blob: 4ba9157ed7787d119a8f7edb8fff26ff02c8cf96 [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLInliner.h"
#include <limits.h>
#include <memory>
#include <unordered_set>
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalFunctionReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLInlineMarker.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLLayout.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
namespace SkSL {
namespace {
static constexpr int kInlinedStatementLimit = 2500;
static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) {
class CountReturnsAtEndOfControlFlow : public ProgramVisitor {
public:
CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.kind()) {
case Statement::Kind::kBlock: {
// Check only the last statement of a block.
const auto& block = stmt.as<Block>();
return block.children().size() &&
this->visitStatement(*block.children().back());
}
case Statement::Kind::kSwitch:
case Statement::Kind::kDo:
case Statement::Kind::kFor:
// Don't introspect switches or loop structures at all.
return false;
case Statement::Kind::kReturn:
++fNumReturns;
[[fallthrough]];
default:
return INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
using INHERITED = ProgramVisitor;
};
return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns;
}
static int count_returns_in_continuable_constructs(const FunctionDefinition& funcDef) {
class CountReturnsInContinuableConstructs : public ProgramVisitor {
public:
CountReturnsInContinuableConstructs(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.kind()) {
case Statement::Kind::kDo:
case Statement::Kind::kFor: {
++fInsideContinuableConstruct;
bool result = INHERITED::visitStatement(stmt);
--fInsideContinuableConstruct;
return result;
}
case Statement::Kind::kReturn:
fNumReturns += (fInsideContinuableConstruct > 0) ? 1 : 0;
[[fallthrough]];
default:
return INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
int fInsideContinuableConstruct = 0;
using INHERITED = ProgramVisitor;
};
return CountReturnsInContinuableConstructs{funcDef}.fNumReturns;
}
static bool contains_recursive_call(const FunctionDeclaration& funcDecl) {
class ContainsRecursiveCall : public ProgramVisitor {
public:
bool visit(const FunctionDeclaration& funcDecl) {
fFuncDecl = &funcDecl;
return funcDecl.definition() ? this->visitProgramElement(*funcDecl.definition())
: false;
}
bool visitExpression(const Expression& expr) override {
if (expr.is<FunctionCall>() && expr.as<FunctionCall>().function().matches(*fFuncDecl)) {
return true;
}
return INHERITED::visitExpression(expr);
}
bool visitStatement(const Statement& stmt) override {
if (stmt.is<InlineMarker>() &&
stmt.as<InlineMarker>().function().matches(*fFuncDecl)) {
return true;
}
return INHERITED::visitStatement(stmt);
}
const FunctionDeclaration* fFuncDecl;
using INHERITED = ProgramVisitor;
};
return ContainsRecursiveCall{}.visit(funcDecl);
}
static std::unique_ptr<Statement>* find_parent_statement(
const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
SkASSERT(!stmtStack.empty());
// Walk the statement stack from back to front, ignoring the last element (which is the
// enclosing statement).
auto iter = stmtStack.rbegin();
++iter;
// Anything counts as a parent statement other than a scopeless Block.
for (; iter != stmtStack.rend(); ++iter) {
std::unique_ptr<Statement>* stmt = *iter;
if (!(*stmt)->is<Block>() || (*stmt)->as<Block>().isScope()) {
return stmt;
}
}
// There wasn't any parent statement to be found.
return nullptr;
}
std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
VariableReference::RefKind refKind) {
std::unique_ptr<Expression> clone = expr.clone();
Analysis::UpdateRefKind(clone.get(), refKind);
return clone;
}
class CountReturnsWithLimit : public ProgramVisitor {
public:
CountReturnsWithLimit(const FunctionDefinition& funcDef, int limit) : fLimit(limit) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.kind()) {
case Statement::Kind::kReturn: {
++fNumReturns;
fDeepestReturn = std::max(fDeepestReturn, fScopedBlockDepth);
return (fNumReturns >= fLimit) || INHERITED::visitStatement(stmt);
}
case Statement::Kind::kVarDeclaration: {
if (fScopedBlockDepth > 1) {
fVariablesInBlocks = true;
}
return INHERITED::visitStatement(stmt);
}
case Statement::Kind::kBlock: {
int depthIncrement = stmt.as<Block>().isScope() ? 1 : 0;
fScopedBlockDepth += depthIncrement;
bool result = INHERITED::visitStatement(stmt);
fScopedBlockDepth -= depthIncrement;
if (fNumReturns == 0 && fScopedBlockDepth <= 1) {
// If closing this block puts us back at the top level, and we haven't
// encountered any return statements yet, any vardecls we may have encountered
// up until this point can be ignored. They are out of scope now, and they were
// never used in a return statement.
