_s16(dst_wide));
}
void blit_row_lcd16_opaque(SkPMColor dst[], const uint16_t src[],
SkColor color, int width,
SkPMColor opaqueDst) {
int colR = SkColorGetR(color);
int colG = SkColorGetG(color);
int colB = SkColorGetB(color);
uint8x8_t vcolA = vdup_n_u8(0xFF);
uint8x8_t vcolR = vdup_n_u8(colR);
uint8x8_t vcolG = vdup_n_u8(colG);
uint8x8_t vcolB = vdup_n_u8(colB);
while (width >= 8) {
uint8x8x4_t vdst;
uint16x8_t vmask;
uint16x8_t vmaskR, vmaskG, vmaskB, vmaskA;
vdst = vld4_u8((uint8_t*)dst);
vmask = vld1q_u16(src);
// Get all the color masks on 5 bits
vmaskR = vshrq_n_u16(vmask, SK_R16_SHIFT);
vmaskG = vshrq_n_u16(vshlq_n_u16(vmask, SK_R16_BITS),
SK_B16_BITS + SK_R16_BITS + 1);
vmaskB = vmask & vdupq_n_u16(SK_B16_MASK);
// Upscale to 0..32
vmaskR = vmaskR + vshrq_n_u16(vmaskR, 4);
vmaskG = vmaskG + vshrq_n_u16(vmaskG, 4);
vmaskB = vmaskB + vshrq_n_u16(vmaskB, 4);
// Opaque srcAlpha always uses the max of the 3 LCD coverage values
vmaskA = vmaxq_u16(vmaskR, vmaxq_u16(vmaskG, vmaskB));
vdst.val[NEON_R] = blend_32_neon(vcolR, vdst.val[NEON_R], vmaskR);
vdst.val[NEON_G] = blend_32_neon(vcolG, vdst.val[NEON_G], vmaskG);
vdst.val[NEON_B] = blend_32_neon(vcolB, vdst.val[NEON_B], vmaskB);
vdst.val[NEON_A] = blend_32_neon(vcolA, vdst.val[NEON_A], vmaskA);
vst4_u8((uint8_t*)dst, vdst);
dst += 8;
src += 8;
width -= 8;
}
// Leftovers
for (int i = 0; i < width; i++) {
dst[i] = blend_lcd16_opaque(colR, colG, colB, dst[i], src[i], opaqueDst);
}
}
void blit_row_lcd16(SkPMColor dst[], const uint16_t src[],
SkColor color, int width, SkPMColor) {
int colA = SkColorGetA(color);
int colR = SkColorGetR(color);
int colG = SkColorGetG(color);
int colB = SkColorGetB(color);
// srcA in [0-255] to compare vs dstA
uint16x8_t vcolACmp = vdupq_n_u16(colA);
colA = SkAlpha255To256(colA);
uint16x8_t vcolA = vdupq_n_u16(colA); // srcA in [0-256] to combine with coverage
uint8x8_t vcolR = vdup_n_u8(colR);
uint8x8_t vcolG = vdup_n_u8(colG);
uint8x8_t vcolB = vdup_n_u8(colB);
while (width >= 8) {
uint8x8x4_t vdst;
uint16x8_t vmask;
uint16x8_t vmaskR, vmaskG, vmaskB, vmaskA;
vdst = vld4_u8((uint8_t*)dst);
vmask = vld1q_u16(src);
// Get all the color masks on 5 bits
vmaskR = vshrq_n_u16(vmask, SK_R16_SHIFT);
vmaskG = vshrq_n_u16(vshlq_n_u16(vmask, SK_R16_BITS),
SK_B16_BITS + SK_R16_BITS + 1);
vmaskB = vmask & vdupq_n_u16(SK_B16_MASK);
// Upscale to 0..32
vmaskR = vmaskR + vshrq_n_u16(vmaskR, 4);
vmaskG = vmaskG + vshrq_n_u16(vmaskG, 4);
vmaskB = vmaskB + vshrq_n_u16(vmaskB, 4);
vmaskR = vshrq_n_u16(vmaskR * vcolA, 8);
vmaskG = vshrq_n_u16(vmaskG * vcolA, 8);
vmaskB = vshrq_n_u16(vmaskB * vcolA, 8);
// Select either the min or the max of the RGB mask values, depending on if the src
// alpha is less than the dst alpha.
vmaskA = vbslq_u16(vcleq_u16(vcolACmp, vmovl_u8(vdst.val[NEON_A])), // srcA < dstA
vminq_u16(vmaskR, vminq_u16(vmaskG, vmaskB)), // ? min(r,g,b)
vmaxq_u16(vmaskR, vmaxq_u16(vmaskG, vmaskB))); // : max(r,g,b)
vdst.val[NEON_R] = blend_32_neon(vcolR, vdst.val[NEON_R], vmaskR);
vdst.val[NEON_G] = blend_32_neon(vcolG, vdst.val[NEON_G], vmaskG);
vdst.val[NEON_B] = blend_32_neon(vcolB, vdst.val[NEON_B], vmaskB);
// vmaskA already includes vcolA so blend against 0xFF
vdst.val[NEON_A] = blend_32_neon(vdup_n_u8(0xFF), vdst.val[NEON_A], vmaskA);
vst4_u8((uint8_t*)dst, vdst);
dst += 8;
src += 8;
width -= 8;
}
for (int i = 0; i < width; i++) {
dst[i] = blend_lcd16(colA, colR, colG, colB, dst[i], src[i]);
}
}
#elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
// The following (left) shifts cause the top 5 bits of the mask components to
// line up with the corresponding components in an SkPMColor.
// Note that the mask's RGB16 order may differ from the SkPMColor order.
#define SK_R16x5_R32x5_SHIFT (SK_R32_SHIFT - SK_R16_SHIFT - SK_R16_BITS + 5)
#define SK_G16x5_G32x5_SHIFT (SK_G32_SHIFT - SK_G16_SHIFT - SK_G16_BITS + 5)
#define SK_B16x5_B32x5_SHIFT (SK_B32_SHIFT - SK_B16_SHIFT - SK_B16_BITS + 5)
#if SK_R16x5_R32x5_SHIFT == 0
#define SkPackedR16x5ToUnmaskedR32x5_LASX(x) (x)
#elif SK_R16x5_R32x5_SHIFT > 0
#define SkPackedR16x5ToUnmaskedR32x5_LASX(x) (__lasx_xvslli_w(x, SK_R16x5_R32x5_SHIFT))
#else
#define SkPackedR16x5ToUnmaskedR32x5_LASX(x) (__lasx_xvsrli_w(x, -SK_R16x5_R32x5_SHIFT))
#endif
#if SK_G16x5_G32x5_SHIFT == 0
#define SkPackedG16x5ToUnmaskedG32x5_LASX(x) (x)
#elif SK_G16x5_G32x5_SHIFT > 0
#define SkPackedG16x5ToUnmaskedG32x5_LASX(x) (__lasx_xvslli_w(x, SK_G16x5_G32x5_SHIFT))
#else
#define SkPackedG16x5ToUnmaskedG32x5_LASX(x) (__lasx_xvsrli_w(x, -SK_G16x5_G32x5_SHIFT))
#endif
#if SK_B16x5_B32x5_SHIFT == 0
#define SkPackedB16x5ToUnmaskedB32x5_LASX(x) (x)
#elif SK_B16x5_B32x5_SHIFT > 0
#define SkPackedB16x5ToUnmaskedB32x5_LASX(x) (__lasx_xvslli_w(x, SK_B16x5_B32x5_SHIFT))
#else
#define SkPackedB16x5ToUnmaskedB32x5_LASX(x) (__lasx_xvsrli_w(x, -SK_B16x5_B32x5_SHIFT))
#endif
static __m256i blend_lcd16_lasx(__m256i &src, __m256i &dst, __m256i &mask, __m256i &srcA) {
// In the following comments, the components of src, dst and mask are
// abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
// by an R, G, B, or A suffix. Components of one of the four pixels that
// are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
// example is the blue channel of the second destination pixel. Memory
// layout is shown for an ARGB byte order in a color value.
// src and srcA store 8-bit values interleaved with zeros.
