blob: 81e016ff08114a17bb54bae6c28d0e2517b20c8a [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/codec/SkHeifCodec.h"
#include "include/codec/SkCodec.h"
#include "include/codec/SkEncodedImageFormat.h"
#include "include/core/SkStream.h"
#include "include/core/SkTypes.h"
#include "include/private/SkColorData.h"
#include "include/private/base/SkTemplates.h"
#include "src/base/SkEndian.h"
#include "src/codec/SkCodecPriv.h"
#define FOURCC(c1, c2, c3, c4) \
((c1) << 24 | (c2) << 16 | (c3) << 8 | (c4))
bool SkHeifCodec::IsSupported(const void* buffer, size_t bytesRead,
SkEncodedImageFormat* format) {
// Parse the ftyp box up to bytesRead to determine if this is HEIF or AVIF.
// Any valid ftyp box should have at least 8 bytes.
if (bytesRead < 8) {
return false;
}
const uint32_t* ptr = (const uint32_t*)buffer;
uint64_t chunkSize = SkEndian_SwapBE32(ptr[0]);
uint32_t chunkType = SkEndian_SwapBE32(ptr[1]);
if (chunkType != FOURCC('f', 't', 'y', 'p')) {
return false;
}
int64_t offset = 8;
if (chunkSize == 1) {
// This indicates that the next 8 bytes represent the chunk size,
// and chunk data comes after that.
if (bytesRead < 16) {
return false;
}
auto* chunkSizePtr = SkTAddOffset<const uint64_t>(buffer, offset);
chunkSize = SkEndian_SwapBE64(*chunkSizePtr);
if (chunkSize < 16) {
// The smallest valid chunk is 16 bytes long in this case.
return false;
}
offset += 8;
} else if (chunkSize < 8) {
// The smallest valid chunk is 8 bytes long.
return false;
}
if (chunkSize > bytesRead) {
chunkSize = bytesRead;
}
int64_t chunkDataSize = chunkSize - offset;
// It should at least have major brand (4-byte) and minor version (4-bytes).
// The rest of the chunk (if any) is a list of (4-byte) compatible brands.
if (chunkDataSize < 8) {
return false;
}
uint32_t numCompatibleBrands = (chunkDataSize - 8) / 4;
bool isHeif = false;
for (size_t i = 0; i < numCompatibleBrands + 2; ++i) {
if (i == 1) {
// Skip this index, it refers to the minorVersion,
// not a brand.
continue;
}
auto* brandPtr = SkTAddOffset<const uint32_t>(buffer, offset + 4 * i);
uint32_t brand = SkEndian_SwapBE32(*brandPtr);
if (brand == FOURCC('m', 'i', 'f', '1') || brand == FOURCC('h', 'e', 'i', 'c')
|| brand == FOURCC('m', 's', 'f', '1') || brand == FOURCC('h', 'e', 'v', 'c')
|| brand == FOURCC('a', 'v', 'i', 'f') || brand == FOURCC('a', 'v', 'i', 's')) {
// AVIF files could have "mif1" as the major brand. So we cannot
// distinguish whether the image is AVIF or HEIC just based on the
// "mif1" brand. So wait until we see a specific avif brand to
// determine whether it is AVIF or HEIC.