fVariablesInBlocks = false;
}
return result;
}
default:
return INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
int fDeepestReturn = 0;
int fLimit = 0;
int fScopedBlockDepth = 0;
bool fVariablesInBlocks = false;
using INHERITED = ProgramVisitor;
};
} // namespace
Inliner::ReturnComplexity Inliner::GetReturnComplexity(const FunctionDefinition& funcDef) {
int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef);
CountReturnsWithLimit counter{funcDef, returnsAtEndOfControlFlow + 1};
if (counter.fNumReturns > returnsAtEndOfControlFlow) {
return ReturnComplexity::kEarlyReturns;
}
if (counter.fNumReturns > 1) {
return ReturnComplexity::kScopedReturns;
}
if (counter.fVariablesInBlocks && counter.fDeepestReturn > 1) {
return ReturnComplexity::kScopedReturns;
}
return ReturnComplexity::kSingleSafeReturn;
}
void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
// No changes necessary if this statement isn't actually a block.
if (!inlinedBody || !inlinedBody->is<Block>()) {
return;
}
// No changes necessary if the parent statement doesn't require a scope.
if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
parentStmt->is<DoStatement>())) {
return;
}
Block& block = inlinedBody->as<Block>();
// The inliner will create inlined function bodies as a Block containing multiple statements,
// but no scope. Normally, this is fine, but if this block is used as the statement for a
// do/for/if/while, this isn't actually possible to represent textually; a scope must be added
// for the generated code to match the intent. In the case of Blocks nested inside other Blocks,
// we add the scope to the outermost block if needed. Zero-statement blocks have similar
// issues--if we don't represent the Block textually somehow, we run the risk of accidentally
// absorbing the following statement into our loop--so we also add a scope to these.
for (Block* nestedBlock = &block;; ) {
if (nestedBlock->isScope()) {
// We found an explicit scope; all is well.
return;
}
if (nestedBlock->children().size() != 1) {
// We found a block with multiple (or zero) statements, but no scope? Let's add a scope
// to the outermost block.
block.setIsScope(true);
return;
}
if (!nestedBlock->children()[0]->is<Block>()) {
// This block has exactly one thing inside, and it's not another block. No need to scope
// it.
return;
}
// We have to go deeper.
nestedBlock = &nestedBlock->children()[0]->as<Block>();
}
}
void Inliner::reset(ModifiersPool* modifiers) {
fModifiers = modifiers;
fMangler.reset();
fInlinedStatementCounter = 0;
}
std::unique_ptr<Expression> Inliner::inlineExpression(int offset,
VariableRewriteMap* varMap,
SymbolTable* symbolTableForExpression,
const Expression& expression) {
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(offset, varMap, symbolTableForExpression, *e);
}
return nullptr;
};
auto argList = [&](const ExpressionArray& originalArgs) -> ExpressionArray {
ExpressionArray args;
args.reserve_back(originalArgs.size());
for (const std::unique_ptr<Expression>& arg : originalArgs) {
args.push_back(expr(arg));
}
return args;
};
switch (expression.kind()) {
case Expression::Kind::kBinary: {
const BinaryExpression& binaryExpr = expression.as<BinaryExpression>();
return std::make_unique<BinaryExpression>(
offset,
expr(binaryExpr.left()),
binaryExpr.getOperator(),
expr(binaryExpr.right()),
binaryExpr.type().clone(symbolTableForExpression));
}
case Expression::Kind::kBoolLiteral:
case Expression::Kind::kIntLiteral:
case Expression::Kind::kFloatLiteral:
return expression.clone();
case Expression::Kind::kConstructor: {
const Constructor& constructor = expression.as<Constructor>();
return Constructor::Make(*fContext, offset,
*constructor.type().clone(symbolTableForExpression),
argList(constructor.arguments()));
}
case Expression::Kind::kExternalFunctionCall: {
const ExternalFunctionCall& externalCall = expression.as<ExternalFunctionCall>();
return std::make_unique<ExternalFunctionCall>(offset, &externalCall.function(),
argList(externalCall.arguments()));
}
case Expression::Kind::kExternalFunctionReference:
return expression.clone();
case Expression::Kind::kFieldAccess: {
const FieldAccess& f = expression.as<FieldAccess>();
return std::make_unique<FieldAccess>(expr(f.base()), f.fieldIndex(), f.ownerKind());
}
case Expression::Kind::kFunctionCall: {
const FunctionCall& funcCall = expression.as<FunctionCall>();
return std::make_unique<FunctionCall>(offset,
funcCall.type().clone(symbolTableForExpression),
&funcCall.function(),
argList(funcCall.arguments()));
}
case Expression::Kind::kFunctionReference:
return expression.clone();
case Expression::Kind::kIndex: {
const IndexExpression& idx = expression.as<IndexExpression>();
return std::make_unique<IndexExpression>(*fContext, expr(idx.base()),
expr(idx.index()));
}
case Expression::Kind::kPrefix: {
const PrefixExpression& p = expression.as<PrefixExpression>();
return PrefixExpression::Make(*fContext, p.getOperator(), expr(p.operand()));
}
case Expression::Kind::kPostfix: {
const PostfixExpression& p = expression.as<PostfixExpression>();
return std::make_unique<PostfixExpression>(expr(p.operand()), p.getOperator());