// src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0,
// 0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
// srcA = (srcA, 0, srcA, 0, srcA, 0, srcA, 0,
// srcA, 0, srcA, 0, srcA, 0, srcA, 0,
// srcA, 0, srcA, 0, srcA, 0, srcA, 0,
// srcA, 0, srcA, 0, srcA, 0, srcA, 0)
// mask stores 16-bit values (compressed three channels) interleaved with zeros.
// Lo and Hi denote the low and high bytes of a 16-bit value, respectively.
// mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0,
// m4RGBLo, m4RGBHi, 0, 0, m5RGBLo, m5RGBHi, 0, 0,
// m6RGBLo, m6RGBHi, 0, 0, m7RGBLo, m7RGBHi, 0, 0)
__m256i xv_zero = __lasx_xvldi(0);
// Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
// r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0,
// 0, m4R, 0, 0, 0, m5R, 0, 0, 0, m6R, 0, 0, 0, m7R, 0, 0)
__m256i r = __lasx_xvand_v(SkPackedR16x5ToUnmaskedR32x5_LASX(mask),
__lasx_xvreplgr2vr_w(0x1F << SK_R32_SHIFT));
// g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
// 0, 0, m4G, 0, 0, 0, m5G, 0, 0, 0, m6G, 0, 0, 0, m7R, 0)
__m256i g = __lasx_xvand_v(SkPackedG16x5ToUnmaskedG32x5_LASX(mask),
__lasx_xvreplgr2vr_w(0x1F << SK_G32_SHIFT));
// b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
// 0, 0, 0, m4B, 0, 0, 0, m5B, 0, 0, 0, m6B, 0, 0, 0, m7B)
__m256i b = __lasx_xvand_v(SkPackedB16x5ToUnmaskedB32x5_LASX(mask),
__lasx_xvreplgr2vr_w(0x1F << SK_B32_SHIFT));
// a needs to be either the min or the max of the LCD coverages, depending on srcA < dstA
__m256i aMin = __lasx_xvmin_b(__lasx_xvslli_w(r, SK_A32_SHIFT - SK_R32_SHIFT),
__lasx_xvmin_b(__lasx_xvslli_w(g, SK_A32_SHIFT - SK_G32_SHIFT),
__lasx_xvslli_w(b, SK_A32_SHIFT - SK_B32_SHIFT)));
__m256i aMax = __lasx_xvmax_b(__lasx_xvslli_w(r, SK_A32_SHIFT - SK_R32_SHIFT),
__lasx_xvmax_b(__lasx_xvslli_w(g, SK_A32_SHIFT - SK_G32_SHIFT),
__lasx_xvslli_w(b, SK_A32_SHIFT - SK_B32_SHIFT)));
// srcA has been biased to [0-256], so compare srcA against (dstA+1)
__m256i a = __lasx_xvmskltz_w(srcA -
__lasx_xvand_v(
__lasx_xvadd_w(dst,
__lasx_xvreplgr2vr_w(1 << SK_A32_SHIFT)),
__lasx_xvreplgr2vr_w(SK_A32_MASK)));
// a = if_then_else(a, aMin, aMax) == (aMin & a) | (aMax & ~a)
a = __lasx_xvor_v(__lasx_xvand_v(a, aMin), __lasx_xvandn_v(a, aMax));
// Pack the 8 16bit mask pixels into 8 32bit pixels, (p0, p1, p2, p3)
// Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
// 8-bit position
// mask = (m0A, m0R, m0G, m0B, m1R, m1R, m1G, m1B,
// m2A, m2R, m2G, m2B, m3R, m3R, m3G, m3B,
// m4A, m4R, m4G, m4B, m5R, m5R, m5G, m5B,
// m6A, m6R, m6G, m6B, m7R, m7R, m7G, m7B)
mask = __lasx_xvor_v(__lasx_xvor_v(a, r), __lasx_xvor_v(g, b));
// Interleave R,G,B into the lower byte of word.
// i.e. split the sixteen 8-bit values from mask into two sets of sixteen
// 16-bit values, padded by zero.
__m256i maskLo, maskHi;
// maskLo = (m0A, 0, m0R, 0, m0G, 0, m0B, 0, m1A, 0, m1R, 0, m1G, 0, m1B, 0,
// m2A, 0, m2R, 0, m2G, 0, m2B, 0, m3A, 0, m3R, 0, m3G, 0, m3B, 0)
maskLo = __lasx_xvilvl_b(xv_zero, mask);
// maskHi = (m4A, 0, m4R, 0, m4G, 0, m4B, 0, m5A, 0, m5R, 0, m5G, 0, m5B, 0,
// m6A, 0, m6R, 0, m6G, 0, m6B, 0, m7A, 0, m7R, 0, m7G, 0, m7B, 0)
maskHi = __lasx_xvilvh_b(xv_zero, mask);
// Upscale from 0..31 to 0..32
// (allows to replace division by left-shift further down)
// Left-shift each component by 4 and add the result back to that component,
// mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
maskLo = __lasx_xvadd_h(maskLo, __lasx_xvsrli_h(maskLo, 4));
maskHi = __lasx_xvadd_h(maskHi, __lasx_xvsrli_h(maskHi, 4));
// Multiply each component of maskLo and maskHi by srcA
maskLo = __lasx_xvmul_h(maskLo, srcA);
maskHi = __lasx_xvmul_h(maskHi, srcA);
// Left shift mask components by 8 (divide by 256)
maskLo = __lasx_xvsrli_h(maskLo, 8);
maskHi = __lasx_xvsrli_h(maskHi, 8);
// Interleave R,G,B into the lower byte of the word
// dstLo = (d0A, 0, d0R, 0, d0G, 0, d0B, 0, d1A, 0, d1R, 0, d1G, 0, d1B, 0)
// d2A, 0, d2R, 0, d2G, 0, d2B, 0, d3A, 0, d3R, 0, d3G, 0, d3B, 0)
__m256i dstLo = __lasx_xvilvl_b(xv_zero, dst);
// dstLo = (d4A, 0, d4R, 0, d4G, 0, d4B, 0, d5A, 0, d5R, 0, d5G, 0, d5B, 0)
// d6A, 0, d6R, 0, d6G, 0, d6B, 0, d7A, 0, d7R, 0, d7G, 0, d7B, 0)
__m256i dstHi = __lasx_xvilvh_b(xv_zero, dst);
// mask = (src - dst) * mask
maskLo = __lasx_xvmul_h(maskLo, __lasx_xvsub_h(src, dstLo));
maskHi = __lasx_xvmul_h(maskHi, __lasx_xvsub_h(src, dstHi));
// mask = (src - dst) * mask >> 5
maskLo = __lasx_xvsrai_h(maskLo, 5);
maskHi = __lasx_xvsrai_h(maskHi, 5);
// Add two pixels into result.
// result = dst + ((src - dst) * mask >> 5)
__m256i resultLo = __lasx_xvadd_h(dstLo, maskLo);
__m256i resultHi = __lasx_xvadd_h(dstHi, maskHi);
// Pack into 8 32bit dst pixels.
// resultLo and resultHi contain sixteen 16-bit components (four pixels) each.
// Merge into one LASX regsiter with 32 8-bit values (eight pixels),
// clamping to 255 if necessary.
__m256i tmpl = __lasx_xvsat_hu(resultLo, 7);
__m256i tmph = __lasx_xvsat_hu(resultHi, 7);
return __lasx_xvpickev_b(tmph, tmpl);
}
static __m256i blend_lcd16_opaque_lasx(__m256i &src, __m256i &dst, __m256i &mask) {
// In the following comments, the components of src, dst and mask are
// abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
// by an R, G, B, or A suffix. Components of one of the four pixels that
// are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
// example is the blue channel of the second destination pixel. Memory
// layout is shown for an ARGB byte order in a color value.
// src and srcA store 8-bit values interleaved with zeros.