isHeif = true;
if (brand == FOURCC('a', 'v', 'i', 'f')
|| brand == FOURCC('a', 'v', 'i', 's')) {
if (format != nullptr) {
*format = SkEncodedImageFormat::kAVIF;
}
return true;
}
}
}
if (isHeif) {
if (format != nullptr) {
*format = SkEncodedImageFormat::kHEIF;
}
return true;
}
return false;
}
static SkEncodedOrigin get_orientation(const HeifFrameInfo& frameInfo) {
switch (frameInfo.mRotationAngle) {
case 0: return kTopLeft_SkEncodedOrigin;
case 90: return kRightTop_SkEncodedOrigin;
case 180: return kBottomRight_SkEncodedOrigin;
case 270: return kLeftBottom_SkEncodedOrigin;
}
return kDefault_SkEncodedOrigin;
}
struct SkHeifStreamWrapper : public HeifStream {
SkHeifStreamWrapper(SkStream* stream) : fStream(stream) {}
~SkHeifStreamWrapper() override {}
size_t read(void* buffer, size_t size) override {
return fStream->read(buffer, size);
}
bool rewind() override {
return fStream->rewind();
}
bool seek(size_t position) override {
return fStream->seek(position);
}
bool hasLength() const override {
return fStream->hasLength();
}
size_t getLength() const override {
return fStream->getLength();
}
private:
std::unique_ptr<SkStream> fStream;
};
static void releaseProc(const void* ptr, void* context) {
delete reinterpret_cast<std::vector<uint8_t>*>(context);
}
std::unique_ptr<SkCodec> SkHeifCodec::MakeFromStream(std::unique_ptr<SkStream> stream,
SkCodec::SelectionPolicy selectionPolicy, Result* result) {
SkASSERT(result);
if (!stream) {
*result = SkCodec::kInvalidInput;
return nullptr;
}
std::unique_ptr<HeifDecoder> heifDecoder(createHeifDecoder());
if (heifDecoder == nullptr) {
*result = SkCodec::kInternalError;
return nullptr;
}
constexpr size_t bytesToRead = MinBufferedBytesNeeded();
char buffer[bytesToRead];
size_t bytesRead = stream->peek(buffer, bytesToRead);
if (0 == bytesRead) {
// It is possible the stream does not support peeking, but does support rewinding.
// Attempt to read() and pass the actual amount read to the decoder.
bytesRead = stream->read(buffer, bytesToRead);
if (!stream->rewind()) {
SkCodecPrintf("Encoded image data could not peek or rewind to determine format!\n");
*result = kCouldNotRewind;
return nullptr;
}
}
SkEncodedImageFormat format;
if (!SkHeifCodec::IsSupported(buffer, bytesRead, &format)) {
SkCodecPrintf("Failed to get format despite earlier detecting it");
*result = SkCodec::kInternalError;
return nullptr;
}
HeifFrameInfo heifInfo;
if (!heifDecoder->init(new SkHeifStreamWrapper(stream.release()), &heifInfo)) {
*result = SkCodec::kInvalidInput;
return nullptr;
}
size_t frameCount = 1;
if (selectionPolicy == SkCodec::SelectionPolicy::kPreferAnimation) {
HeifFrameInfo sequenceInfo;
if (heifDecoder->getSequenceInfo(&sequenceInfo, &frameCount) &&
frameCount > 1) {
heifInfo = std::move(sequenceInfo);
}
}
std::unique_ptr<SkEncodedInfo::ICCProfile> profile = nullptr;
if (heifInfo.mIccData.size() > 0) {
auto iccData = new std::vector<uint8_t>(std::move(heifInfo.mIccData));
auto icc = SkData::MakeWithProc(iccData->data(), iccData->size(), releaseProc, iccData);
profile = SkEncodedInfo::ICCProfile::Make(std::move(icc));
}
if (profile && profile->profile()->data_color_space != skcms_Signature_RGB) {
// This will result in sRGB.