}
case Expression::Kind::kSetting:
return expression.clone();
case Expression::Kind::kSwizzle: {
const Swizzle& s = expression.as<Swizzle>();
return Swizzle::Make(*fContext, expr(s.base()), s.components());
}
case Expression::Kind::kTernary: {
const TernaryExpression& t = expression.as<TernaryExpression>();
return std::make_unique<TernaryExpression>(offset, expr(t.test()),
expr(t.ifTrue()), expr(t.ifFalse()));
}
case Expression::Kind::kTypeReference:
return expression.clone();
case Expression::Kind::kVariableReference: {
const VariableReference& v = expression.as<VariableReference>();
auto varMapIter = varMap->find(v.variable());
if (varMapIter != varMap->end()) {
return clone_with_ref_kind(*varMapIter->second, v.refKind());
}
return v.clone();
}
default:
SkASSERT(false);
return nullptr;
}
}
std::unique_ptr<Statement> Inliner::inlineStatement(int offset,
VariableRewriteMap* varMap,
SymbolTable* symbolTableForStatement,
std::unique_ptr<Expression>* resultExpr,
ReturnComplexity returnComplexity,
const Statement& statement,
bool isBuiltinCode) {
auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
if (s) {
return this->inlineStatement(offset, varMap, symbolTableForStatement, resultExpr,
returnComplexity, *s, isBuiltinCode);
}
return nullptr;
};
auto blockStmts = [&](const Block& block) {
StatementArray result;
result.reserve_back(block.children().size());
for (const std::unique_ptr<Statement>& child : block.children()) {
result.push_back(stmt(child));
}
return result;
};
auto stmts = [&](const StatementArray& ss) {
StatementArray result;
result.reserve_back(ss.size());
for (const auto& s : ss) {
result.push_back(stmt(s));
}
return result;
};
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(offset, varMap, symbolTableForStatement, *e);
}
return nullptr;
};
++fInlinedStatementCounter;
switch (statement.kind()) {
case Statement::Kind::kBlock: {
const Block& b = statement.as<Block>();
return std::make_unique<Block>(offset, blockStmts(b),
SymbolTable::WrapIfBuiltin(b.symbolTable()),
b.isScope());
}
case Statement::Kind::kBreak:
case Statement::Kind::kContinue:
case Statement::Kind::kDiscard:
return statement.clone();
case Statement::Kind::kDo: {
const DoStatement& d = statement.as<DoStatement>();
return DoStatement::Make(*fContext, stmt(d.statement()), expr(d.test()));
}
case Statement::Kind::kExpression: {
const ExpressionStatement& e = statement.as<ExpressionStatement>();
return ExpressionStatement::Make(*fContext, expr(e.expression()));
}
case Statement::Kind::kFor: {
const ForStatement& f = statement.as<ForStatement>();
// need to ensure initializer is evaluated first so that we've already remapped its
// declarations by the time we evaluate test & next
std::unique_ptr<Statement> initializer = stmt(f.initializer());
return ForStatement::Make(*fContext, offset, std::move(initializer), expr(f.test()),
expr(f.next()), stmt(f.statement()),
SymbolTable::WrapIfBuiltin(f.symbols()));
}
case Statement::Kind::kIf: {
const IfStatement& i = statement.as<IfStatement>();
return IfStatement::Make(*fContext, offset, i.isStatic(), expr(i.test()),
stmt(i.ifTrue()), stmt(i.ifFalse()));
}
case Statement::Kind::kInlineMarker:
case Statement::Kind::kNop:
return statement.clone();
case Statement::Kind::kReturn: {
const ReturnStatement& r = statement.as<ReturnStatement>();
if (!r.expression()) {
if (returnComplexity >= ReturnComplexity::kEarlyReturns) {
// This function doesn't return a value, but has early returns, so we've wrapped
// it in a for loop. Use a continue to jump to the end of the loop and "leave"
// the function.
return std::make_unique<ContinueStatement>(offset);
} else {
// This function doesn't exit early or return a value. A return statement at the
// end is a no-op and can be treated as such.
return std::make_unique<Nop>();
}
}
// If a function only contains a single return, and it doesn't reference variables from
// inside an Block's scope, we don't need to store the result in a variable at all. Just
// replace the function-call expression with the function's return expression.
SkASSERT(resultExpr);
if (returnComplexity <= ReturnComplexity::kSingleSafeReturn) {
*resultExpr = expr(r.expression());
return std::make_unique<Nop>();
}
// For more complex functions, assign their result into a variable.
SkASSERT(*resultExpr);
auto assignment = ExpressionStatement::Make(
*fContext,
std::make_unique<BinaryExpression>(
offset,
clone_with_ref_kind(**resultExpr, VariableReference::RefKind::kWrite),
Token::Kind::TK_EQ,
expr(r.expression()),
(*resultExpr)->type().clone(symbolTableForStatement)));
// Early returns are wrapped in a for loop; we need to synthesize a continue statement
// to "leave" the function.
if (returnComplexity >= ReturnComplexity::kEarlyReturns) {
StatementArray block;
block.reserve_back(2);
block.push_back(std::move(assignment));
block.push_back(std::make_unique<ContinueStatement>(offset));
return std::make_unique<Block>(offset, std::move(block), /*symbols=*/nullptr,
/*isScope=*/true);
}
// Functions without early returns aren't wrapped in a for loop and don't need to worry
// about breaking out of the control flow.