// src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0,
// 0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
// mask stores 16-bit values (shown as high and low bytes) interleaved with
// zeros
// mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0,
// m4RGBLo, m4RGBHi, 0, 0, m5RGBLo, m5RGBHi, 0, 0,
// m6RGBLo, m6RGBHi, 0, 0, m7RGBLo, m7RGBHi, 0, 0)
__m256i xv_zero = __lasx_xvldi(0);
// Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
// r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0,
// 0, m4R, 0, 0, 0, m5R, 0, 0, 0, m6R, 0, 0, 0, m7R, 0, 0)
__m256i r = __lasx_xvand_v(SkPackedR16x5ToUnmaskedR32x5_LASX(mask),
__lasx_xvreplgr2vr_w(0x1F << SK_R32_SHIFT));
// g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0,
// 0, 0, m4G, 0, 0, 0, m5G, 0, 0, 0, m6G, 0, 0, 0, m7G, 0)
__m256i g = __lasx_xvand_v(SkPackedG16x5ToUnmaskedG32x5_LASX(mask),
__lasx_xvreplgr2vr_w(0x1F << SK_G32_SHIFT));
// b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B,
// 0, 0, 0, m4B, 0, 0, 0, m5B, 0, 0, 0, m6B, 0, 0, 0, m7B)
__m256i b = __lasx_xvand_v(SkPackedB16x5ToUnmaskedB32x5_LASX(mask),
__lasx_xvreplgr2vr_w(0x1F << SK_B32_SHIFT));
// a = max(r, g, b) since opaque src alpha uses max of LCD coverages
__m256i a = __lasx_xvmax_b(__lasx_xvslli_w(r, SK_A32_SHIFT - SK_R32_SHIFT),
__lasx_xvmax_b(__lasx_xvslli_w(g, SK_A32_SHIFT - SK_G32_SHIFT),
__lasx_xvslli_w(b, SK_A32_SHIFT - SK_B32_SHIFT)));
// Pack the 8 16bit mask pixels into 8 32bit pixels, (p0, p1, p2, p3,
// p4, p5, p6, p7)
// Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
// 8-bit position
// mask = (m0A, m0R, m0G, m0B, m1A, m1R, m1G, m1B,
// m2A, m2R, m2G, m2B, m3A, m3R, m3G, m3B,
// m4A, m4R, m4G, m4B, m5A, m5R, m5G, m5B,
// m6A, m6R, m6G, m6B, m7A, m7R, m7G, m7B)
mask = __lasx_xvor_v(__lasx_xvor_v(a, r), __lasx_xvor_v(g, b));
// Interleave R,G,B into the lower byte of word.
// i.e. split the 32 8-bit values from mask into two sets of sixteen
// 16-bit values, padded by zero.
__m256i maskLo, maskHi;
// maskLo = (m0A, 0, m0R, 0, m0G, 0, m0B, 0, m1A, 0, m1R, 0, m1G, 0, m1B, 0,
// m2A, 0, m2R, 0, m2G, 0, m2B, 0, m3A, 0, m3R, 0, m3G, 0, m3B, 0)
maskLo = __lasx_xvilvl_b(xv_zero, mask);
// maskHi = (m4A, 0, m4R, 0, m4G, 0, m4B, 0, m5A, 0, m5R, 0, m5G, 0, m5B, 0,
// m6A, 0, m6R, 0, m6G, 0, m6B, 0, m7A, 0, m7R, 0, m7G, 0, m7B, 0)
maskHi = __lasx_xvilvh_b(xv_zero, mask);
// Upscale from 0..31 to 0..32
// (allows to replace division by left-shift further down)
// Left-shift each component by 4 and add the result back to that component,
// mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
maskLo = __lasx_xvadd_h(maskLo, __lasx_xvsrli_h(maskLo, 4));
maskHi = __lasx_xvadd_h(maskHi, __lasx_xvsrli_h(maskHi, 4));
// Interleave R,G,B into the lower byte of the word
// dstLo = (d0A, 0, d0R, 0, d0G, 0, d0B, 0, d1A, 0, d1R, 0, d1G, 0, d1B, 0,
// d2A, 0, d2R, 0, d2G, 0, d2B, 0, d3A, 0, d3R, 0, d3G, 0, d3B, 0)
__m256i dstLo = __lasx_xvilvl_b(xv_zero, dst);
// dstLo = (d4A, 0, d4R, 0, d4G, 0, d4B, 0, d5A, 0, d5R, 0, d5G, 0, d5B, 0,
// dstLo = (d6A, 0, d6R, 0, d6G, 0, d6B, 0, d7A, 0, d7R, 0, d7G, 0, d7B, 0)
__m256i dstHi = __lasx_xvilvh_b(xv_zero, dst);
// mask = (src - dst) * mask
maskLo = __lasx_xvmul_h(maskLo, __lasx_xvsub_h(src, dstLo));
maskHi = __lasx_xvmul_h(maskHi, __lasx_xvsub_h(src, dstHi));
// mask = (src - dst) * mask >> 5
maskLo = __lasx_xvsrai_h(maskLo, 5);
maskHi = __lasx_xvsrai_h(maskHi, 5);
// Add two pixels into result.
// result = dst + ((src - dst) * mask >> 5)
__m256i resultLo = __lasx_xvadd_h(dstLo, maskLo);
__m256i resultHi = __lasx_xvadd_h(dstHi, maskHi);
// Merge into one SSE regsiter with 32 8-bit values (eight pixels),
// clamping to 255 if necessary.
__m256i tmpl = __lasx_xvsat_hu(resultLo, 7);
__m256i tmph = __lasx_xvsat_hu(resultHi, 7);
return __lasx_xvpickev_b(tmph, tmpl);
}
void blit_row_lcd16(SkPMColor dst[], const uint16_t mask[], SkColor src, int width, SkPMColor) {
if (width <= 0) {
return;
}
int srcA = SkColorGetA(src);
int srcR = SkColorGetR(src);
int srcG = SkColorGetG(src);
int srcB = SkColorGetB(src);
__m256i xv_zero = __lasx_xvldi(0);
srcA = SkAlpha255To256(srcA);
if (width >= 8) {
SkASSERT(((size_t)dst & 0x03) == 0);
while (((size_t)dst & 0x0F) != 0) {
*dst = blend_lcd16(srcA, srcR, srcG, srcB, *dst, *mask);
mask++;
dst++;
width--;
}
__m256i *d = reinterpret_cast<__m256i*>(dst);
// Set alpha to 0xFF and replicate source eight times in LASX register.
unsigned int skpackargb32 = SkPackARGB32(0xFF, srcR, srcG, srcB);
__m256i src_lasx = __lasx_xvreplgr2vr_w(skpackargb32);
// Interleave with zeros to get two sets of eight 16-bit values.
src_lasx = __lasx_xvilvl_b(xv_zero, src_lasx);
// Set srcA_lasx to contain sixteen copies of srcA, padded with zero.
// src_lasx=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0,
// 0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
__m256i srcA_lasx = __lasx_xvreplgr2vr_h(srcA);
while (width >= 8) {
// Load eight destination pixels into dst_lasx.
__m256i dst_lasx = __lasx_xvld(d, 0);
// Load eight 16-bit masks into lower half of mask_lasx.
__m256i mask_lasx = __lasx_xvld(mask, 0);
mask_lasx = (__m256i){mask_lasx[0], 0, mask_lasx[1], 0};
int pack_cmp = __lasx_xbz_v(mask_lasx);
// if mask pixels are not all zero, we will blend the dst pixels
if (pack_cmp != 1) {
// Unpack 8 16bit mask pixels to
// mask_lasx = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0,
// m4RGBLo, m4RGBHi, 0, 0, m5RGBLo, m5RGBHi, 0, 0,
// m6RGBLo, m6RGBHi, 0, 0, m7RGBLo, m7RGBHi, 0, 0)
mask_lasx = __lasx_xvilvl_h(xv_zero, mask_lasx);
// Process 8 32bit dst pixels
__m256i result = blend_lcd16_lasx(src_lasx, dst_lasx, mask_lasx, srcA_lasx);
__lasx_xvst(result, d, 0);
}
d++;
mask += 8;
width -= 8;
}
dst = reinterpret_cast<SkPMColor*>(d);
}
while (width > 0) {
*dst = blend_lcd16(srcA, srcR, srcG, srcB, *dst, *mask);
mask++;
dst++;
width--;
}
}
void blit_row_lcd16_opaque(SkPMColor dst[], const uint16_t mask[],
SkColor src, int width, SkPMColor opaqueDst) {
if (width <= 0) {
return;
}
int srcR = SkColorGetR(src);
int srcG = SkColorGetG(src);
int srcB = SkColorGetB(src);
__m256i xv_zero = __lasx_xvldi(0);
if (width >= 8) {
SkASSERT(((size_t)dst & 0x03) == 0);
while (((size_t)dst & 0x0F) != 0) {
*dst = blend_lcd16_opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
mask++;
dst++;
width--;
}
__m256i *d = reinterpret_cast<__m256i*>(dst);
// Set alpha to 0xFF and replicate source four times in LASX register.
unsigned int sk_pack_argb32 = SkPackARGB32(0xFF, srcR, srcG, srcB);
__m256i src_lasx = __lasx_xvreplgr2vr_w(sk_pack_argb32);
// Set srcA_lasx to contain sixteen copies of srcA, padded with zero.
