blob: e5a004ef3ae1590050fbc6f0a641f72126287142 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <new>
#include "SkBBoxHierarchy.h"
#include "SkDrawPictureCallback.h"
#include "SkPictureData.h"
#include "SkPictureRecord.h"
#include "SkReadBuffer.h"
#include "SkTextBlob.h"
#include "SkTypeface.h"
#include "SkTSort.h"
#include "SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#endif
template <typename T> int SafeCount(const T* obj) {
return obj ? obj->count() : 0;
}
SkPictureData::SkPictureData(const SkPictInfo& info)
: fInfo(info) {
this->init();
}
void SkPictureData::initForPlayback() const {
// ensure that the paths bounds are pre-computed
if (NULL != fPathHeap.get()) {
for (int i = 0; i < fPathHeap->count(); i++) {
(*fPathHeap.get())[i].updateBoundsCache();
}
}
}
SkPictureData::SkPictureData(const SkPictureRecord& record,
const SkPictInfo& info,
bool deepCopyOps)
: fInfo(info) {
this->init();
fOpData = record.opData(deepCopyOps);
fBoundingHierarchy = record.fBoundingHierarchy;
fStateTree = record.fStateTree;
SkSafeRef(fBoundingHierarchy);
SkSafeRef(fStateTree);
fContentInfo.set(record.fContentInfo);
if (NULL != fBoundingHierarchy) {
fBoundingHierarchy->flushDeferredInserts();
}
// copy over the refcnt dictionary to our reader
record.fFlattenableHeap.setupPlaybacks();
fBitmaps = record.fBitmapHeap->extractBitmaps();
fPaints = record.fPaints.unflattenToArray();
fBitmapHeap.reset(SkSafeRef(record.fBitmapHeap));
fPathHeap.reset(SkSafeRef(record.pathHeap()));
this->initForPlayback();
const SkTDArray<const SkPicture* >& pictures = record.getPictureRefs();
fPictureCount = pictures.count();
if (fPictureCount > 0) {
fPictureRefs = SkNEW_ARRAY(const SkPicture*, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i] = pictures[i];
fPictureRefs[i]->ref();
}
}
// templatize to consolidate with similar picture logic?
const SkTDArray<const SkTextBlob*>& blobs = record.getTextBlobRefs();
fTextBlobCount = blobs.count();
if (fTextBlobCount > 0) {
fTextBlobRefs = SkNEW_ARRAY(const SkTextBlob*, fTextBlobCount);
for (int i = 0; i < fTextBlobCount; ++i) {
fTextBlobRefs[i] = SkRef(blobs[i]);
}
}
}
#ifdef SK_SUPPORT_LEGACY_PICTURE_CLONE
SkPictureData::SkPictureData(const SkPictureData& src, SkPictCopyInfo* deepCopyInfo)
: fInfo(src.fInfo) {
this->init();
fBitmapHeap.reset(SkSafeRef(src.fBitmapHeap.get()));
fPathHeap.reset(SkSafeRef(src.fPathHeap.get()));
fOpData = SkSafeRef(src.fOpData);
fBoundingHierarchy = src.fBoundingHierarchy;
fStateTree = src.fStateTree;
fContentInfo.set(src.fContentInfo);
SkSafeRef(fBoundingHierarchy);
SkSafeRef(fStateTree);
if (deepCopyInfo) {
int paintCount = SafeCount(src.fPaints);
if (src.fBitmaps) {
fBitmaps = SkTRefArray<SkBitmap>::Create(src.fBitmaps->begin(), src.fBitmaps->count());
}
fPaints = SkTRefArray<SkPaint>::Create(paintCount);
SkASSERT(deepCopyInfo->paintData.count() == paintCount);
SkBitmapHeap* bmHeap = deepCopyInfo->controller.getBitmapHeap();
SkTypefacePlayback* tfPlayback = deepCopyInfo->controller.getTypefacePlayback();
for (int i = 0; i < paintCount; i++) {
if (deepCopyInfo->paintData[i]) {
deepCopyInfo->paintData[i]->unflatten<SkPaint::FlatteningTraits>(
&fPaints->writableAt(i), bmHeap, tfPlayback);
} else {
// needs_deep_copy was false, so just need to assign