return assignment;
}
case Statement::Kind::kSwitch: {
const SwitchStatement& ss = statement.as<SwitchStatement>();
std::vector<std::unique_ptr<SwitchCase>> cases;
cases.reserve(ss.cases().size());
for (const std::unique_ptr<SwitchCase>& sc : ss.cases()) {
cases.push_back(std::make_unique<SwitchCase>(offset, expr(sc->value()),
stmts(sc->statements())));
}
return SwitchStatement::Make(*fContext, offset, ss.isStatic(), expr(ss.value()),
std::move(cases), SymbolTable::WrapIfBuiltin(ss.symbols()));
}
case Statement::Kind::kVarDeclaration: {
const VarDeclaration& decl = statement.as<VarDeclaration>();
std::unique_ptr<Expression> initialValue = expr(decl.value());
const Variable& variable = decl.var();
// We assign unique names to inlined variables--scopes hide most of the problems in this
// regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
// names are important.
auto name = std::make_unique<String>(fMangler.uniqueName(variable.name(),
symbolTableForStatement));
const String* namePtr = symbolTableForStatement->takeOwnershipOfString(std::move(name));
auto clonedVar = std::make_unique<Variable>(
offset,
&variable.modifiers(),
namePtr->c_str(),
variable.type().clone(symbolTableForStatement),
isBuiltinCode,
variable.storage());
(*varMap)[&variable] = std::make_unique<VariableReference>(offset, clonedVar.get());
auto result = std::make_unique<VarDeclaration>(clonedVar.get(),
decl.baseType().clone(symbolTableForStatement),
decl.arraySize(),
std::move(initialValue));
clonedVar->setDeclaration(result.get());
symbolTableForStatement->takeOwnershipOfSymbol(std::move(clonedVar));
return std::move(result);
}
default:
SkASSERT(false);
return nullptr;
}
}
Inliner::InlineVariable Inliner::makeInlineVariable(const String& baseName,
const Type* type,
SymbolTable* symbolTable,
Modifiers modifiers,
bool isBuiltinCode,
std::unique_ptr<Expression>* initialValue) {
// $floatLiteral or $intLiteral aren't real types that we can use for scratch variables, so
// replace them if they ever appear here. If this happens, we likely forgot to coerce a type
// somewhere during compilation.
if (type->isLiteral()) {
SkDEBUGFAIL("found a $literal type while inlining");
type = &type->scalarTypeForLiteral();
}
// Provide our new variable with a unique name, and add it to our symbol table.
const String* namePtr = symbolTable->takeOwnershipOfString(
std::make_unique<String>(fMangler.uniqueName(baseName, symbolTable)));
StringFragment nameFrag{namePtr->c_str(), namePtr->length()};
// Create our new variable and add it to the symbol table.
InlineVariable result;
auto var = std::make_unique<Variable>(/*offset=*/-1,
fModifiers->addToPool(Modifiers()),
nameFrag,
type,
isBuiltinCode,
Variable::Storage::kLocal);
// Prepare the variable declaration (taking extra care with `out` params to not clobber any
// initial value).
if (*initialValue && (modifiers.fFlags & Modifiers::kOut_Flag)) {
result.fVarDecl = std::make_unique<VarDeclaration>(var.get(), type, /*arraySize=*/0,
(*initialValue)->clone());
} else {
result.fVarDecl = std::make_unique<VarDeclaration>(var.get(), type, /*arraySize=*/0,
std::move(*initialValue));
}
var->setDeclaration(&result.fVarDecl->as<VarDeclaration>());
result.fVarSymbol = symbolTable->add(std::move(var));
return result;
}
Inliner::InlinedCall Inliner::inlineCall(FunctionCall* call,
std::shared_ptr<SymbolTable> symbolTable,
const FunctionDeclaration* caller) {
// Inlining is more complicated here than in a typical compiler, because we have to have a
// high-level IR and can't just drop statements into the middle of an expression or even use
// gotos.
//
// Since we can't insert statements into an expression, we run the inline function as extra
// statements before the statement we're currently processing, relying on a lack of execution
// order guarantees. Since we can't use gotos (which are normally used to replace return
// statements), we wrap the whole function in a loop and use break statements to jump to the
// end.
SkASSERT(fContext);
SkASSERT(call);
SkASSERT(this->isSafeToInline(call->function().definition()));
ExpressionArray& arguments = call->arguments();
const int offset = call->fOffset;
const FunctionDefinition& function = *call->function().definition();
const ReturnComplexity returnComplexity = GetReturnComplexity(function);
bool hasEarlyReturn = (returnComplexity >= ReturnComplexity::kEarlyReturns);
InlinedCall inlinedCall;
inlinedCall.fInlinedBody = std::make_unique<Block>(offset, StatementArray{},
/*symbols=*/nullptr,
/*isScope=*/false);
Block& inlinedBody = *inlinedCall.fInlinedBody;
inlinedBody.children().reserve_back(
1 + // Inline marker
1 + // Result variable
arguments.size() + // Function arguments (passing in)
arguments.size() + // Function arguments (copy out-params back)
1); // Block for inlined code
inlinedBody.children().push_back(std::make_unique<InlineMarker>(&call->function()));
std::unique_ptr<Expression> resultExpr;
if (returnComplexity > ReturnComplexity::kSingleSafeReturn &&
function.declaration().returnType() != *fContext->fTypes.fVoid) {
// Create a variable to hold the result in the extra statements. We don't need to do this
// for void-return functions, or in cases that are simple enough that we can just replace
// the function-call node with the result expression.
