blob: 2487043bb926d3f210cc592e2743509c5353896d [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkData.h"
#include "SkFixed.h"
#include "SkGeometry.h"
#include "SkPDFResourceDict.h"
#include "SkPDFUtils.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkPDFTypes.h"
#include <cmath>
sk_sp<SkPDFArray> SkPDFUtils::RectToArray(const SkRect& rect) {
auto result = sk_make_sp<SkPDFArray>();
result->reserve(4);
result->appendScalar(rect.fLeft);
result->appendScalar(rect.fTop);
result->appendScalar(rect.fRight);
result->appendScalar(rect.fBottom);
return result;
}
sk_sp<SkPDFArray> SkPDFUtils::MatrixToArray(const SkMatrix& matrix) {
SkScalar values[6];
if (!matrix.asAffine(values)) {
SkMatrix::SetAffineIdentity(values);
}
auto result = sk_make_sp<SkPDFArray>();
result->reserve(6);
for (size_t i = 0; i < SK_ARRAY_COUNT(values); i++) {
result->appendScalar(values[i]);
}
return result;
}
// static
void SkPDFUtils::AppendTransform(const SkMatrix& matrix, SkWStream* content) {
SkScalar values[6];
if (!matrix.asAffine(values)) {
SkMatrix::SetAffineIdentity(values);
}
for (size_t i = 0; i < SK_ARRAY_COUNT(values); i++) {
SkPDFUtils::AppendScalar(values[i], content);
content->writeText(" ");
}
content->writeText("cm\n");
}
// static
void SkPDFUtils::MoveTo(SkScalar x, SkScalar y, SkWStream* content) {
SkPDFUtils::AppendScalar(x, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(y, content);
content->writeText(" m\n");
}
// static
void SkPDFUtils::AppendLine(SkScalar x, SkScalar y, SkWStream* content) {
SkPDFUtils::AppendScalar(x, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(y, content);
content->writeText(" l\n");
}
// static
void SkPDFUtils::AppendCubic(SkScalar ctl1X, SkScalar ctl1Y,
SkScalar ctl2X, SkScalar ctl2Y,
SkScalar dstX, SkScalar dstY, SkWStream* content) {
SkString cmd("y\n");
SkPDFUtils::AppendScalar(ctl1X, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(ctl1Y, content);
content->writeText(" ");
if (ctl2X != dstX || ctl2Y != dstY) {
cmd.set("c\n");
SkPDFUtils::AppendScalar(ctl2X, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(ctl2Y, content);
content->writeText(" ");
}
SkPDFUtils::AppendScalar(dstX, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(dstY, content);
content->writeText(" ");
content->writeText(cmd.c_str());
}
static void append_quad(const SkPoint quad[], SkWStream* content) {
SkPoint cubic[4];
SkConvertQuadToCubic(quad, cubic);
SkPDFUtils::AppendCubic(cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
cubic[3].fX, cubic[3].fY, content);
}
// static
void SkPDFUtils::AppendRectangle(const SkRect& rect, SkWStream* content) {
// Skia has 0,0 at top left, pdf at bottom left. Do the right thing.
SkScalar bottom = SkMinScalar(rect.fBottom, rect.fTop);
SkPDFUtils::AppendScalar(rect.fLeft, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(bottom, content);
content->writeText(" ");
SkPDFUtils::AppendScalar(rect.width(), content);
content->writeText(" ");
SkPDFUtils::AppendScalar(rect.height(), content);
content->writeText(" re\n");
}
// static
void SkPDFUtils::EmitPath(const SkPath& path, SkPaint::Style paintStyle,
bool doConsumeDegerates, SkWStream* content,
SkScalar tolerance) {
// Filling a path with no area results in a drawing in PDF renderers but
// Chrome expects to be able to draw some such entities with no visible
// result, so we detect those cases and discard the drawing for them.
// Specifically: moveTo(X), lineTo(Y) and moveTo(X), lineTo(X), lineTo(Y).
SkRect rect;
bool isClosed; // Both closure and direction need to be checked.