fPaints->writableAt(i) = src.fPaints->at(i);
}
}
} else {
fBitmaps = SkSafeRef(src.fBitmaps);
fPaints = SkSafeRef(src.fPaints);
}
fPictureCount = src.fPictureCount;
fPictureRefs = SkNEW_ARRAY(const SkPicture*, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
if (deepCopyInfo) {
fPictureRefs[i] = src.fPictureRefs[i]->clone();
} else {
fPictureRefs[i] = src.fPictureRefs[i];
fPictureRefs[i]->ref();
}
}
}
#endif//SK_SUPPORT_LEGACY_PICTURE_CLONE
void SkPictureData::init() {
fBitmaps = NULL;
fPaints = NULL;
fPictureRefs = NULL;
fPictureCount = 0;
fTextBlobRefs = NULL;
fTextBlobCount = 0;
fOpData = NULL;
fFactoryPlayback = NULL;
fBoundingHierarchy = NULL;
fStateTree = NULL;
}
SkPictureData::~SkPictureData() {
SkSafeUnref(fOpData);
SkSafeUnref(fBitmaps);
SkSafeUnref(fPaints);
SkSafeUnref(fBoundingHierarchy);
SkSafeUnref(fStateTree);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->unref();
}
SkDELETE_ARRAY(fPictureRefs);
for (int i = 0; i < fTextBlobCount; i++) {
fTextBlobRefs[i]->unref();
}
SkDELETE_ARRAY(fTextBlobRefs);
SkDELETE(fFactoryPlayback);
}
bool SkPictureData::containsBitmaps() const {
if (fBitmaps && fBitmaps->count() > 0) {
return true;
}
for (int i = 0; i < fPictureCount; ++i) {
if (fPictureRefs[i]->willPlayBackBitmaps()) {
return true;
}
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#include "SkStream.h"
static size_t compute_chunk_size(SkFlattenable::Factory* array, int count) {
size_t size = 4; // for 'count'
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (NULL == name || 0 == *name) {
size += SkWStream::SizeOfPackedUInt(0);
} else {
size_t len = strlen(name);
size += SkWStream::SizeOfPackedUInt(len);
size += len;
}
}
return size;
}
static void write_tag_size(SkWriteBuffer& buffer, uint32_t tag, size_t size) {
buffer.writeUInt(tag);
buffer.writeUInt(SkToU32(size));
}
static void write_tag_size(SkWStream* stream, uint32_t tag, size_t size) {
stream->write32(tag);
stream->write32(SkToU32(size));
}
void SkPictureData::WriteFactories(SkWStream* stream, const SkFactorySet& rec) {
int count = rec.count();
SkAutoSTMalloc<16, SkFlattenable::Factory> storage(count);
SkFlattenable::Factory* array = (SkFlattenable::Factory*)storage.get();
rec.copyToArray(array);
size_t size = compute_chunk_size(array, count);
// TODO: write_tag_size should really take a size_t
write_tag_size(stream, SK_PICT_FACTORY_TAG, (uint32_t) size);
SkDEBUGCODE(size_t start = stream->bytesWritten());
stream->write32(count);
for (int i = 0; i < count; i++) {
const char* name = SkFlattenable::FactoryToName(array[i]);
if (NULL == name || 0 == *name) {
stream->writePackedUInt(0);
} else {
size_t len = strlen(name);
stream->writePackedUInt(len);
stream->write(name, len);
}
}
SkASSERT(size == (stream->bytesWritten() - start));
}
void SkPictureData::WriteTypefaces(SkWStream* stream, const SkRefCntSet& rec) {
int count = rec.count();
write_tag_size(stream, SK_PICT_TYPEFACE_TAG, count);
SkAutoSTMalloc<16, SkTypeface*> storage(count);
SkTypeface** array = (SkTypeface**)storage.get();
rec.copyToArray((SkRefCnt**)array);
for (int i = 0; i < count; i++) {
array[i]->serialize(stream);
}
}
void SkPictureData::flattenToBuffer(SkWriteBuffer& buffer) const {
int i, n;
if ((n = SafeCount(fBitmaps)) > 0) {
write_tag_size(buffer, SK_PICT_BITMAP_BUFFER_TAG, n);