// src_lasx=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0,
// 0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
src_lasx = __lasx_xvilvl_b(xv_zero, src_lasx);
while (width >= 8) {
// Load eight destination pixels into dst_lasx.
__m256i dst_lasx = __lasx_xvld(d, 0);
// Load eight 16-bit masks into lower half of mask_lasx.
__m256i mask_lasx = __lasx_xvld(mask, 0);
mask_lasx = (__m256i){mask_lasx[0], 0, mask_lasx[1], 0};
int32_t pack_cmp = __lasx_xbz_v(mask_lasx);
// if mask pixels are not all zero, we will blend the dst pixels
if (pack_cmp != 1) {
// Unpack 8 16bit mask pixels to
// mask_lasx = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0,
// m4RGBLo, m4RGBHi, 0, 0, m5RGBLo, m5RGBHi, 0, 0,
// m6RGBLo, m6RGBHi, 0, 0, m7RGBLo, m7RGBHi, 0, 0)
mask_lasx = __lasx_xvilvl_h(xv_zero, mask_lasx);
// Process 8 32bit dst pixels
__m256i result = blend_lcd16_opaque_lasx(src_lasx, dst_lasx, mask_lasx);
__lasx_xvst(result, d, 0);
}
d++;
mask += 8;
width -= 8;
}
dst = reinterpret_cast<SkPMColor*>(d);
}
while (width > 0) {
*dst = blend_lcd16_opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
mask++;
dst++;
width--;
}
}
#elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
// The following (left) shifts cause the top 5 bits of the mask components to
// line up with the corresponding components in an SkPMColor.
// Note that the mask's RGB16 order may differ from the SkPMColor order.
#define SK_R16x5_R32x5_SHIFT (SK_R32_SHIFT - SK_R16_SHIFT - SK_R16_BITS + 5)
#define SK_G16x5_G32x5_SHIFT (SK_G32_SHIFT - SK_G16_SHIFT - SK_G16_BITS + 5)
#define SK_B16x5_B32x5_SHIFT (SK_B32_SHIFT - SK_B16_SHIFT - SK_B16_BITS + 5)
#if SK_R16x5_R32x5_SHIFT == 0
#define SkPackedR16x5ToUnmaskedR32x5_LSX(x) (x)
#elif SK_R16x5_R32x5_SHIFT > 0
#define SkPackedR16x5ToUnmaskedR32x5_LSX(x) (__lsx_vslli_w(x, SK_R16x5_R32x5_SHIFT))
#else
#define SkPackedR16x5ToUnmaskedR32x5_LSX(x) (__lsx_vsrli_w(x, -SK_R16x5_R32x5_SHIFT))
#endif
#if SK_G16x5_G32x5_SHIFT == 0
#define SkPackedG16x5ToUnmaskedG32x5_LSX(x) (x)
#elif SK_G16x5_G32x5_SHIFT > 0
#define SkPackedG16x5ToUnmaskedG32x5_LSX(x) (__lsx_vslli_w(x, SK_G16x5_G32x5_SHIFT))
#else
#define SkPackedG16x5ToUnmaskedG32x5_LSX(x) (__lsx_vsrli_w(x, -SK_G16x5_G32x5_SHIFT))
#endif
#if SK_B16x5_B32x5_SHIFT == 0
#define SkPackedB16x5ToUnmaskedB32x5_LSX(x) (x)
#elif SK_B16x5_B32x5_SHIFT > 0
#define SkPackedB16x5ToUnmaskedB32x5_LSX(x) (__lsx_vslli_w(x, SK_B16x5_B32x5_SHIFT))
#else
#define SkPackedB16x5ToUnmaskedB32x5_LSX(x) (__lsx_vsrli_w(x, -SK_B16x5_B32x5_SHIFT))
#endif
static __m128i blend_lcd16_lsx(__m128i &src, __m128i &dst, __m128i &mask, __m128i &srcA) {
// In the following comments, the components of src, dst and mask are
// abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
// by an R, G, B, or A suffix. Components of one of the four pixels that
// are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
// example is the blue channel of the second destination pixel. Memory
// layout is shown for an ARGB byte order in a color value.
// src and srcA store 8-bit values interleaved with zeros.
// src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
// srcA = (srcA, 0, srcA, 0, srcA, 0, srcA, 0,
// srcA, 0, srcA, 0, srcA, 0, srcA, 0)
// mask stores 16-bit values (compressed three channels) interleaved with zeros.
// Lo and Hi denote the low and high bytes of a 16-bit value, respectively.
// mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
__m128i v_zero = __lsx_vldi(0);
// Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
// r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0)
__m128i r = __lsx_vand_v(SkPackedR16x5ToUnmaskedR32x5_LSX(mask),
__lsx_vreplgr2vr_w(0x1F << SK_R32_SHIFT));
// g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
__m128i g = __lsx_vand_v(SkPackedG16x5ToUnmaskedG32x5_LSX(mask),
__lsx_vreplgr2vr_w(0x1F << SK_G32_SHIFT));
// b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
__m128i b = __lsx_vand_v(SkPackedB16x5ToUnmaskedB32x5_LSX(mask),
__lsx_vreplgr2vr_w(0x1F << SK_B32_SHIFT));
// a needs to be either the min or the max of the LCD coverages, depending on srcA < dstA
__m128i aMin = __lsx_vmin_b(__lsx_vslli_w(r, SK_A32_SHIFT - SK_R32_SHIFT),
__lsx_vmin_b(__lsx_vslli_w(g, SK_A32_SHIFT - SK_G32_SHIFT),
__lsx_vslli_w(b, SK_A32_SHIFT - SK_B32_SHIFT)));
__m128i aMax = __lsx_vmax_b(__lsx_vslli_w(r, SK_A32_SHIFT - SK_R32_SHIFT),
__lsx_vmax_b(__lsx_vslli_w(g, SK_A32_SHIFT - SK_G32_SHIFT),
__lsx_vslli_w(b, SK_A32_SHIFT - SK_B32_SHIFT)));
// srcA has been biased to [0-256], so compare srcA against (dstA+1)
__m128i a = __lsx_vmskltz_w(srcA -
__lsx_vand_v(
__lsx_vadd_w(dst,
__lsx_vreplgr2vr_w(1 << SK_A32_SHIFT)),
__lsx_vreplgr2vr_w(SK_A32_MASK)));
// a = if_then_else(a, aMin, aMax) == (aMin & a) | (aMax & ~a)
a = __lsx_vor_v(__lsx_vand_v(a, aMin), __lsx_vandn_v(a, aMax));
// Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
// Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
// 8-bit position
// mask = (m0A, m0R, m0G, m0B, m1A, m1R, m1G, m1B,
// m2A, m2R, m2G, m2B, m3A, m3R, m3G, m3B)
mask = __lsx_vor_v(__lsx_vor_v(a, r), __lsx_vor_v(g, b));
// Interleave R,G,B into the lower byte of word.
// i.e. split the sixteen 8-bit values from mask into two sets of eight
// 16-bit values, padded by zero.