SkPath::Direction direction;
if (path.isRect(&rect, &isClosed, &direction) &&
isClosed && SkPath::kCW_Direction == direction)
{
SkPDFUtils::AppendRectangle(rect, content);
return;
}
enum SkipFillState {
kEmpty_SkipFillState,
kSingleLine_SkipFillState,
kNonSingleLine_SkipFillState,
};
SkipFillState fillState = kEmpty_SkipFillState;
//if (paintStyle != SkPaint::kFill_Style) {
// fillState = kNonSingleLine_SkipFillState;
//}
SkPoint lastMovePt = SkPoint::Make(0,0);
SkDynamicMemoryWStream currentSegment;
SkPoint args[4];
SkPath::Iter iter(path, false);
for (SkPath::Verb verb = iter.next(args, doConsumeDegerates);
verb != SkPath::kDone_Verb;
verb = iter.next(args, doConsumeDegerates)) {
// args gets all the points, even the implicit first point.
switch (verb) {
case SkPath::kMove_Verb:
MoveTo(args[0].fX, args[0].fY, &currentSegment);
lastMovePt = args[0];
fillState = kEmpty_SkipFillState;
break;
case SkPath::kLine_Verb:
AppendLine(args[1].fX, args[1].fY, &currentSegment);
if ((fillState == kEmpty_SkipFillState) && (args[0] != lastMovePt)) {
fillState = kSingleLine_SkipFillState;
break;
}
fillState = kNonSingleLine_SkipFillState;
break;
case SkPath::kQuad_Verb:
append_quad(args, &currentSegment);
fillState = kNonSingleLine_SkipFillState;
break;
case SkPath::kConic_Verb: {
SkAutoConicToQuads converter;
const SkPoint* quads = converter.computeQuads(args, iter.conicWeight(), tolerance);
for (int i = 0; i < converter.countQuads(); ++i) {
append_quad(&quads[i * 2], &currentSegment);
}
fillState = kNonSingleLine_SkipFillState;
} break;
case SkPath::kCubic_Verb:
AppendCubic(args[1].fX, args[1].fY, args[2].fX, args[2].fY,
args[3].fX, args[3].fY, &currentSegment);
fillState = kNonSingleLine_SkipFillState;
break;
case SkPath::kClose_Verb:
ClosePath(&currentSegment);
currentSegment.writeToStream(content);
currentSegment.reset();
break;
default:
SkASSERT(false);
break;
}
}
if (currentSegment.bytesWritten() > 0) {
currentSegment.writeToStream(content);
}
}
// static
void SkPDFUtils::ClosePath(SkWStream* content) {
content->writeText("h\n");
}
// static
void SkPDFUtils::PaintPath(SkPaint::Style style, SkPath::FillType fill,
SkWStream* content) {
if (style == SkPaint::kFill_Style) {
content->writeText("f");
} else if (style == SkPaint::kStrokeAndFill_Style) {
content->writeText("B");
} else if (style == SkPaint::kStroke_Style) {
content->writeText("S");
}
if (style != SkPaint::kStroke_Style) {
NOT_IMPLEMENTED(fill == SkPath::kInverseEvenOdd_FillType, false);
NOT_IMPLEMENTED(fill == SkPath::kInverseWinding_FillType, false);
if (fill == SkPath::kEvenOdd_FillType) {
content->writeText("*");
}
}
content->writeText("\n");
}
// static
void SkPDFUtils::StrokePath(SkWStream* content) {
SkPDFUtils::PaintPath(
SkPaint::kStroke_Style, SkPath::kWinding_FillType, content);
}
// static
void SkPDFUtils::DrawFormXObject(int objectIndex, SkWStream* content) {
content->writeText("/");
content->writeText(SkPDFResourceDict::getResourceName(
SkPDFResourceDict::kXObject_ResourceType,
objectIndex).c_str());
content->writeText(" Do\n");
}
// static
void SkPDFUtils::ApplyGraphicState(int objectIndex, SkWStream* content) {
content->writeText("/");
content->writeText(SkPDFResourceDict::getResourceName(
SkPDFResourceDict::kExtGState_ResourceType,
objectIndex).c_str());
content->writeText(" gs\n");
}
// static
void SkPDFUtils::ApplyPattern(int objectIndex, SkWStream* content) {
// Select Pattern color space (CS, cs) and set pattern object as current
// color (SCN, scn)
SkString resourceName = SkPDFResourceDict::getResourceName(