for (i = 0; i < n; i++) {
buffer.writeBitmap((*fBitmaps)[i]);
}
}
if ((n = SafeCount(fPaints)) > 0) {
write_tag_size(buffer, SK_PICT_PAINT_BUFFER_TAG, n);
for (i = 0; i < n; i++) {
buffer.writePaint((*fPaints)[i]);
}
}
if ((n = SafeCount(fPathHeap.get())) > 0) {
write_tag_size(buffer, SK_PICT_PATH_BUFFER_TAG, n);
fPathHeap->flatten(buffer);
}
if (fTextBlobCount > 0) {
write_tag_size(buffer, SK_PICT_TEXTBLOB_BUFFER_TAG, fTextBlobCount);
for (i = 0; i < fTextBlobCount; ++i) {
fTextBlobRefs[i]->flatten(buffer);
}
}
}
void SkPictureData::serialize(SkWStream* stream,
SkPicture::EncodeBitmap encoder) const {
write_tag_size(stream, SK_PICT_READER_TAG, fOpData->size());
stream->write(fOpData->bytes(), fOpData->size());
if (fPictureCount > 0) {
write_tag_size(stream, SK_PICT_PICTURE_TAG, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->serialize(stream, encoder);
}
}
// Write some of our data into a writebuffer, and then serialize that
// into our stream
{
SkRefCntSet typefaceSet;
SkFactorySet factSet;
SkWriteBuffer buffer(SkWriteBuffer::kCrossProcess_Flag);
buffer.setTypefaceRecorder(&typefaceSet);
buffer.setFactoryRecorder(&factSet);
buffer.setBitmapEncoder(encoder);
this->flattenToBuffer(buffer);
// We have to write these two sets into the stream *before* we write
// the buffer, since parsing that buffer will require that we already
// have these sets available to use.
WriteFactories(stream, factSet);
WriteTypefaces(stream, typefaceSet);
write_tag_size(stream, SK_PICT_BUFFER_SIZE_TAG, buffer.bytesWritten());
buffer.writeToStream(stream);
}
stream->write32(SK_PICT_EOF_TAG);
}
void SkPictureData::flatten(SkWriteBuffer& buffer) const {
write_tag_size(buffer, SK_PICT_READER_TAG, fOpData->size());
buffer.writeByteArray(fOpData->bytes(), fOpData->size());
if (fPictureCount > 0) {
write_tag_size(buffer, SK_PICT_PICTURE_TAG, fPictureCount);
for (int i = 0; i < fPictureCount; i++) {
fPictureRefs[i]->flatten(buffer);
}
}
// Write this picture playback's data into a writebuffer
this->flattenToBuffer(buffer);
buffer.write32(SK_PICT_EOF_TAG);
}
///////////////////////////////////////////////////////////////////////////////
/**
* Return the corresponding SkReadBuffer flags, given a set of
* SkPictInfo flags.
*/
static uint32_t pictInfoFlagsToReadBufferFlags(uint32_t pictInfoFlags) {
static const struct {
uint32_t fSrc;
uint32_t fDst;
} gSD[] = {
{ SkPictInfo::kCrossProcess_Flag, SkReadBuffer::kCrossProcess_Flag },
{ SkPictInfo::kScalarIsFloat_Flag, SkReadBuffer::kScalarIsFloat_Flag },
{ SkPictInfo::kPtrIs64Bit_Flag, SkReadBuffer::kPtrIs64Bit_Flag },
};
uint32_t rbMask = 0;
for (size_t i = 0; i < SK_ARRAY_COUNT(gSD); ++i) {
if (pictInfoFlags & gSD[i].fSrc) {
rbMask |= gSD[i].fDst;
}
}
return rbMask;
}
bool SkPictureData::parseStreamTag(SkStream* stream,
uint32_t tag,
uint32_t size,
SkPicture::InstallPixelRefProc proc) {
/*
* By the time we encounter BUFFER_SIZE_TAG, we need to have already seen
* its dependents: FACTORY_TAG and TYPEFACE_TAG. These two are not required
* but if they are present, they need to have been seen before the buffer.
*
* We assert that if/when we see either of these, that we have not yet seen
* the buffer tag, because if we have, then its too-late to deal with the
* factories or typefaces.
