| /* |
| * Copyright 2020 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkM44_DEFINED |
| #define SkM44_DEFINED |
| |
| #include "include/core/SkMatrix.h" |
| #include "include/core/SkScalar.h" |
| #include "include/core/SkTypes.h" |
| |
| #include <cstring> |
| |
| struct SkRect; |
| |
| struct SK_API SkV2 { |
| float x, y; |
| |
| bool operator==(const SkV2 v) const { return x == v.x && y == v.y; } |
| bool operator!=(const SkV2 v) const { return !(*this == v); } |
| |
| static SkScalar Dot(SkV2 a, SkV2 b) { return a.x * b.x + a.y * b.y; } |
| static SkScalar Cross(SkV2 a, SkV2 b) { return a.x * b.y - a.y * b.x; } |
| static SkV2 Normalize(SkV2 v) { return v * (1.0f / v.length()); } |
| |
| SkV2 operator-() const { return {-x, -y}; } |
| SkV2 operator+(SkV2 v) const { return {x+v.x, y+v.y}; } |
| SkV2 operator-(SkV2 v) const { return {x-v.x, y-v.y}; } |
| |
| SkV2 operator*(SkV2 v) const { return {x*v.x, y*v.y}; } |
| friend SkV2 operator*(SkV2 v, SkScalar s) { return {v.x*s, v.y*s}; } |
| friend SkV2 operator*(SkScalar s, SkV2 v) { return {v.x*s, v.y*s}; } |
| friend SkV2 operator/(SkV2 v, SkScalar s) { return {v.x/s, v.y/s}; } |
| friend SkV2 operator/(SkScalar s, SkV2 v) { return {s/v.x, s/v.y}; } |
| |
| void operator+=(SkV2 v) { *this = *this + v; } |
| void operator-=(SkV2 v) { *this = *this - v; } |
| void operator*=(SkV2 v) { *this = *this * v; } |
| void operator*=(SkScalar s) { *this = *this * s; } |
| void operator/=(SkScalar s) { *this = *this / s; } |
| |
| SkScalar lengthSquared() const { return Dot(*this, *this); } |
| SkScalar length() const { return SkScalarSqrt(this->lengthSquared()); } |
| |
| SkScalar dot(SkV2 v) const { return Dot(*this, v); } |
| SkScalar cross(SkV2 v) const { return Cross(*this, v); } |
| SkV2 normalize() const { return Normalize(*this); } |
| |
| const float* ptr() const { return &x; } |
| float* ptr() { return &x; } |
| }; |
| |
| struct SK_API SkV3 { |
| float x, y, z; |
| |
| bool operator==(const SkV3& v) const { |
| return x == v.x && y == v.y && z == v.z; |
| } |
| bool operator!=(const SkV3& v) const { return !(*this == v); } |
| |
| static SkScalar Dot(const SkV3& a, const SkV3& b) { return a.x*b.x + a.y*b.y + a.z*b.z; } |
| static SkV3 Cross(const SkV3& a, const SkV3& b) { |
| return { a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x }; |
| } |
| static SkV3 Normalize(const SkV3& v) { return v * (1.0f / v.length()); } |
| |
| SkV3 operator-() const { return {-x, -y, -z}; } |
| SkV3 operator+(const SkV3& v) const { return { x + v.x, y + v.y, z + v.z }; } |
| SkV3 operator-(const SkV3& v) const { return { x - v.x, y - v.y, z - v.z }; } |
| |
| SkV3 operator*(const SkV3& v) const { |
| return { x*v.x, y*v.y, z*v.z }; |
| } |
| friend SkV3 operator*(const SkV3& v, SkScalar s) { |
| return { v.x*s, v.y*s, v.z*s }; |
| } |
| friend SkV3 operator*(SkScalar s, const SkV3& v) { return v*s; } |
| |
| void operator+=(SkV3 v) { *this = *this + v; } |
| void operator-=(SkV3 v) { *this = *this - v; } |
| void operator*=(SkV3 v) { *this = *this * v; } |
| void operator*=(SkScalar s) { *this = *this * s; } |
| |
| SkScalar lengthSquared() const { return Dot(*this, *this); } |
| SkScalar length() const { return SkScalarSqrt(Dot(*this, *this)); } |
| |
| SkScalar dot(const SkV3& v) const { return Dot(*this, v); } |
| SkV3 cross(const SkV3& v) const { return Cross(*this, v); } |
| SkV3 normalize() const { return Normalize(*this); } |
| |
| const float* ptr() const { return &x; } |