std::unique_ptr<Expression> noInitialValue;
InlineVariable var = this->makeInlineVariable(function.declaration().name(),
&function.declaration().returnType(),
symbolTable.get(), Modifiers{},
caller->isBuiltin(), &noInitialValue);
inlinedBody.children().push_back(std::move(var.fVarDecl));
resultExpr = std::make_unique<VariableReference>(/*offset=*/-1, var.fVarSymbol);
}
// Create variables in the extra statements to hold the arguments, and assign the arguments to
// them.
VariableRewriteMap varMap;
std::vector<int> argsToCopyBack;
for (int i = 0; i < (int) arguments.size(); ++i) {
const Variable* param = function.declaration().parameters()[i];
bool isOutParam = param->modifiers().fFlags & Modifiers::kOut_Flag;
// If this argument can be inlined trivially (e.g. a swizzle, or a constant array index)...
if (Analysis::IsTrivialExpression(*arguments[i])) {
// ... and it's an `out` param, or it isn't written to within the inline function...
if (isOutParam || !Analysis::StatementWritesToVariable(*function.body(), *param)) {
// ... we don't need to copy it at all! We can just use the existing expression.
varMap[param] = arguments[i]->clone();
continue;
}
}
if (isOutParam) {
argsToCopyBack.push_back(i);
}
InlineVariable var = this->makeInlineVariable(param->name(), &arguments[i]->type(),
symbolTable.get(), param->modifiers(),
caller->isBuiltin(), &arguments[i]);
inlinedBody.children().push_back(std::move(var.fVarDecl));
varMap[param] = std::make_unique<VariableReference>(/*offset=*/-1, var.fVarSymbol);
}
const Block& body = function.body()->as<Block>();
StatementArray* inlineStatements;
if (hasEarlyReturn) {
// Since we output to backends that don't have a goto statement (which would normally be
// used to perform an early return), we fake it by wrapping the function in a single-
// iteration for loop, and use a continue statement to jump to the end of the loop
// prematurely.
// int _1_loop = 0;
symbolTable = std::make_shared<SymbolTable>(std::move(symbolTable), caller->isBuiltin());
const Type* intType = fContext->fTypes.fInt.get();
std::unique_ptr<Expression> initialValue = std::make_unique<IntLiteral>(/*offset=*/-1,
/*value=*/0,
intType);
InlineVariable loopVar = this->makeInlineVariable("loop", intType, symbolTable.get(),
Modifiers{}, caller->isBuiltin(),
&initialValue);
// _1_loop < 1;
std::unique_ptr<Expression> test = std::make_unique<BinaryExpression>(
/*offset=*/-1,
std::make_unique<VariableReference>(/*offset=*/-1, loopVar.fVarSymbol),
Token::Kind::TK_LT,
std::make_unique<IntLiteral>(/*offset=*/-1, /*value=*/1, intType),
fContext->fTypes.fBool.get());
// _1_loop++
std::unique_ptr<Expression> increment = std::make_unique<PostfixExpression>(
std::make_unique<VariableReference>(/*offset=*/-1, loopVar.fVarSymbol,
VariableReference::RefKind::kReadWrite),
Token::Kind::TK_PLUSPLUS);
// {...}
auto innerBlock = std::make_unique<Block>(offset, StatementArray{},
/*symbols=*/nullptr, /*isScope=*/true);
inlineStatements = &innerBlock->children();
// for (int _1_loop = 0; _1_loop < 1; _1_loop++) {...}
inlinedBody.children().push_back(ForStatement::Make(*fContext, /*offset=*/-1,
std::move(loopVar.fVarDecl),
std::move(test),
std::move(increment),
std::move(innerBlock),
symbolTable));
} else {
// No early returns, so we can just dump the code into our existing scopeless block.
inlineStatements = &inlinedBody.children();
}
inlineStatements->reserve_back(body.children().size() + argsToCopyBack.size());
for (const std::unique_ptr<Statement>& stmt : body.children()) {
inlineStatements->push_back(this->inlineStatement(offset, &varMap, symbolTable.get(),
&resultExpr, returnComplexity, *stmt,
caller->isBuiltin()));
}
// Copy back the values of `out` parameters into their real destinations.
for (int i : argsToCopyBack) {
const Variable* p = function.declaration().parameters()[i];
SkASSERT(varMap.find(p) != varMap.end());
inlineStatements->push_back(ExpressionStatement::Make(
*fContext,
std::make_unique<BinaryExpression>(
offset,
clone_with_ref_kind(*arguments[i], VariableReference::RefKind::kWrite),
Token::Kind::TK_EQ,
std::move(varMap[p]),
&arguments[i]->type())));
}
if (resultExpr != nullptr) {
// Return our result variable as our replacement expression.