__m128i maskLo, maskHi;
// maskLo = (m0A, 0, m0R, 0, m0G, 0, m0B, 0, m1A, 0, m1R, 0, m1G, 0, m1B, 0)
maskLo = __lsx_vilvl_b(v_zero, mask);
// maskHi = (m2A, 0, m2R, 0, m2G, 0, m2B, 0, m3A, 0, m3R, 0, m3G, 0, m3B, 0)
maskHi = __lsx_vilvh_b(v_zero, mask);
// Upscale from 0..31 to 0..32
// (allows to replace division by left-shift further down)
// Left-shift each component by 4 and add the result back to that component,
// mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
maskLo = __lsx_vadd_h(maskLo, __lsx_vsrli_h(maskLo, 4));
maskHi = __lsx_vadd_h(maskHi, __lsx_vsrli_h(maskHi, 4));
// Multiply each component of maskLo and maskHi by srcA
maskLo = __lsx_vmul_h(maskLo, srcA);
maskHi = __lsx_vmul_h(maskHi, srcA);
// Left shift mask components by 8 (divide by 256)
maskLo = __lsx_vsrli_h(maskLo, 8);
maskHi = __lsx_vsrli_h(maskHi, 8);
// Interleave R,G,B into the lower byte of the word
// dstLo = (d0A, 0, d0R, 0, d0G, 0, d0B, 0, d1A, 0, d1R, 0, d1G, 0, d1B, 0)
__m128i dstLo = __lsx_vilvl_b(v_zero, dst);
// dstLo = (d2A, 0, d2R, 0, d2G, 0, d2B, 0, d3A, 0, d3R, 0, d3G, 0, d3B, 0)
__m128i dstHi = __lsx_vilvh_b(v_zero, dst);
// mask = (src - dst) * mask
maskLo = __lsx_vmul_h(maskLo, __lsx_vsub_h(src, dstLo));
maskHi = __lsx_vmul_h(maskHi, __lsx_vsub_h(src, dstHi));
// mask = (src - dst) * mask >> 5
maskLo = __lsx_vsrai_h(maskLo, 5);
maskHi = __lsx_vsrai_h(maskHi, 5);
// Add two pixels into result.
// result = dst + ((src - dst) * mask >> 5)
__m128i resultLo = __lsx_vadd_h(dstLo, maskLo);
__m128i resultHi = __lsx_vadd_h(dstHi, maskHi);
// Pack into 4 32bit dst pixels.
// resultLo and resultHi contain eight 16-bit components (two pixels) each.
// Merge into one LSX regsiter with sixteen 8-bit values (four pixels),
// clamping to 255 if necessary.
__m128i tmpl = __lsx_vsat_hu(resultLo, 7);
__m128i tmph = __lsx_vsat_hu(resultHi, 7);
return __lsx_vpickev_b(tmph, tmpl);
}
static __m128i blend_lcd16_opaque_lsx(__m128i &src, __m128i &dst, __m128i &mask) {
// In the following comments, the components of src, dst and mask are
// abbreviated as (s)rc, (d)st, and (m)ask. Color components are marked
// by an R, G, B, or A suffix. Components of one of the four pixels that
// are processed in parallel are marked with 0, 1, 2, and 3. "d1B", for
// example is the blue channel of the second destination pixel. Memory
// layout is shown for an ARGB byte order in a color value.
// src and srcA store 8-bit values interleaved with zeros.
// src = (0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
// mask stores 16-bit values (shown as high and low bytes) interleaved with
// zeros
// mask = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
__m128i v_zero = __lsx_vldi(0);
// Get the R,G,B of each 16bit mask pixel, we want all of them in 5 bits.
// r = (0, m0R, 0, 0, 0, m1R, 0, 0, 0, m2R, 0, 0, 0, m3R, 0, 0)
__m128i r = __lsx_vand_v(SkPackedR16x5ToUnmaskedR32x5_LSX(mask),
__lsx_vreplgr2vr_w(0x1F << SK_R32_SHIFT));
// g = (0, 0, m0G, 0, 0, 0, m1G, 0, 0, 0, m2G, 0, 0, 0, m3G, 0)
__m128i g = __lsx_vand_v(SkPackedG16x5ToUnmaskedG32x5_LSX(mask),
__lsx_vreplgr2vr_w(0x1F << SK_G32_SHIFT));
// b = (0, 0, 0, m0B, 0, 0, 0, m1B, 0, 0, 0, m2B, 0, 0, 0, m3B)
__m128i b = __lsx_vand_v(SkPackedB16x5ToUnmaskedB32x5_LSX(mask),
__lsx_vreplgr2vr_w(0x1F << SK_B32_SHIFT));
// a = max(r, g, b) since opaque src alpha uses max of LCD coverages
__m128i a = __lsx_vmax_b(__lsx_vslli_w(r, SK_A32_SHIFT - SK_R32_SHIFT),
__lsx_vmax_b(__lsx_vslli_w(g, SK_A32_SHIFT - SK_G32_SHIFT),
__lsx_vslli_w(b, SK_A32_SHIFT - SK_B32_SHIFT)));
// Pack the 4 16bit mask pixels into 4 32bit pixels, (p0, p1, p2, p3)
// Each component (m0R, m0G, etc.) is then a 5-bit value aligned to an
// 8-bit position
// mask = (m0A, m0R, m0G, m0B, m1A, m1R, m1G, m1B,
// m2A, m2R, m2G, m2B, m3A, m3R, m3G, m3B)
mask = __lsx_vor_v(__lsx_vor_v(a, r), __lsx_vor_v(g, b));
// Interleave R,G,B into the lower byte of word.
// i.e. split the sixteen 8-bit values from mask into two sets of eight
// 16-bit values, padded by zero.
__m128i maskLo, maskHi;
// maskLo = (m0A, 0, m0R, 0, m0G, 0, m0B, 0, m1A, 0, m1R, 0, m1G, 0, m1B, 0)
maskLo = __lsx_vilvl_b(v_zero, mask);
// maskHi = (m2A, 0, m2R, 0, m2G, 0, m2B, 0, m3A, 0, m3R, 0, m3G, 0, m3B, 0)
maskHi = __lsx_vilvh_b(v_zero, mask);
// Upscale from 0..31 to 0..32
// (allows to replace division by left-shift further down)
// Left-shift each component by 4 and add the result back to that component,
// mapping numbers in the range 0..15 to 0..15, and 16..31 to 17..32
maskLo = __lsx_vadd_h(maskLo, __lsx_vsrli_h(maskLo, 4));
maskHi = __lsx_vadd_h(maskHi, __lsx_vsrli_h(maskHi, 4));
// Interleave R,G,B into the lower byte of the word
// dstLo = (d0A, 0, d0R, 0, d0G, 0, d0B, 0, d1A, 0, d1R, 0, d1G, 0, d1B, 0)
__m128i dstLo = __lsx_vilvl_b(v_zero, dst);
// dstLo = (d2A, 0, d2R, 0, d2G, 0, d2B, 0, d3A, 0, d3R, 0, d3G, 0, d3B, 0)
__m128i dstHi = __lsx_vilvh_b(v_zero, dst);
// mask = (src - dst) * mask
maskLo = __lsx_vmul_h(maskLo, __lsx_vsub_h(src, dstLo));
maskHi = __lsx_vmul_h(maskHi, __lsx_vsub_h(src, dstHi));
// mask = (src - dst) * mask >> 5
maskLo = __lsx_vsrai_h(maskLo, 5);
maskHi = __lsx_vsrai_h(maskHi, 5);
// Add two pixels into result.
// result = dst + ((src - dst) * mask >> 5)
__m128i resultLo = __lsx_vadd_h(dstLo, maskLo);
__m128i resultHi = __lsx_vadd_h(dstHi, maskHi);
// Merge into one LSX regsiter with sixteen 8-bit values (four pixels),
// clamping to 255 if necessary.
__m128i tmpl = __lsx_vsat_hu(resultLo, 7);
__m128i tmph = __lsx_vsat_hu(resultHi, 7);
return __lsx_vpickev_b(tmph, tmpl);
}
void blit_row_lcd16(SkPMColor dst[], const uint16_t mask[], SkColor src, int width, SkPMColor) {
if (width <= 0) {
return;
}
int srcA = SkColorGetA(src);
int srcR = SkColorGetR(src);
int srcG = SkColorGetG(src);
int srcB = SkColorGetB(src);
__m128i v_zero = __lsx_vldi(0);
srcA = SkAlpha255To256(srcA);
if (width >= 4) {
SkASSERT(((size_t)dst & 0x03) == 0);
while (((size_t)dst & 0x0F) != 0) {
*dst = blend_lcd16(srcA, srcR, srcG, srcB, *dst, *mask);
mask++;
dst++;
width--;
}
__m128i *d = reinterpret_cast<__m128i*>(dst);
// Set alpha to 0xFF and replicate source eight times in LSX register.
unsigned int skpackargb32 = SkPackARGB32(0xFF, srcR, srcG, srcB);
__m128i src_lsx = __lsx_vreplgr2vr_w(skpackargb32);
// Interleave with zeros to get two sets of eight 16-bit values.
src_lsx = __lsx_vilvl_b(v_zero, src_lsx);
// Set srcA_lsx to contain eight copies of srcA, padded with zero.