| float* ptr() { return &x; } |
| }; |
| |
| struct SK_API SkV4 { |
| float x, y, z, w; |
| |
| bool operator==(const SkV4& v) const { |
| return x == v.x && y == v.y && z == v.z && w == v.w; |
| } |
| bool operator!=(const SkV4& v) const { return !(*this == v); } |
| |
| static SkScalar Dot(const SkV4& a, const SkV4& b) { |
| return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; |
| } |
| static SkV4 Normalize(const SkV4& v) { return v * (1.0f / v.length()); } |
| |
| SkV4 operator-() const { return {-x, -y, -z, -w}; } |
| SkV4 operator+(const SkV4& v) const { return { x + v.x, y + v.y, z + v.z, w + v.w }; } |
| SkV4 operator-(const SkV4& v) const { return { x - v.x, y - v.y, z - v.z, w - v.w }; } |
| |
| SkV4 operator*(const SkV4& v) const { |
| return { x*v.x, y*v.y, z*v.z, w*v.w }; |
| } |
| friend SkV4 operator*(const SkV4& v, SkScalar s) { |
| return { v.x*s, v.y*s, v.z*s, v.w*s }; |
| } |
| friend SkV4 operator*(SkScalar s, const SkV4& v) { return v*s; } |
| |
| SkScalar lengthSquared() const { return Dot(*this, *this); } |
| SkScalar length() const { return SkScalarSqrt(Dot(*this, *this)); } |
| |
| SkScalar dot(const SkV4& v) const { return Dot(*this, v); } |
| SkV4 normalize() const { return Normalize(*this); } |
| |
| const float* ptr() const { return &x; } |
| float* ptr() { return &x; } |
| |
| float operator[](int i) const { |
| SkASSERT(i >= 0 && i < 4); |
| return this->ptr()[i]; |
| } |
| float& operator[](int i) { |
| SkASSERT(i >= 0 && i < 4); |
| return this->ptr()[i]; |
| } |
| }; |
| |
| /** |
| * 4x4 matrix used by SkCanvas and other parts of Skia. |
| * |
| * Skia assumes a right-handed coordinate system: |
| * +X goes to the right |
| * +Y goes down |
| * +Z goes into the screen (away from the viewer) |
| */ |
| class SK_API SkM44 { |
| public: |
| SkM44(const SkM44& src) = default; |
| SkM44& operator=(const SkM44& src) = default; |
| |
| constexpr SkM44() |
| : fMat{1, 0, 0, 0, |
| 0, 1, 0, 0, |
| 0, 0, 1, 0, |
| 0, 0, 0, 1} |
| {} |
| |
| SkM44(const SkM44& a, const SkM44& b) { |
| this->setConcat(a, b); |
| } |
| |
| enum Uninitialized_Constructor { |
| kUninitialized_Constructor |
| }; |
| SkM44(Uninitialized_Constructor) {} |
| |
| enum NaN_Constructor { |
| kNaN_Constructor |
| }; |
| constexpr SkM44(NaN_Constructor) |
| : fMat{SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, |
| SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, |
| SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, |
| SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN, SK_ScalarNaN} |
| {} |
| |
| /** |
| * The constructor parameters are in row-major order. |
| */ |
| constexpr SkM44(SkScalar m0, SkScalar m4, SkScalar m8, SkScalar m12, |
| SkScalar m1, SkScalar m5, SkScalar m9, SkScalar m13, |
| SkScalar m2, SkScalar m6, SkScalar m10, SkScalar m14, |
| SkScalar m3, SkScalar m7, SkScalar m11, SkScalar m15) |
| // fMat is column-major order in memory. |
| : fMat{m0, m1, m2, m3, |
| m4, m5, m6, m7, |
| m8, m9, m10, m11, |
| m12, m13, m14, m15} |
| {} |
| |
| static SkM44 Rows(const SkV4& r0, const SkV4& r1, const SkV4& r2, const SkV4& r3) { |
| SkM44 m(kUninitialized_Constructor); |
| m.setRow(0, r0); |
| m.setRow(1, r1); |
| m.setRow(2, r2); |
| m.setRow(3, r3); |
| return m; |
| } |
| static SkM44 Cols(const SkV4& c0, const SkV4& c1, const SkV4& c2, const SkV4& c3) { |
| SkM44 m(kUninitialized_Constructor); |
| m.setCol(0, c0); |
| m.setCol(1, c1); |
| m.setCol(2, c2); |