profile = nullptr;
}
uint8_t colorDepth = heifDecoder->getColorDepth();
SkEncodedInfo info = SkEncodedInfo::Make(heifInfo.mWidth, heifInfo.mHeight,
SkEncodedInfo::kYUV_Color, SkEncodedInfo::kOpaque_Alpha,
/*bitsPerComponent*/ 8, std::move(profile), colorDepth);
SkEncodedOrigin orientation = get_orientation(heifInfo);
*result = SkCodec::kSuccess;
return std::unique_ptr<SkCodec>(new SkHeifCodec(
std::move(info), heifDecoder.release(), orientation, frameCount > 1, format));
}
SkHeifCodec::SkHeifCodec(
SkEncodedInfo&& info,
HeifDecoder* heifDecoder,
SkEncodedOrigin origin,
bool useAnimation,
SkEncodedImageFormat format)
: INHERITED(std::move(info), skcms_PixelFormat_RGBA_8888, nullptr, origin)
, fHeifDecoder(heifDecoder)
, fSwizzleSrcRow(nullptr)
, fColorXformSrcRow(nullptr)
, fUseAnimation(useAnimation)
, fFormat(format)
{}
bool SkHeifCodec::conversionSupported(const SkImageInfo& dstInfo, bool srcIsOpaque,
bool needsColorXform) {
SkASSERT(srcIsOpaque);
if (kUnknown_SkAlphaType == dstInfo.alphaType()) {
return false;
}
if (kOpaque_SkAlphaType != dstInfo.alphaType()) {
SkCodecPrintf("Warning: an opaque image should be decoded as opaque "
"- it is being decoded as non-opaque, which will draw slower\n");
}
uint8_t colorDepth = fHeifDecoder->getColorDepth();
switch (dstInfo.colorType()) {
case kRGBA_8888_SkColorType:
this->setSrcXformFormat(skcms_PixelFormat_RGBA_8888);
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888);
case kBGRA_8888_SkColorType:
this->setSrcXformFormat(skcms_PixelFormat_RGBA_8888);
return fHeifDecoder->setOutputColor(kHeifColorFormat_BGRA_8888);
case kRGB_565_SkColorType:
this->setSrcXformFormat(skcms_PixelFormat_RGBA_8888);
if (needsColorXform) {
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888);
} else {
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGB565);
}
case kRGBA_1010102_SkColorType:
this->setSrcXformFormat(skcms_PixelFormat_RGBA_1010102);
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_1010102);
case kRGBA_F16_SkColorType:
SkASSERT(needsColorXform);
if (srcIsOpaque && colorDepth == 10) {
this->setSrcXformFormat(skcms_PixelFormat_RGBA_1010102);
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_1010102);
} else {
this->setSrcXformFormat(skcms_PixelFormat_RGBA_8888);
return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888);
}
default:
return false;
}
}
int SkHeifCodec::readRows(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, int count,
const Options& opts) {
// When fSwizzleSrcRow is non-null, it means that we need to swizzle. In this case,
// we will always decode into fSwizzlerSrcRow before swizzling into the next buffer.
// We can never swizzle "in place" because the swizzler may perform sampling and/or
// subsetting.
// When fColorXformSrcRow is non-null, it means that we need to color xform and that
// we cannot color xform "in place" (many times we can, but not when the dst is F16).
// In this case, we will color xform from fColorXformSrcRow into the dst.
uint8_t* decodeDst = (uint8_t*) dst;
uint32_t* swizzleDst = (uint32_t*) dst;
size_t decodeDstRowBytes = rowBytes;
size_t swizzleDstRowBytes = rowBytes;
int dstWidth = opts.fSubset ? opts.fSubset->width() : dstInfo.width();
if (fSwizzleSrcRow && fColorXformSrcRow) {
decodeDst = fSwizzleSrcRow;
swizzleDst = fColorXformSrcRow;
decodeDstRowBytes = 0;
swizzleDstRowBytes = 0;
dstWidth = fSwizzler->swizzleWidth();
} else if (fColorXformSrcRow) {
decodeDst = (uint8_t*) fColorXformSrcRow;
swizzleDst = fColorXformSrcRow;
decodeDstRowBytes = 0;
swizzleDstRowBytes = 0;
} else if (fSwizzleSrcRow) {
decodeDst = fSwizzleSrcRow;
decodeDstRowBytes = 0;
dstWidth = fSwizzler->swizzleWidth();
}
for (int y = 0; y < count; y++) {
if (!fHeifDecoder->getScanline(decodeDst)) {
return y;
}
if (fSwizzler) {
fSwizzler->swizzle(swizzleDst, decodeDst);
}
if (this->colorXform()) {
this->applyColorXform(dst, swizzleDst, dstWidth);
dst = SkTAddOffset<void>(dst, rowBytes);
}
decodeDst = SkTAddOffset<uint8_t>(decodeDst, decodeDstRowBytes);
swizzleDst = SkTAddOffset<uint32_t>(swizzleDst, swizzleDstRowBytes);
}
return count;
}
int SkHeifCodec::onGetFrameCount() {
if (!fUseAnimation) {
return 1;
}
if (fFrameHolder.size() == 0) {
size_t frameCount;
HeifFrameInfo frameInfo;
if (!fHeifDecoder->getSequenceInfo(&frameInfo, &frameCount)
|| frameCount <= 1) {
fUseAnimation = false;
return 1;
}
fFrameHolder.reserve(frameCount);
for (size_t i = 0; i < frameCount; i++) {
Frame* frame = fFrameHolder.appendNewFrame();
frame->setXYWH(0, 0, frameInfo.mWidth, frameInfo.mHeight);
frame->setDisposalMethod(SkCodecAnimation::DisposalMethod::kKeep);
// Currently we don't know the duration until the frame is actually
// decoded (onGetFrameInfo is also called before frame is decoded).