// src_lsx=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
__m128i srcA_lsx = __lsx_vreplgr2vr_h(srcA);
while (width >= 4) {
// Load eight destination pixels into dst_lsx.
__m128i dst_lsx = __lsx_vld(d, 0);
// Load four 16-bit masks into lower half of mask_lsx.
__m128i mask_lsx = __lsx_vldrepl_d((void *)mask, 0);
mask_lsx = __lsx_vilvl_d(v_zero, mask_lsx);
int pack_cmp = __lsx_bz_v(mask_lsx);
// if mask pixels are not all zero, we will blend the dst pixels
if (pack_cmp != 1) {
// Unpack 4 16bit mask pixels to
// mask_lsx = (m0RGBLo, m0RGBHi, 0, 0, m1RGBLo, m1RGBHi, 0, 0,
// m2RGBLo, m2RGBHi, 0, 0, m3RGBLo, m3RGBHi, 0, 0)
mask_lsx = __lsx_vilvl_h(v_zero, mask_lsx);
// Process 8 32bit dst pixels
__m128i result = blend_lcd16_lsx(src_lsx, dst_lsx, mask_lsx, srcA_lsx);
__lsx_vst(result, d, 0);
}
d++;
mask += 4;
width -= 4;
}
dst = reinterpret_cast<SkPMColor*>(d);
}
while (width > 0) {
*dst = blend_lcd16(srcA, srcR, srcG, srcB, *dst, *mask);
mask++;
dst++;
width--;
}
}
void blit_row_lcd16_opaque(SkPMColor dst[], const uint16_t mask[],
SkColor src, int width, SkPMColor opaqueDst) {
if (width <= 0) {
return;
}
int srcR = SkColorGetR(src);
int srcG = SkColorGetG(src);
int srcB = SkColorGetB(src);
__m128i v_zero = __lsx_vldi(0);
if (width >= 4) {
SkASSERT(((size_t)dst & 0x03) == 0);
while (((size_t)dst & 0x0F) != 0) {
*dst = blend_lcd16_opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
mask++;
dst++;
width--;
}
__m128i *d = reinterpret_cast<__m128i*>(dst);
// Set alpha to 0xFF and replicate source four times in LSX register.
unsigned int sk_pack_argb32 = SkPackARGB32(0xFF, srcR, srcG, srcB);
__m128i src_lsx = __lsx_vreplgr2vr_w(sk_pack_argb32);
// Set srcA_lsx to contain eight copies of srcA, padded with zero.
// src_lsx=(0xFF, 0, sR, 0, sG, 0, sB, 0, 0xFF, 0, sR, 0, sG, 0, sB, 0)
src_lsx = __lsx_vilvl_b(v_zero, src_lsx);
while (width >= 4) {
// Load four destination pixels into dst_lsx.
__m128i dst_lsx = __lsx_vld(d, 0);
// Load four 16-bit masks into lower half of mask_lsx.
__m128i mask_lsx = __lsx_vldrepl_d((void *)(mask), 0);
mask_lsx = __lsx_vilvl_d(v_zero, mask_lsx);
int pack_cmp = __lsx_bz_v(mask_lsx);
// if mask pixels are not all zero, we will blend the dst pixels
if (pack_cmp != 1) {
// Unpack 4 16bit mask pixels to
mask_lsx = __lsx_vilvl_h(v_zero, mask_lsx);
// Process 8 32bit dst pixels
__m128i result = blend_lcd16_opaque_lsx(src_lsx, dst_lsx, mask_lsx);
__lsx_vst(result, d, 0);
}
d++;
mask += 4;
width -= 4;
}
dst = reinterpret_cast<SkPMColor*>(d);
}
while (width > 0) {
*dst = blend_lcd16_opaque(srcR, srcG, srcB, *dst, *mask, opaqueDst);
mask++;
dst++;
width--;
}
}
#else
static inline void blit_row_lcd16(SkPMColor dst[], const uint16_t mask[],
SkColor src, int width, SkPMColor) {
int srcA = SkColorGetA(src);
int srcR = SkColorGetR(src);
int srcG = SkColorGetG(src);
int srcB = SkColorGetB(src);
srcA = SkAlpha255To256(srcA);
for (int i = 0; i < width; i++) {
dst[i] = blend_lcd16(srcA, srcR, srcG, srcB, dst[i], mask[i]);
}
}
static inline void blit_row_lcd16_opaque(SkPMColor dst[], const uint16_t mask[],
SkColor src, int width,
SkPMColor opaqueDst) {
int srcR = SkColorGetR(src);
int srcG = SkColorGetG(src);
int srcB = SkColorGetB(src);
for (int i = 0; i < width; i++) {
dst[i] = blend_lcd16_opaque(srcR, srcG, srcB, dst[i], mask[i], opaqueDst);
}
}
#endif
static bool blit_color(const SkPixmap& device,
const SkMask& mask,
const SkIRect& clip,
SkColor color) {
int x = clip.fLeft,
y = clip.fTop;
if (device.colorType() == kN32_SkColorType && mask.fFormat == SkMask::kA8_Format) {
SkOpts::blit_mask_d32_a8(device.writable_addr32(x,y), device.rowBytes(),
(const SkAlpha*)mask.getAddr(x,y), mask.fRowBytes,
color, clip.width(), clip.height());
return true;
}
if (device.colorType() == kN32_SkColorType && mask.fFormat == SkMask::kLCD16_Format) {
auto dstRow = device.writable_addr32(x,y);
auto maskRow = (const uint16_t*)mask.getAddr(x,y);
auto blit_row = blit_row_lcd16;
SkPMColor opaqueDst = 0; // ignored unless opaque
if (0xff == SkColorGetA(color)) {
blit_row = blit_row_lcd16_opaque;
opaqueDst = SkPreMultiplyColor(color);
}
for (int height = clip.height(); height --> 0; ) {
blit_row(dstRow, maskRow, color, clip.width(), opaqueDst);
dstRow = (SkPMColor*) (( char*) dstRow + device.rowBytes());
maskRow = (const uint16_t*)((const char*)maskRow + mask.fRowBytes);
}
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
static void SkARGB32_Blit32(const SkPixmap& device, const SkMask& mask,
const SkIRect& clip, SkPMColor srcColor) {
U8CPU alpha = SkGetPackedA32(srcColor);
unsigned flags = SkBlitRow::kSrcPixelAlpha_Flag32;
if (alpha != 255) {
flags |= SkBlitRow::kGlobalAlpha_Flag32;
}
SkBlitRow::Proc32 proc = SkBlitRow::Factory32(flags);
int x = clip.fLeft;
int y = clip.fTop;
int width = clip.width();
int height = clip.height();
SkPMColor* dstRow = device.writable_addr32(x, y);
const SkPMColor* srcRow = reinterpret_cast<const SkPMColor*>(mask.getAddr8(x, y));
do {
proc(dstRow, srcRow, width, alpha);
dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes());
srcRow = (const SkPMColor*)((const char*)srcRow + mask.fRowBytes);
} while (--height != 0);
}
//////////////////////////////////////////////////////////////////////////////////////
SkARGB32_Blitter::SkARGB32_Blitter(const SkPixmap& device, const SkPaint& paint)
: INHERITED(device) {
SkColor color = paint.getColor();
fColor = color;
fSrcA = SkColorGetA(color);
unsigned scale = SkAlpha255To256(fSrcA);
fSrcR = SkAlphaMul(SkColorGetR(color), scale);
fSrcG = SkAlphaMul(SkColorGetG(color), scale);
fSrcB = SkAlphaMul(SkColorGetB(color), scale);
fPMColor = SkPackARGB32(fSrcA, fSrcR, fSrcG, fSrcB);
}
#if defined _WIN32 // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif
void SkARGB32_Blitter::blitH(int x, int y, int width) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());
uint32_t* device = fDevice.writable_addr32(x, y);
SkBlitRow::Color32(device, width, fPMColor);
}
void SkARGB32_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
if (fSrcA == 0) {
return;
}
uint32_t color = fPMColor;
uint32_t* device = fDevice.writable_addr32(x, y);
unsigned opaqueMask = fSrcA; // if fSrcA is 0xFF, then we will catch the fast opaque case
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
unsigned aa = antialias[0];
if (aa) {
if ((opaqueMask & aa) == 255) {
SkOpts::memset32(device, color, count);
} else {
uint32_t sc = SkAlphaMulQ(color, SkAlpha255To256(aa));
SkBlitRow::Color32(device, count, sc);
}
}
runs += count;
antialias += count;
device += count;
}
}
void SkARGB32_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);)
device[0] = SkBlendARGB32(fPMColor, device[0], a0);
device[1] = SkBlendARGB32(fPMColor, device[1], a1);
}
void SkARGB32_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);)
device[0] = SkBlendARGB32(fPMColor, device[0], a0);