*/
SkDEBUGCODE(bool haveBuffer = false;)
switch (tag) {
case SK_PICT_READER_TAG: {
SkAutoMalloc storage(size);
if (stream->read(storage.get(), size) != size) {
return false;
}
SkASSERT(NULL == fOpData);
fOpData = SkData::NewFromMalloc(storage.detach(), size);
} break;
case SK_PICT_FACTORY_TAG: {
SkASSERT(!haveBuffer);
// Remove this code when v21 and below are no longer supported. At the
// same time add a new 'count' variable and use it rather then reusing 'size'.
#ifndef DISABLE_V21_COMPATIBILITY_CODE
if (fInfo.fVersion >= 22) {
// in v22 this tag's size represents the size of the chunk in bytes
// and the number of factory strings is written out separately
#endif
size = stream->readU32();
#ifndef DISABLE_V21_COMPATIBILITY_CODE
}
#endif
fFactoryPlayback = SkNEW_ARGS(SkFactoryPlayback, (size));
for (size_t i = 0; i < size; i++) {
SkString str;
const size_t len = stream->readPackedUInt();
str.resize(len);
if (stream->read(str.writable_str(), len) != len) {
return false;
}
fFactoryPlayback->base()[i] = SkFlattenable::NameToFactory(str.c_str());
}
} break;
case SK_PICT_TYPEFACE_TAG: {
SkASSERT(!haveBuffer);
const int count = SkToInt(size);
fTFPlayback.setCount(count);
for (int i = 0; i < count; i++) {
SkAutoTUnref<SkTypeface> tf(SkTypeface::Deserialize(stream));
if (!tf.get()) { // failed to deserialize
// fTFPlayback asserts it never has a null, so we plop in
// the default here.
tf.reset(SkTypeface::RefDefault());
}
fTFPlayback.set(i, tf);
}
} break;
case SK_PICT_PICTURE_TAG: {
fPictureCount = size;
fPictureRefs = SkNEW_ARRAY(const SkPicture*, fPictureCount);
bool success = true;
int i = 0;
for ( ; i < fPictureCount; i++) {
fPictureRefs[i] = SkPicture::CreateFromStream(stream, proc);
if (NULL == fPictureRefs[i]) {
success = false;
break;
}
}
if (!success) {
// Delete all of the pictures that were already created (up to but excluding i):
for (int j = 0; j < i; j++) {
fPictureRefs[j]->unref();
}
// Delete the array
SkDELETE_ARRAY(fPictureRefs);
fPictureCount = 0;
return false;
}
} break;
case SK_PICT_BUFFER_SIZE_TAG: {
SkAutoMalloc storage(size);
if (stream->read(storage.get(), size) != size) {
return false;
}
SkReadBuffer buffer(storage.get(), size);
buffer.setFlags(pictInfoFlagsToReadBufferFlags(fInfo.fFlags));
buffer.setVersion(fInfo.fVersion);
fFactoryPlayback->setupBuffer(buffer);
fTFPlayback.setupBuffer(buffer);
buffer.setBitmapDecoder(proc);
while (!buffer.eof()) {
tag = buffer.readUInt();
size = buffer.readUInt();
if (!this->parseBufferTag(buffer, tag, size)) {
return false;
}
}
SkDEBUGCODE(haveBuffer = true;)
} break;
}
return true; // success
}
bool SkPictureData::parseBufferTag(SkReadBuffer& buffer,
uint32_t tag, uint32_t size) {
switch (tag) {
case SK_PICT_BITMAP_BUFFER_TAG: {
const int count = SkToInt(size);
fBitmaps = SkTRefArray<SkBitmap>::Create(size);
for (int i = 0; i < count; ++i) {
SkBitmap* bm = &fBitmaps->writableAt(i);
buffer.readBitmap(bm);
bm->setImmutable();
}
} break;
case SK_PICT_PAINT_BUFFER_TAG: {
const int count = SkToInt(size);
fPaints = SkTRefArray<SkPaint>::Create(size);
for (int i = 0; i < count; ++i) {
buffer.readPaint(&fPaints->writableAt(i));
}
} break;
case SK_PICT_PATH_BUFFER_TAG:
if (size > 0) {
fPathHeap.reset(SkNEW_ARGS(SkPathHeap, (buffer)));
}
break;
case SK_PICT_TEXTBLOB_BUFFER_TAG: {
if (!buffer.validate((0 == fTextBlobCount) && (NULL == fTextBlobRefs))) {
return false;
}
fTextBlobCount = size;
fTextBlobRefs = SkNEW_ARRAY(const SkTextBlob*, fTextBlobCount);
bool success = true;
int i = 0;
for ( ; i < fTextBlobCount; i++) {