SkPDFResourceDict::kPattern_ResourceType,
objectIndex);
content->writeText("/Pattern CS/Pattern cs/");
content->writeText(resourceName.c_str());
content->writeText(" SCN/");
content->writeText(resourceName.c_str());
content->writeText(" scn\n");
}
size_t SkPDFUtils::ColorToDecimal(uint8_t value, char result[5]) {
if (value == 255 || value == 0) {
result[0] = value ? '1' : '0';
result[1] = '\0';
return 1;
}
// int x = 0.5 + (1000.0 / 255.0) * value;
int x = SkFixedRoundToInt((SK_Fixed1 * 1000 / 255) * value);
result[0] = '.';
for (int i = 3; i > 0; --i) {
result[i] = '0' + x % 10;
x /= 10;
}
int j;
for (j = 3; j > 1; --j) {
if (result[j] != '0') {
break;
}
}
result[j + 1] = '\0';
return j + 1;
}
void SkPDFUtils::AppendScalar(SkScalar value, SkWStream* stream) {
char result[kMaximumFloatDecimalLength];
size_t len = SkPDFUtils::FloatToDecimal(SkScalarToFloat(value), result);
SkASSERT(len < kMaximumFloatDecimalLength);
stream->write(result, len);
}
// Return pow(10.0, e), optimized for common cases.
inline double pow10(int e) {
switch (e) {
case 0: return 1.0; // common cases
case 1: return 10.0;
case 2: return 100.0;
case 3: return 1e+03;
case 4: return 1e+04;
case 5: return 1e+05;
case 6: return 1e+06;
case 7: return 1e+07;
case 8: return 1e+08;
case 9: return 1e+09;
case 10: return 1e+10;
case 11: return 1e+11;
case 12: return 1e+12;
case 13: return 1e+13;
case 14: return 1e+14;
case 15: return 1e+15;
default:
if (e > 15) {
double value = 1e+15;
while (e-- > 15) { value *= 10.0; }
return value;
} else {
SkASSERT(e < 0);
double value = 1.0;
while (e++ < 0) { value /= 10.0; }
return value;
}
}
}
/** Write a string into result, includeing a terminating '\0' (for
unit testing). Return strlen(result) (for SkWStream::write) The
resulting string will be in the form /[-]?([0-9]*.)?[0-9]+/ and
sscanf(result, "%f", &x) will return the original value iff the
value is finite. This function accepts all possible input values.
Motivation: "PDF does not support [numbers] in exponential format
(such as 6.02e23)." Otherwise, this function would rely on a
sprintf-type function from the standard library. */
size_t SkPDFUtils::FloatToDecimal(float value,
char result[kMaximumFloatDecimalLength]) {
/* The longest result is -FLT_MIN.
We serialize it as "-.0000000000000000000000000000000000000117549435"
which has 48 characters plus a terminating '\0'. */
/* section C.1 of the PDF1.4 spec (http://goo.gl/0SCswJ) says that
most PDF rasterizers will use fixed-point scalars that lack the
dynamic range of floats. Even if this is the case, I want to
serialize these (uncommon) very small and very large scalar
values with enough precision to allow a floating-point
rasterizer to read them in with perfect accuracy.
Experimentally, rasterizers such as pdfium do seem to benefit
from this. Rasterizers that rely on fixed-point scalars should
gracefully ignore these values that they can not parse. */
char* output = &result[0];
const char* const end = &result[kMaximumFloatDecimalLength - 1];
// subtract one to leave space for '\0'.
/* This function is written to accept any possible input value,
including non-finite values such as INF and NAN. In that case,
we ignore value-correctness and and output a syntacticly-valid
number. */
if (value == SK_FloatInfinity) {
value = FLT_MAX; // nearest finite float.
}
if (value == SK_FloatNegativeInfinity) {
value = -FLT_MAX; // nearest finite float.
}
if (!std::isfinite(value) || value == 0.0f) {
// NAN is unsupported in PDF. Always output a valid number.
// Also catch zero here, as a special case.