// For now, fill it base on the value reported for the sequence.
frame->setDuration(frameInfo.mDurationUs / 1000);
frame->setRequiredFrame(SkCodec::kNoFrame);
frame->setHasAlpha(false);
}
}
return fFrameHolder.size();
}
const SkFrame* SkHeifCodec::FrameHolder::onGetFrame(int i) const {
return static_cast<const SkFrame*>(this->frame(i));
}
SkHeifCodec::Frame* SkHeifCodec::FrameHolder::appendNewFrame() {
const int i = this->size();
fFrames.emplace_back(i); // TODO: need to handle frame duration here
return &fFrames[i];
}
const SkHeifCodec::Frame* SkHeifCodec::FrameHolder::frame(int i) const {
SkASSERT(i >= 0 && i < this->size());
return &fFrames[i];
}
SkHeifCodec::Frame* SkHeifCodec::FrameHolder::editFrameAt(int i) {
SkASSERT(i >= 0 && i < this->size());
return &fFrames[i];
}
bool SkHeifCodec::onGetFrameInfo(int i, FrameInfo* frameInfo) const {
if (i >= fFrameHolder.size()) {
return false;
}
const Frame* frame = fFrameHolder.frame(i);
if (!frame) {
return false;
}
if (frameInfo) {
frame->fillIn(frameInfo, true);
}
return true;
}
int SkHeifCodec::onGetRepetitionCount() {
return kRepetitionCountInfinite;
}
/*
* Performs the heif decode
*/
SkCodec::Result SkHeifCodec::onGetPixels(const SkImageInfo& dstInfo,
void* dst, size_t dstRowBytes,
const Options& options,
int* rowsDecoded) {
if (options.fSubset) {
// Not supporting subsets on this path for now.
// TODO: if the heif has tiles, we can support subset here, but
// need to retrieve tile config from metadata retriever first.
return kUnimplemented;
}
bool success;
if (fUseAnimation) {
success = fHeifDecoder->decodeSequence(options.fFrameIndex, &fFrameInfo);
fFrameHolder.editFrameAt(options.fFrameIndex)->setDuration(
fFrameInfo.mDurationUs / 1000);
} else {
success = fHeifDecoder->decode(&fFrameInfo);
}
if (!success) {
return kInvalidInput;
}
fSwizzler.reset(nullptr);
this->allocateStorage(dstInfo);
int rows = this->readRows(dstInfo, dst, dstRowBytes, dstInfo.height(), options);
if (rows < dstInfo.height()) {
*rowsDecoded = rows;
return kIncompleteInput;
}
return kSuccess;
}
void SkHeifCodec::allocateStorage(const SkImageInfo& dstInfo) {
int dstWidth = dstInfo.width();
size_t swizzleBytes = 0;
if (fSwizzler) {
swizzleBytes = fFrameInfo.mBytesPerPixel * fFrameInfo.mWidth;
dstWidth = fSwizzler->swizzleWidth();
SkASSERT(!this->colorXform() || SkIsAlign4(swizzleBytes));
}
size_t xformBytes = 0;
if (this->colorXform() && (kRGBA_F16_SkColorType == dstInfo.colorType() ||
kRGB_565_SkColorType == dstInfo.colorType())) {
xformBytes = dstWidth * sizeof(uint32_t);
}
size_t totalBytes = swizzleBytes + xformBytes;
fStorage.reset(totalBytes);
if (totalBytes > 0) {
fSwizzleSrcRow = (swizzleBytes > 0) ? fStorage.get() : nullptr;
fColorXformSrcRow = (xformBytes > 0) ?