| m.setCol(3, c3); |
| return m; |
| } |
| |
| static SkM44 RowMajor(const SkScalar r[16]) { |
| return SkM44(r[ 0], r[ 1], r[ 2], r[ 3], |
| r[ 4], r[ 5], r[ 6], r[ 7], |
| r[ 8], r[ 9], r[10], r[11], |
| r[12], r[13], r[14], r[15]); |
| } |
| static SkM44 ColMajor(const SkScalar c[16]) { |
| return SkM44(c[0], c[4], c[ 8], c[12], |
| c[1], c[5], c[ 9], c[13], |
| c[2], c[6], c[10], c[14], |
| c[3], c[7], c[11], c[15]); |
| } |
| |
| static SkM44 Translate(SkScalar x, SkScalar y, SkScalar z = 0) { |
| return SkM44(1, 0, 0, x, |
| 0, 1, 0, y, |
| 0, 0, 1, z, |
| 0, 0, 0, 1); |
| } |
| |
| static SkM44 Scale(SkScalar x, SkScalar y, SkScalar z = 1) { |
| return SkM44(x, 0, 0, 0, |
| 0, y, 0, 0, |
| 0, 0, z, 0, |
| 0, 0, 0, 1); |
| } |
| |
| static SkM44 Rotate(SkV3 axis, SkScalar radians) { |
| SkM44 m(kUninitialized_Constructor); |
| m.setRotate(axis, radians); |
| return m; |
| } |
| |
| // Scales and translates 'src' to fill 'dst' exactly. |
| static SkM44 RectToRect(const SkRect& src, const SkRect& dst); |
| |
| static SkM44 LookAt(const SkV3& eye, const SkV3& center, const SkV3& up); |
| static SkM44 Perspective(float near, float far, float angle); |
| |
| bool operator==(const SkM44& other) const; |
| bool operator!=(const SkM44& other) const { |
| return !(other == *this); |
| } |
| |
| void getColMajor(SkScalar v[]) const { |
| memcpy(v, fMat, sizeof(fMat)); |
| } |
| void getRowMajor(SkScalar v[]) const; |
| |
| SkScalar rc(int r, int c) const { |
| SkASSERT(r >= 0 && r <= 3); |
| SkASSERT(c >= 0 && c <= 3); |
| return fMat[c*4 + r]; |
| } |
| void setRC(int r, int c, SkScalar value) { |
| SkASSERT(r >= 0 && r <= 3); |
| SkASSERT(c >= 0 && c <= 3); |
| fMat[c*4 + r] = value; |
| } |
| |
| SkV4 row(int i) const { |
| SkASSERT(i >= 0 && i <= 3); |
| return {fMat[i + 0], fMat[i + 4], fMat[i + 8], fMat[i + 12]}; |
| } |
| SkV4 col(int i) const { |
| SkASSERT(i >= 0 && i <= 3); |
| return {fMat[i*4 + 0], fMat[i*4 + 1], fMat[i*4 + 2], fMat[i*4 + 3]}; |
| } |
| |
| void setRow(int i, const SkV4& v) { |
| SkASSERT(i >= 0 && i <= 3); |
| fMat[i + 0] = v.x; |
| fMat[i + 4] = v.y; |
| fMat[i + 8] = v.z; |
| fMat[i + 12] = v.w; |
| } |
| void setCol(int i, const SkV4& v) { |
| SkASSERT(i >= 0 && i <= 3); |
| memcpy(&fMat[i*4], v.ptr(), sizeof(v)); |
| } |
| |
| SkM44& setIdentity() { |
| *this = { 1, 0, 0, 0, |
| 0, 1, 0, 0, |
| 0, 0, 1, 0, |
| 0, 0, 0, 1 }; |
| return *this; |
| } |
| |
| SkM44& setTranslate(SkScalar x, SkScalar y, SkScalar z = 0) { |
| *this = { 1, 0, 0, x, |
| 0, 1, 0, y, |
| 0, 0, 1, z, |
| 0, 0, 0, 1 }; |
| return *this; |
| } |
| |
| SkM44& setScale(SkScalar x, SkScalar y, SkScalar z = 1) { |
| *this = { x, 0, 0, 0, |
| 0, y, 0, 0, |
| 0, 0, z, 0, |
| 0, 0, 0, 1 }; |
| return *this; |
| } |
| |
| /** |
| * Set this matrix to rotate about the specified unit-length axis vector, |
| * by an angle specified by its sin() and cos(). |
| * |
| * This does not attempt to verify that axis.length() == 1 or that the sin,cos values |
| * are correct. |
| */ |
| SkM44& setRotateUnitSinCos(SkV3 axis, SkScalar sinAngle, SkScalar cosAngle); |
| |
| /** |
| * Set this matrix to rotate about the specified unit-length axis vector, |
| * by an angle specified in radians. |
| * |
| * This does not attempt to verify that axis.length() == 1. |
| */ |
| SkM44& setRotateUnit(SkV3 axis, SkScalar radians) { |
| return this->setRotateUnitSinCos(axis, SkScalarSin(radians), SkScalarCos(radians)); |
| } |
| |
| /** |