*output++ = '0';
*output = '\0';
return output - result;
}
if (value < 0.0) {
*output++ = '-';
value = -value;
}
SkASSERT(value >= 0.0f);
int binaryExponent;
(void)std::frexp(value, &binaryExponent);
static const double kLog2 = 0.3010299956639812; // log10(2.0);
int decimalExponent = static_cast<int>(std::floor(kLog2 * binaryExponent));
int decimalShift = decimalExponent - 8;
double power = pow10(-decimalShift);
int32_t d = static_cast<int32_t>(value * power + 0.5);
// SkASSERT(value == (float)(d * pow(10.0, decimalShift)));
SkASSERT(d <= 999999999);
if (d > 167772159) { // floor(pow(10,1+log10(1<<24)))
// need one fewer decimal digits for 24-bit precision.
decimalShift = decimalExponent - 7;
// SkASSERT(power * 0.1 = pow10(-decimalShift));
// recalculate to get rounding right.
d = static_cast<int32_t>(value * (power * 0.1) + 0.5);
SkASSERT(d <= 99999999);
}
while (d % 10 == 0) {
d /= 10;
++decimalShift;
}
SkASSERT(d > 0);
// SkASSERT(value == (float)(d * pow(10.0, decimalShift)));
uint8_t buffer[9]; // decimal value buffer.
int bufferIndex = 0;
do {
buffer[bufferIndex++] = d % 10;
d /= 10;
} while (d != 0);
SkASSERT(bufferIndex <= (int)sizeof(buffer) && bufferIndex > 0);
if (decimalShift >= 0) {
do {
--bufferIndex;
*output++ = '0' + buffer[bufferIndex];
} while (bufferIndex);
for (int i = 0; i < decimalShift; ++i) {
*output++ = '0';
}
} else {
int placesBeforeDecimal = bufferIndex + decimalShift;
if (placesBeforeDecimal > 0) {
while (placesBeforeDecimal-- > 0) {
--bufferIndex;
*output++ = '0' + buffer[bufferIndex];
}
*output++ = '.';
} else {
*output++ = '.';
int placesAfterDecimal = -placesBeforeDecimal;
while (placesAfterDecimal-- > 0) {
*output++ = '0';
}
}
while (bufferIndex > 0) {
--bufferIndex;
*output++ = '0' + buffer[bufferIndex];
if (output == end) {
break; // denormalized: don't need extra precision.
// Note: denormalized numbers will not have the same number of
// significantDigits, but do not need them to round-trip.
}
}
}
SkASSERT(output <= end);
*output = '\0';
return output - result;
}
void SkPDFUtils::WriteString(SkWStream* wStream, const char* cin, size_t len) {
SkDEBUGCODE(static const size_t kMaxLen = 65535;)
SkASSERT(len <= kMaxLen);
size_t extraCharacterCount = 0;
for (size_t i = 0; i < len; i++) {
if (cin[i] > '~' || cin[i] < ' ') {
extraCharacterCount += 3;
}
if (cin[i] == '\\' || cin[i] == '(' || cin[i] == ')') {
++extraCharacterCount;
}
}
if (extraCharacterCount <= len) {
wStream->writeText("(");
for (size_t i = 0; i < len; i++) {
if (cin[i] > '~' || cin[i] < ' ') {
uint8_t c = static_cast<uint8_t>(cin[i]);
uint8_t octal[4];
octal[0] = '\\';
octal[1] = '0' + ( c >> 6 );
octal[2] = '0' + ((c >> 3) & 0x07);
octal[3] = '0' + ( c & 0x07);
wStream->write(octal, 4);
} else {
if (cin[i] == '\\' || cin[i] == '(' || cin[i] == ')') {
wStream->writeText("\\");
}
wStream->write(&cin[i], 1);
}
}
wStream->writeText(")");
} else {
wStream->writeText("<");
for (size_t i = 0; i < len; i++) {
uint8_t c = static_cast<uint8_t>(cin[i]);
static const char gHex[] = "0123456789ABCDEF";
char hexValue[2];
hexValue[0] = gHex[(c >> 4) & 0xF];
hexValue[1] = gHex[ c & 0xF];
wStream->write(hexValue, 2);
}
wStream->writeText(">");
}
}