device = (uint32_t*)((char*)device + fDevice.rowBytes());
device[0] = SkBlendARGB32(fPMColor, device[0], a1);
}
//////////////////////////////////////////////////////////////////////////////////////
#define solid_8_pixels(mask, dst, color) \
do { \
if (mask & 0x80) dst[0] = color; \
if (mask & 0x40) dst[1] = color; \
if (mask & 0x20) dst[2] = color; \
if (mask & 0x10) dst[3] = color; \
if (mask & 0x08) dst[4] = color; \
if (mask & 0x04) dst[5] = color; \
if (mask & 0x02) dst[6] = color; \
if (mask & 0x01) dst[7] = color; \
} while (0)
#define SK_BLITBWMASK_NAME SkARGB32_BlitBW
#define SK_BLITBWMASK_ARGS , SkPMColor color
#define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst, color)
#define SK_BLITBWMASK_GETADDR writable_addr32
#define SK_BLITBWMASK_DEVTYPE uint32_t
#include "src/core/SkBlitBWMaskTemplate.h"
#define blend_8_pixels(mask, dst, sc, dst_scale) \
do { \
if (mask & 0x80) { dst[0] = sc + SkAlphaMulQ(dst[0], dst_scale); } \
if (mask & 0x40) { dst[1] = sc + SkAlphaMulQ(dst[1], dst_scale); } \
if (mask & 0x20) { dst[2] = sc + SkAlphaMulQ(dst[2], dst_scale); } \
if (mask & 0x10) { dst[3] = sc + SkAlphaMulQ(dst[3], dst_scale); } \
if (mask & 0x08) { dst[4] = sc + SkAlphaMulQ(dst[4], dst_scale); } \
if (mask & 0x04) { dst[5] = sc + SkAlphaMulQ(dst[5], dst_scale); } \
if (mask & 0x02) { dst[6] = sc + SkAlphaMulQ(dst[6], dst_scale); } \
if (mask & 0x01) { dst[7] = sc + SkAlphaMulQ(dst[7], dst_scale); } \
} while (0)
#define SK_BLITBWMASK_NAME SkARGB32_BlendBW
#define SK_BLITBWMASK_ARGS , uint32_t sc, unsigned dst_scale
#define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, sc, dst_scale)
#define SK_BLITBWMASK_GETADDR writable_addr32
#define SK_BLITBWMASK_DEVTYPE uint32_t
#include "src/core/SkBlitBWMaskTemplate.h"
void SkARGB32_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
SkASSERT(fSrcA != 0xFF);
if (fSrcA == 0) {
return;
}
if (blit_color(fDevice, mask, clip, fColor)) {
return;
}
switch (mask.fFormat) {
case SkMask::kBW_Format:
SkARGB32_BlendBW(fDevice, mask, clip, fPMColor, SkAlpha255To256(255 - fSrcA));
break;
case SkMask::kARGB32_Format:
SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
break;
default:
SK_ABORT("Mask format not handled.");
}
}
void SkARGB32_Opaque_Blitter::blitMask(const SkMask& mask,
const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
if (blit_color(fDevice, mask, clip, fColor)) {
return;
}
switch (mask.fFormat) {
case SkMask::kBW_Format:
SkARGB32_BlitBW(fDevice, mask, clip, fPMColor);
break;
case SkMask::kARGB32_Format:
SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
break;
default:
SK_ABORT("Mask format not handled.");
}
}
void SkARGB32_Opaque_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);)
device[0] = SkFastFourByteInterp(fPMColor, device[0], a0);
device[1] = SkFastFourByteInterp(fPMColor, device[1], a1);
}
void SkARGB32_Opaque_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);)
device[0] = SkFastFourByteInterp(fPMColor, device[0], a0);
device = (uint32_t*)((char*)device + fDevice.rowBytes());
device[0] = SkFastFourByteInterp(fPMColor, device[0], a1);
}
///////////////////////////////////////////////////////////////////////////////
void SkARGB32_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
if (alpha == 0 || fSrcA == 0) {
return;
}
uint32_t* device = fDevice.writable_addr32(x, y);
uint32_t color = fPMColor;
if (alpha != 255) {
color = SkAlphaMulQ(color, SkAlpha255To256(alpha));
}
unsigned dst_scale = SkAlpha255To256(255 - SkGetPackedA32(color));
size_t rowBytes = fDevice.rowBytes();
while (--height >= 0) {
device[0] = color + SkAlphaMulQ(device[0], dst_scale);
device = (uint32_t*)((char*)device + rowBytes);
}
}
void SkARGB32_Blitter::blitRect(int x, int y, int width, int height) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width() && y + height <= fDevice.height());
if (fSrcA == 0) {
return;
}
uint32_t* device = fDevice.writable_addr32(x, y);
uint32_t color = fPMColor;
size_t rowBytes = fDevice.rowBytes();
if (SkGetPackedA32(fPMColor) == 0xFF) {
SkOpts::rect_memset32(device, color, width, rowBytes, height);
} else {
while (height --> 0) {
SkBlitRow::Color32(device, width, color);
device = (uint32_t*)((char*)device + rowBytes);
}
}
}
#if defined _WIN32
#pragma warning ( pop )
#endif
///////////////////////////////////////////////////////////////////////
void SkARGB32_Black_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT);
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
unsigned aa = antialias[0];
if (aa) {
if (aa == 255) {
SkOpts::memset32(device, black, count);
} else {
SkPMColor src = aa << SK_A32_SHIFT;
unsigned dst_scale = 256 - aa;
int n = count;
do {
--n;
device[n] = src + SkAlphaMulQ(device[n], dst_scale);
} while (n > 0);
}
}
runs += count;
antialias += count;
device += count;
}
}
void SkARGB32_Black_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);)
device[0] = (a0 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a0);
device[1] = (a1 << SK_A32_SHIFT) + SkAlphaMulQ(device[1], 256 - a1);
}
void SkARGB32_Black_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);)
device[0] = (a0 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a0);
device = (uint32_t*)((char*)device + fDevice.rowBytes());
device[0] = (a1 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a1);
}
///////////////////////////////////////////////////////////////////////////////
SkARGB32_Shader_Blitter::SkARGB32_Shader_Blitter(const SkPixmap& device,
const SkPaint& paint, SkShaderBase::Context* shaderContext)
: INHERITED(device, paint, shaderContext)
{
fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * (sizeof(SkPMColor)));
SkASSERT(paint.isSrcOver());
int flags = 0;
if (!(shaderContext->getFlags() & SkShaderBase::kOpaqueAlpha_Flag)) {
flags |= SkBlitRow::kSrcPixelAlpha_Flag32;
}
// we call this on the output from the shader
fProc32 = SkBlitRow::Factory32(flags);
// we call this on the output from the shader + alpha from the aa buffer
fProc32Blend = SkBlitRow::Factory32(flags | SkBlitRow::kGlobalAlpha_Flag32);
fShadeDirectlyIntoDevice =
SkToBool(shaderContext->getFlags() & SkShaderBase::kOpaqueAlpha_Flag);
}
SkARGB32_Shader_Blitter::~SkARGB32_Shader_Blitter() {
sk_free(fBuffer);
}
void SkARGB32_Shader_Blitter::blitH(int x, int y, int width) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());
uint32_t* device = fDevice.writable_addr32(x, y);
if (fShadeDirectlyIntoDevice) {
fShaderContext->shadeSpan(x, y, device, width);
} else {
SkPMColor* span = fBuffer;
fShaderContext->shadeSpan(x, y, span, width);
fProc32(device, span, width, 255);
}
}
void SkARGB32_Shader_Blitter::blitRect(int x, int y, int width, int height) {
SkASSERT(x >= 0 && y >= 0 &&
x + width <= fDevice.width() && y + height <= fDevice.height());
uint32_t* device = fDevice.writable_addr32(x, y);