inlinedCall.fReplacementExpr = std::move(resultExpr);
} else {
// It's a void function, so it doesn't actually result in anything, but we have to return
// something non-null as a standin.
inlinedCall.fReplacementExpr = std::make_unique<BoolLiteral>(*fContext,
offset,
/*value=*/false);
}
return inlinedCall;
}
bool Inliner::isSafeToInline(const FunctionDefinition* functionDef) {
// A threshold of zero indicates that the inliner is completely disabled, so we can just return.
if (this->settings().fInlineThreshold <= 0) {
return false;
}
// Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
return false;
}
if (functionDef == nullptr) {
// Can't inline something if we don't actually have its definition.
return false;
}
// We don't have any mechanism to simulate early returns within a construct that supports
// continues (for/do/while), so we can't inline if there's a return inside one.
bool hasReturnInContinuableConstruct =
(count_returns_in_continuable_constructs(*functionDef) > 0);
return !hasReturnInContinuableConstruct;
}
// A candidate function for inlining, containing everything that `inlineCall` needs.
struct InlineCandidate {
std::shared_ptr<SymbolTable> fSymbols; // the SymbolTable of the candidate
std::unique_ptr<Statement>* fParentStmt; // the parent Statement of the enclosing stmt
std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
FunctionDefinition* fEnclosingFunction; // the Function containing the candidate
};
struct InlineCandidateList {
std::vector<InlineCandidate> fCandidates;
};
class InlineCandidateAnalyzer {
public:
// A list of all the inlining candidates we found during analysis.
InlineCandidateList* fCandidateList;
// A stack of the symbol tables; since most nodes don't have one, expected to be shallower than
// the enclosing-statement stack.
std::vector<std::shared_ptr<SymbolTable>> fSymbolTableStack;
// A stack of "enclosing" statements--these would be suitable for the inliner to use for adding
// new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The
// inliner might replace a statement with a block containing the statement.
std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
// The function that we're currently processing (i.e. inlining into).
FunctionDefinition* fEnclosingFunction = nullptr;
void visit(const std::vector<std::unique_ptr<ProgramElement>>& elements,
std::shared_ptr<SymbolTable> symbols,
InlineCandidateList* candidateList) {
fCandidateList = candidateList;
fSymbolTableStack.push_back(symbols);
for (const std::unique_ptr<ProgramElement>& pe : elements) {
this->visitProgramElement(pe.get());
}
fSymbolTableStack.pop_back();
fCandidateList = nullptr;
}
void visitProgramElement(ProgramElement* pe) {
switch (pe->kind()) {
case ProgramElement::Kind::kFunction: {
FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
fEnclosingFunction = &funcDef;
this->visitStatement(&funcDef.body());
break;
}
default:
// The inliner can't operate outside of a function's scope.
break;
}
}
void visitStatement(std::unique_ptr<Statement>* stmt,
bool isViableAsEnclosingStatement = true) {
if (!*stmt) {
return;
}
size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
size_t oldSymbolStackSize = fSymbolTableStack.size();
if (isViableAsEnclosingStatement) {
fEnclosingStmtStack.push_back(stmt);
}
switch ((*stmt)->kind()) {
case Statement::Kind::kBreak:
case Statement::Kind::kContinue:
case Statement::Kind::kDiscard:
case Statement::Kind::kInlineMarker:
case Statement::Kind::kNop:
break;
case Statement::Kind::kBlock: {
Block& block = (*stmt)->as<Block>();
if (block.symbolTable()) {
fSymbolTableStack.push_back(block.symbolTable());
}
for (std::unique_ptr<Statement>& stmt : block.children()) {
this->visitStatement(&stmt);
}
break;
}
case Statement::Kind::kDo: {
DoStatement& doStmt = (*stmt)->as<DoStatement>();
// The loop body is a candidate for inlining.
this->visitStatement(&doStmt.statement());
// The inliner isn't smart enough to inline the test-expression for a do-while
// loop at this time. There are two limitations:
// - We would need to insert the inlined-body block at the very end of the do-
// statement's inner fStatement. We don't support that today, but it's doable.
// - We cannot inline the test expression if the loop uses `continue` anywhere; that
// would skip over the inlined block that evaluates the test expression. There
// isn't a good fix for this--any workaround would be more complex than the cost
// of a function call. However, loops that don't use `continue` would still be
// viable candidates for inlining.
break;
}
case Statement::Kind::kExpression: {
ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
this->visitExpression(&expr.expression());
break;
}
case Statement::Kind::kFor: {
ForStatement& forStmt = (*stmt)->as<ForStatement>();
if (forStmt.symbols()) {
fSymbolTableStack.push_back(forStmt.symbols());
}
// The initializer and loop body are candidates for inlining.
this->visitStatement(&forStmt.initializer(),
/*isViableAsEnclosingStatement=*/false);
this->visitStatement(&forStmt.statement());
// The inliner isn't smart enough to inline the test- or increment-expressions
// of a for loop loop at this time. There are a handful of limitations:
// - We would need to insert the test-expression block at the very beginning of the
// for-loop's inner fStatement, and the increment-expression block at the very
// end. We don't support that today, but it's doable.