fTextBlobRefs[i] = SkTextBlob::CreateFromBuffer(buffer);
if (NULL == fTextBlobRefs[i]) {
success = false;
break;
}
}
if (!success) {
// Delete all of the blobs that were already created (up to but excluding i):
for (int j = 0; j < i; j++) {
fTextBlobRefs[j]->unref();
}
// Delete the array
SkDELETE_ARRAY(fTextBlobRefs);
fTextBlobRefs = NULL;
fTextBlobCount = 0;
return false;
}
} break;
case SK_PICT_READER_TAG: {
SkAutoMalloc storage(size);
if (!buffer.readByteArray(storage.get(), size) ||
!buffer.validate(NULL == fOpData)) {
return false;
}
SkASSERT(NULL == fOpData);
fOpData = SkData::NewFromMalloc(storage.detach(), size);
} break;
case SK_PICT_PICTURE_TAG: {
if (!buffer.validate((0 == fPictureCount) && (NULL == fPictureRefs))) {
return false;
}
fPictureCount = size;
fPictureRefs = SkNEW_ARRAY(const SkPicture*, fPictureCount);
bool success = true;
int i = 0;
for ( ; i < fPictureCount; i++) {
fPictureRefs[i] = SkPicture::CreateFromBuffer(buffer);
if (NULL == fPictureRefs[i]) {
success = false;
break;
}
}
if (!success) {
// Delete all of the pictures that were already created (up to but excluding i):
for (int j = 0; j < i; j++) {
fPictureRefs[j]->unref();
}
// Delete the array
SkDELETE_ARRAY(fPictureRefs);
fPictureCount = 0;
return false;
}
} break;
default:
// The tag was invalid.
return false;
}
return true; // success
}
SkPictureData* SkPictureData::CreateFromStream(SkStream* stream,
const SkPictInfo& info,
SkPicture::InstallPixelRefProc proc) {
SkAutoTDelete<SkPictureData> data(SkNEW_ARGS(SkPictureData, (info)));
if (!data->parseStream(stream, proc)) {
return NULL;
}
return data.detach();
}
SkPictureData* SkPictureData::CreateFromBuffer(SkReadBuffer& buffer,
const SkPictInfo& info) {
SkAutoTDelete<SkPictureData> data(SkNEW_ARGS(SkPictureData, (info)));
buffer.setVersion(info.fVersion);
if (!data->parseBuffer(buffer)) {
return NULL;
}
return data.detach();
}
bool SkPictureData::parseStream(SkStream* stream,
SkPicture::InstallPixelRefProc proc) {
for (;;) {
uint32_t tag = stream->readU32();
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size = stream->readU32();
if (!this->parseStreamTag(stream, tag, size, proc)) {
return false; // we're invalid
}
}
return true;
}
bool SkPictureData::parseBuffer(SkReadBuffer& buffer) {
for (;;) {
uint32_t tag = buffer.readUInt();
if (SK_PICT_EOF_TAG == tag) {
break;
}
uint32_t size = buffer.readUInt();
if (!this->parseBufferTag(buffer, tag, size)) {
return false; // we're invalid
}
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
const SkPicture::OperationList* SkPictureData::getActiveOps(const SkRect& query) const {
if (NULL == fStateTree || NULL == fBoundingHierarchy) {
return NULL;
}
SkPicture::OperationList* activeOps = SkNEW(SkPicture::OperationList);
fBoundingHierarchy->search(query, &(activeOps->fOps));
return activeOps;
}
#if SK_SUPPORT_GPU
bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason,
int sampleCount) const {
return fContentInfo.suitableForGpuRasterization(context, reason, sampleCount);
}
bool SkPictureData::suitableForGpuRasterization(GrContext* context, const char **reason,
GrPixelConfig config, SkScalar dpi) const {
if (context != NULL) {
return this->suitableForGpuRasterization(context, reason,
context->getRecommendedSampleCount(config, dpi));
} else {
return this->suitableForGpuRasterization(NULL, reason);
}
}
bool SkPictureData::suitableForLayerOptimization() const {
return fContentInfo.numLayers() > 0;
}
#endif
///////////////////////////////////////////////////////////////////////////////