| * Set this matrix to rotate about the specified axis vector, |
| * by an angle specified in radians. |
| * |
| * Note: axis is not assumed to be unit-length, so it will be normalized internally. |
| * If axis is already unit-length, call setRotateAboutUnitRadians() instead. |
| */ |
| SkM44& setRotate(SkV3 axis, SkScalar radians); |
| |
| SkM44& setConcat(const SkM44& a, const SkM44& b); |
| |
| friend SkM44 operator*(const SkM44& a, const SkM44& b) { |
| return SkM44(a, b); |
| } |
| |
| SkM44& preConcat(const SkM44& m) { |
| return this->setConcat(*this, m); |
| } |
| |
| SkM44& postConcat(const SkM44& m) { |
| return this->setConcat(m, *this); |
| } |
| |
| /** |
| * A matrix is categorized as 'perspective' if the bottom row is not [0, 0, 0, 1]. |
| * For most uses, a bottom row of [0, 0, 0, X] behaves like a non-perspective matrix, though |
| * it will be categorized as perspective. Calling normalizePerspective() will change the |
| * matrix such that, if its bottom row was [0, 0, 0, X], it will be changed to [0, 0, 0, 1] |
| * by scaling the rest of the matrix by 1/X. |
| * |
| * | A B C D | | A/X B/X C/X D/X | |
| * | E F G H | -> | E/X F/X G/X H/X | for X != 0 |
| * | I J K L | | I/X J/X K/X L/X | |
| * | 0 0 0 X | | 0 0 0 1 | |
| */ |
| void normalizePerspective(); |
| |
| /** Returns true if all elements of the matrix are finite. Returns false if any |
| element is infinity, or NaN. |
| |
| @return true if matrix has only finite elements |
| */ |
| bool isFinite() const { return SkIsFinite(fMat, 16); } |
| |
| /** If this is invertible, return that in inverse and return true. If it is |
| * not invertible, return false and leave the inverse parameter unchanged. |
| */ |
| [[nodiscard]] bool invert(SkM44* inverse) const; |
| |
| [[nodiscard]] SkM44 transpose() const; |
| |
| void dump() const; |
| |
| //////////// |
| |
| SkV4 map(float x, float y, float z, float w) const; |
| SkV4 operator*(const SkV4& v) const { |
| return this->map(v.x, v.y, v.z, v.w); |
| } |
| SkV3 operator*(SkV3 v) const { |
| auto v4 = this->map(v.x, v.y, v.z, 0); |
| return {v4.x, v4.y, v4.z}; |
| } |
| ////////////////////// Converting to/from SkMatrix |
| |
| /* When converting from SkM44 to SkMatrix, the third row and |
| * column is dropped. When converting from SkMatrix to SkM44 |
| * the third row and column remain as identity: |
| * [ a b c ] [ a b 0 c ] |
| * [ d e f ] -> [ d e 0 f ] |
| * [ g h i ] [ 0 0 1 0 ] |
| * [ g h 0 i ] |
| */ |
| SkMatrix asM33() const { |
| return SkMatrix::MakeAll(fMat[0], fMat[4], fMat[12], |
| fMat[1], fMat[5], fMat[13], |
| fMat[3], fMat[7], fMat[15]); |
| } |
| |
| explicit SkM44(const SkMatrix& src) |
| : SkM44(src[SkMatrix::kMScaleX], src[SkMatrix::kMSkewX], 0, src[SkMatrix::kMTransX], |
| src[SkMatrix::kMSkewY], src[SkMatrix::kMScaleY], 0, src[SkMatrix::kMTransY], |
| 0, 0, 1, 0, |
| src[SkMatrix::kMPersp0], src[SkMatrix::kMPersp1], 0, src[SkMatrix::kMPersp2]) |
| {} |
| |
| SkM44& preTranslate(SkScalar x, SkScalar y, SkScalar z = 0); |
| SkM44& postTranslate(SkScalar x, SkScalar y, SkScalar z = 0); |
| |
| SkM44& preScale(SkScalar x, SkScalar y); |
| SkM44& preScale(SkScalar x, SkScalar y, SkScalar z); |
| SkM44& preConcat(const SkMatrix&); |
| |
| private: |
| /* Stored in column-major. |
| * Indices |
| * 0 4 8 12 1 0 0 trans_x |
| * 1 5 9 13 e.g. 0 1 0 trans_y |
| * 2 6 10 14 0 0 1 trans_z |
| * 3 7 11 15 0 0 0 1 |
| */ |
| SkScalar fMat[16]; |
| |
| friend class SkMatrixPriv; |
| }; |
| |
| #endif |