// - The for-loop's built-in test-expression would need to be dropped entirely,
// and the loop would be halted via a break statement at the end of the inlined
// test-expression. This is again something we don't support today, but it could
// be implemented.
// - We cannot inline the increment-expression if the loop uses `continue` anywhere;
// that would skip over the inlined block that evaluates the increment expression.
// There isn't a good fix for this--any workaround would be more complex than the
// cost of a function call. However, loops that don't use `continue` would still
// be viable candidates for increment-expression inlining.
break;
}
case Statement::Kind::kIf: {
IfStatement& ifStmt = (*stmt)->as<IfStatement>();
this->visitExpression(&ifStmt.test());
this->visitStatement(&ifStmt.ifTrue());
this->visitStatement(&ifStmt.ifFalse());
break;
}
case Statement::Kind::kReturn: {
ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
this->visitExpression(&returnStmt.expression());
break;
}
case Statement::Kind::kSwitch: {
SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
if (switchStmt.symbols()) {
fSymbolTableStack.push_back(switchStmt.symbols());
}
this->visitExpression(&switchStmt.value());
for (const std::unique_ptr<SwitchCase>& switchCase : switchStmt.cases()) {
// The switch-case's fValue cannot be a FunctionCall; skip it.
for (std::unique_ptr<Statement>& caseBlock : switchCase->statements()) {
this->visitStatement(&caseBlock);
}
}
break;
}
case Statement::Kind::kVarDeclaration: {
VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
// Don't need to scan the declaration's sizes; those are always IntLiterals.
this->visitExpression(&varDeclStmt.value());
break;
}
default:
SkUNREACHABLE;
}
// Pop our symbol and enclosing-statement stacks.
fSymbolTableStack.resize(oldSymbolStackSize);
fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
}
void visitExpression(std::unique_ptr<Expression>* expr) {
if (!*expr) {
return;
}
switch ((*expr)->kind()) {
case Expression::Kind::kBoolLiteral:
case Expression::Kind::kDefined:
case Expression::Kind::kExternalFunctionReference:
case Expression::Kind::kFieldAccess:
case Expression::Kind::kFloatLiteral:
case Expression::Kind::kFunctionReference:
case Expression::Kind::kIntLiteral:
case Expression::Kind::kSetting:
case Expression::Kind::kTypeReference:
case Expression::Kind::kVariableReference:
// Nothing to scan here.
break;
case Expression::Kind::kBinary: {
BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
this->visitExpression(&binaryExpr.left());
// Logical-and and logical-or binary expressions do not inline the right side,
// because that would invalidate short-circuiting. That is, when evaluating
// expressions like these:
// (false && x()) // always false
// (true || y()) // always true
// It is illegal for side-effects from x() or y() to occur. The simplest way to
// enforce that rule is to avoid inlining the right side entirely. However, it is
// safe for other types of binary expression to inline both sides.
Operator op = binaryExpr.getOperator();
bool shortCircuitable = (op.kind() == Token::Kind::TK_LOGICALAND ||
op.kind() == Token::Kind::TK_LOGICALOR);
if (!shortCircuitable) {
this->visitExpression(&binaryExpr.right());
}
break;
}
case Expression::Kind::kConstructor: {
Constructor& constructorExpr = (*expr)->as<Constructor>();
for (std::unique_ptr<Expression>& arg : constructorExpr.arguments()) {
this->visitExpression(&arg);
}
break;
}
case Expression::Kind::kExternalFunctionCall: {
ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>();
for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
this->visitExpression(&arg);
}
break;
}
case Expression::Kind::kFunctionCall: {
FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
this->visitExpression(&arg);
}
this->addInlineCandidate(expr);
break;
}
case Expression::Kind::kIndex:{
IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
this->visitExpression(&indexExpr.base());
this->visitExpression(&indexExpr.index());
break;
}
case Expression::Kind::kPostfix: {
PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
this->visitExpression(&postfixExpr.operand());
break;
}
case Expression::Kind::kPrefix: {
PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
this->visitExpression(&prefixExpr.operand());
break;
}
case Expression::Kind::kSwizzle: {
Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
this->visitExpression(&swizzleExpr.base());
break;
}
case Expression::Kind::kTernary: {
TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
// The test expression is a candidate for inlining.
this->visitExpression(&ternaryExpr.test());
// The true- and false-expressions cannot be inlined, because we are only allowed to
// evaluate one side.
break;
}
default:
SkUNREACHABLE;
}
}
void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
fCandidateList->fCandidates.push_back(
InlineCandidate{fSymbolTableStack.back(),
find_parent_statement(fEnclosingStmtStack),
fEnclosingStmtStack.back(),
candidate,
fEnclosingFunction});
}
};
static const FunctionDeclaration& candidate_func(const InlineCandidate& candidate) {
return (*candidate.fCandidateExpr)->as<FunctionCall>().function();
}
bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate, InlinabilityCache* cache) {
const FunctionDeclaration& funcDecl = candidate_func(candidate);
auto [iter, wasInserted] = cache->insert({&funcDecl, false});
if (wasInserted) {
// Recursion is forbidden here to avoid an infinite death spiral of inlining.