SkTAddOffset<uint32_t>(fStorage.get(), swizzleBytes) : nullptr;
}
}
void SkHeifCodec::initializeSwizzler(
const SkImageInfo& dstInfo, const Options& options) {
SkImageInfo swizzlerDstInfo = dstInfo;
switch (this->getSrcXformFormat()) {
case skcms_PixelFormat_RGBA_8888:
swizzlerDstInfo = swizzlerDstInfo.makeColorType(kRGBA_8888_SkColorType);
break;
case skcms_PixelFormat_RGBA_1010102:
swizzlerDstInfo = swizzlerDstInfo.makeColorType(kRGBA_1010102_SkColorType);
break;
default:
SkASSERT(false);
}
int srcBPP = 4;
if (dstInfo.colorType() == kRGB_565_SkColorType && !this->colorXform()) {
srcBPP = 2;
}
fSwizzler = SkSwizzler::MakeSimple(srcBPP, swizzlerDstInfo, options);
SkASSERT(fSwizzler);
}
SkSampler* SkHeifCodec::getSampler(bool createIfNecessary) {
if (!createIfNecessary || fSwizzler) {
SkASSERT(!fSwizzler || (fSwizzleSrcRow && fStorage.get() == fSwizzleSrcRow));
return fSwizzler.get();
}
this->initializeSwizzler(this->dstInfo(), this->options());
this->allocateStorage(this->dstInfo());
return fSwizzler.get();
}
bool SkHeifCodec::onRewind() {
fSwizzler.reset(nullptr);
fSwizzleSrcRow = nullptr;
fColorXformSrcRow = nullptr;
fStorage.reset();
return true;
}
SkCodec::Result SkHeifCodec::onStartScanlineDecode(
const SkImageInfo& dstInfo, const Options& options) {
// TODO: For now, just decode the whole thing even when there is a subset.
// If the heif image has tiles, we could potentially do this much faster,
// but the tile configuration needs to be retrieved from the metadata.
if (!fHeifDecoder->decode(&fFrameInfo)) {
return kInvalidInput;
}
if (options.fSubset) {
this->initializeSwizzler(dstInfo, options);
} else {
fSwizzler.reset(nullptr);
}
this->allocateStorage(dstInfo);
return kSuccess;
}
int SkHeifCodec::onGetScanlines(void* dst, int count, size_t dstRowBytes) {
return this->readRows(this->dstInfo(), dst, dstRowBytes, count, this->options());
}
bool SkHeifCodec::onSkipScanlines(int count) {
return count == (int) fHeifDecoder->skipScanlines(count);
}
namespace SkHeifDecoder {
bool IsHeif(const void* data, size_t len) {
return SkHeifCodec::IsSupported(data, len, nullptr);
}
std::unique_ptr<SkCodec> Decode(std::unique_ptr<SkStream> stream,
SkCodec::Result* outResult,
SkCodecs::DecodeContext ctx) {
SkASSERT(ctx);
SkCodec::Result resultStorage;
if (!outResult) {
outResult = &resultStorage;
}
auto policy = static_cast<SkCodec::SelectionPolicy*>(ctx);
return SkHeifCodec::MakeFromStream(std::move(stream), *policy, outResult);
}
std::unique_ptr<SkCodec> Decode(sk_sp<SkData> data,
SkCodec::Result* outResult,
SkCodecs::DecodeContext ctx) {
if (!data) {
if (outResult) {
*outResult = SkCodec::kInvalidInput;
}
return nullptr;
}
return Decode(SkMemoryStream::Make(std::move(data)), outResult, ctx);
}
} // namespace SkHeifDecoder