size_t deviceRB = fDevice.rowBytes();
auto* shaderContext = fShaderContext;
SkPMColor* span = fBuffer;
if (fShadeDirectlyIntoDevice) {
do {
shaderContext->shadeSpan(x, y, device, width);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
SkBlitRow::Proc32 proc = fProc32;
do {
shaderContext->shadeSpan(x, y, span, width);
proc(device, span, width, 255);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
}
void SkARGB32_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
SkPMColor* span = fBuffer;
uint32_t* device = fDevice.writable_addr32(x, y);
auto* shaderContext = fShaderContext;
if (fShadeDirectlyIntoDevice || (shaderContext->getFlags() & SkShaderBase::kOpaqueAlpha_Flag)) {
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (aa) {
if (aa == 255) {
// cool, have the shader draw right into the device
shaderContext->shadeSpan(x, y, device, count);
} else {
shaderContext->shadeSpan(x, y, span, count);
fProc32Blend(device, span, count, aa);
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
} else {
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (aa) {
shaderContext->shadeSpan(x, y, span, count);
if (aa == 255) {
fProc32(device, span, count, 255);
} else {
fProc32Blend(device, span, count, aa);
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
}
}
using U32 = skvx::Vec< 4, uint32_t>;
using U8x4 = skvx::Vec<16, uint8_t>;
using U8 = skvx::Vec< 4, uint8_t>;
static void drive(SkPMColor* dst, const SkPMColor* src, const uint8_t* cov, int n,
U8x4 (*kernel)(U8x4,U8x4,U8x4)) {
auto apply = [kernel](U32 dst, U32 src, U8 cov) -> U32 {
U8x4 cov_splat = skvx::shuffle<0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3>(cov);
return sk_bit_cast<U32>(kernel(sk_bit_cast<U8x4>(dst),
sk_bit_cast<U8x4>(src),
cov_splat));
};
while (n >= 4) {
apply(U32::Load(dst), U32::Load(src), U8::Load(cov)).store(dst);
dst += 4;
src += 4;
cov += 4;
n -= 4;
}
while (n --> 0) {
*dst = apply(U32{*dst}, U32{*src}, U8{*cov})[0];
dst++;
src++;
cov++;
}
}
static void blend_row_A8(SkPMColor* dst, const void* mask, const SkPMColor* src, int n) {
auto cov = (const uint8_t*)mask;
drive(dst, src, cov, n, [](U8x4 d, U8x4 s, U8x4 c) {
U8x4 s_aa = skvx::approx_scale(s, c),
alpha = skvx::shuffle<3,3,3,3, 7,7,7,7, 11,11,11,11, 15,15,15,15>(s_aa);
return s_aa + skvx::approx_scale(d, 255 - alpha);
});
}
static void blend_row_A8_opaque(SkPMColor* dst, const void* mask, const SkPMColor* src, int n) {
auto cov = (const uint8_t*)mask;
drive(dst, src, cov, n, [](U8x4 d, U8x4 s, U8x4 c) {
return skvx::div255( skvx::cast<uint16_t>(s) * skvx::cast<uint16_t>( c )
+ skvx::cast<uint16_t>(d) * skvx::cast<uint16_t>(255-c));
});
}
static void blend_row_lcd16(SkPMColor* dst, const void* vmask, const SkPMColor* src, int n) {
auto src_alpha_blend = [](int s, int d, int sa, int m) {
return d + SkAlphaMul(s - SkAlphaMul(sa, d), m);
};
auto upscale_31_to_255 = [](int v) {
return (v << 3) | (v >> 2);
};
auto mask = (const uint16_t*)vmask;
for (int i = 0; i < n; ++i) {
uint16_t m = mask[i];
if (0 == m) {
continue;
}
SkPMColor s = src[i];
SkPMColor d = dst[i];
int srcA = SkGetPackedA32(s);
int srcR = SkGetPackedR32(s);
int srcG = SkGetPackedG32(s);
int srcB = SkGetPackedB32(s);
srcA += srcA >> 7;
// We're ignoring the least significant bit of the green coverage channel here.
int maskR = SkGetPackedR16(m) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(m) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(m) >> (SK_B16_BITS - 5);
// Scale up to 8-bit coverage to work with SkAlphaMul() in src_alpha_blend().
maskR = upscale_31_to_255(maskR);
maskG = upscale_31_to_255(maskG);
maskB = upscale_31_to_255(maskB);
// This LCD blit routine only works if the destination is opaque.
dst[i] = SkPackARGB32(0xFF,
src_alpha_blend(srcR, SkGetPackedR32(d), srcA, maskR),
src_alpha_blend(srcG, SkGetPackedG32(d), srcA, maskG),
src_alpha_blend(srcB, SkGetPackedB32(d), srcA, maskB));
}
}
static void blend_row_LCD16_opaque(SkPMColor* dst, const void* vmask, const SkPMColor* src, int n) {
auto mask = (const uint16_t*)vmask;
for (int i = 0; i < n; ++i) {
uint16_t m = mask[i];
if (0 == m) {
continue;
}
SkPMColor s = src[i];
SkPMColor d = dst[i];
int srcR = SkGetPackedR32(s);
int srcG = SkGetPackedG32(s);
int srcB = SkGetPackedB32(s);
// We're ignoring the least significant bit of the green coverage channel here.
int maskR = SkGetPackedR16(m) >> (SK_R16_BITS - 5);
int maskG = SkGetPackedG16(m) >> (SK_G16_BITS - 5);
int maskB = SkGetPackedB16(m) >> (SK_B16_BITS - 5);
// Now upscale them to 0..32, so we can use blend_32.
maskR = upscale_31_to_32(maskR);
maskG = upscale_31_to_32(maskG);
maskB = upscale_31_to_32(maskB);
// This LCD blit routine only works if the destination is opaque.
dst[i] = SkPackARGB32(0xFF,
blend_32(srcR, SkGetPackedR32(d), maskR),
blend_32(srcG, SkGetPackedG32(d), maskG),
blend_32(srcB, SkGetPackedB32(d), maskB));
}
}
void SkARGB32_Shader_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
void (*blend_row)(SkPMColor*, const void* mask, const SkPMColor*, int) = nullptr;
bool opaque = (fShaderContext->getFlags() & SkShaderBase::kOpaqueAlpha_Flag);
if (mask.fFormat == SkMask::kA8_Format && opaque) {
blend_row = blend_row_A8_opaque;
} else if (mask.fFormat == SkMask::kA8_Format) {
blend_row = blend_row_A8;
} else if (mask.fFormat == SkMask::kLCD16_Format && opaque) {
blend_row = blend_row_LCD16_opaque;
} else if (mask.fFormat == SkMask::kLCD16_Format) {
blend_row = blend_row_lcd16;
} else {
this->INHERITED::blitMask(mask, clip);
return;
}
const int x = clip.fLeft;
const int width = clip.width();
int y = clip.fTop;
int height = clip.height();
char* dstRow = (char*)fDevice.writable_addr32(x, y);
const size_t dstRB = fDevice.rowBytes();
const uint8_t* maskRow = (const uint8_t*)mask.getAddr(x, y);
const size_t maskRB = mask.fRowBytes;
SkPMColor* span = fBuffer;
SkASSERT(blend_row);
do {
fShaderContext->shadeSpan(x, y, span, width);
blend_row(reinterpret_cast<SkPMColor*>(dstRow), maskRow, span, width);
dstRow += dstRB;
maskRow += maskRB;
y += 1;
} while (--height > 0);
}
void SkARGB32_Shader_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
SkASSERT(x >= 0 && y >= 0 && y + height <= fDevice.height());
uint32_t* device = fDevice.writable_addr32(x, y);
size_t deviceRB = fDevice.rowBytes();
if (fShadeDirectlyIntoDevice) {
if (255 == alpha) {
do {
fShaderContext->shadeSpan(x, y, device, 1);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
do {
SkPMColor c;
fShaderContext->shadeSpan(x, y, &c, 1);
*device = SkFourByteInterp(c, *device, alpha);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
} else {
SkPMColor* span = fBuffer;
SkBlitRow::Proc32 proc = (255 == alpha) ? fProc32 : fProc32Blend;
do {
fShaderContext->shadeSpan(x, y, span, 1);
proc(device, span, 1, alpha);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
}