iter->second = this->isSafeToInline(funcDecl.definition()) &&
!contains_recursive_call(funcDecl);
}
return iter->second;
}
int Inliner::getFunctionSize(const FunctionDeclaration& funcDecl, FunctionSizeCache* cache) {
auto [iter, wasInserted] = cache->insert({&funcDecl, 0});
if (wasInserted) {
iter->second = Analysis::NodeCountUpToLimit(*funcDecl.definition(),
this->settings().fInlineThreshold);
}
return iter->second;
}
void Inliner::buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>>& elements,
std::shared_ptr<SymbolTable> symbols, ProgramUsage* usage,
InlineCandidateList* candidateList) {
// This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
// The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
// that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
// `const T&`.
InlineCandidateAnalyzer analyzer;
analyzer.visit(elements, symbols, candidateList);
// Early out if there are no inlining candidates.
std::vector<InlineCandidate>& candidates = candidateList->fCandidates;
if (candidates.empty()) {
return;
}
// Remove candidates that are not safe to inline.
InlinabilityCache cache;
candidates.erase(std::remove_if(candidates.begin(),
candidates.end(),
[&](const InlineCandidate& candidate) {
return !this->candidateCanBeInlined(candidate, &cache);
}),
candidates.end());
// If the inline threshold is unlimited, or if we have no candidates left, our candidate list is
// complete.
if (this->settings().fInlineThreshold == INT_MAX || candidates.empty()) {
return;
}
// Remove candidates on a per-function basis if the effect of inlining would be to make more
// than `inlineThreshold` nodes. (i.e. if Func() would be inlined six times and its size is
// 10 nodes, it should be inlined if the inlineThreshold is 60 or higher.)
FunctionSizeCache functionSizeCache;
FunctionSizeCache candidateTotalCost;
for (InlineCandidate& candidate : candidates) {
const FunctionDeclaration& fnDecl = candidate_func(candidate);
candidateTotalCost[&fnDecl] += this->getFunctionSize(fnDecl, &functionSizeCache);
}
candidates.erase(std::remove_if(candidates.begin(), candidates.end(),
[&](const InlineCandidate& candidate) {
const FunctionDeclaration& fnDecl = candidate_func(candidate);
if (fnDecl.modifiers().fFlags & Modifiers::kInline_Flag) {
// Functions marked `inline` ignore size limitations.
return false;
}
if (usage->get(fnDecl) == 1) {
// If a function is only used once, it's cost-free to inline.
return false;
}
if (candidateTotalCost[&fnDecl] <= this->settings().fInlineThreshold) {
// We won't exceed the inline threshold by inlining this.
return false;
}
// Inlining this function will add too many IRNodes.
return true;
}),
candidates.end());
}
bool Inliner::analyze(const std::vector<std::unique_ptr<ProgramElement>>& elements,
std::shared_ptr<SymbolTable> symbols,
ProgramUsage* usage) {
// A threshold of zero indicates that the inliner is completely disabled, so we can just return.
if (this->settings().fInlineThreshold <= 0) {
return false;
}
// Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
return false;
}
InlineCandidateList candidateList;
this->buildCandidateList(elements, symbols, usage, &candidateList);
// Inline the candidates where we've determined that it's safe to do so.
std::unordered_set<const std::unique_ptr<Statement>*> enclosingStmtSet;
bool madeChanges = false;
for (const InlineCandidate& candidate : candidateList.fCandidates) {
FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
// Inlining two expressions using the same enclosing statement in the same inlining pass
// does not work properly. If this happens, skip it; we'll get it in the next pass.
auto [unusedIter, inserted] = enclosingStmtSet.insert(candidate.fEnclosingStmt);
if (!inserted) {
continue;
}
// Convert the function call to its inlined equivalent.
InlinedCall inlinedCall = this->inlineCall(&funcCall, candidate.fSymbols,
&candidate.fEnclosingFunction->declaration());
if (inlinedCall.fInlinedBody) {
// Ensure that the inlined body has a scope if it needs one.
this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt->get());
// Add references within the inlined body
usage->add(inlinedCall.fInlinedBody.get());
// Move the enclosing statement to the end of the unscoped Block containing the inlined
// function, then replace the enclosing statement with that Block.
// Before:
// fInlinedBody = Block{ stmt1, stmt2, stmt3 }
// fEnclosingStmt = stmt4
// After:
// fInlinedBody = null
// fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
inlinedCall.fInlinedBody->children().push_back(std::move(*candidate.fEnclosingStmt));
*candidate.fEnclosingStmt = std::move(inlinedCall.fInlinedBody);
}
// Replace the candidate function call with our replacement expression.
usage->replace(candidate.fCandidateExpr->get(), inlinedCall.fReplacementExpr.get());
*candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
madeChanges = true;
// Stop inlining if we've reached our hard cap on new statements.
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
break;
}
// Note that nothing was destroyed except for the FunctionCall. All other nodes should
// remain valid.
}
return madeChanges;
}
} // namespace SkSL