blob: 83ae5a4b2725ccddb38a0356b230711c3d792619 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkSRGB_DEFINED
#define SkSRGB_DEFINED
#include "SkNx.h"
/** Components for building our canonical sRGB -> linear and linear -> sRGB transformations.
*
* Current best practices:
* - for sRGB -> linear, lookup R,G,B in sk_linear_from_srgb;
* - for linear -> sRGB, call sk_linear_to_srgb() for R,G,B;
* - the alpha channel is linear in both formats, needing at most *(1/255.0f) or *255.0f.
*
* sk_linear_to_srgb() will run a little faster than usual when compiled with SSE4.1+.
*/
extern const float sk_linear_from_srgb[256];
extern const uint16_t sk_linear12_from_srgb[256];
extern const uint8_t sk_linear12_to_srgb[4096];
template <typename V>
static inline V sk_clamp_0_255(const V& x) {
// The order of the arguments is important here. We want to make sure that NaN
// clamps to zero. Note that max(NaN, 0) = 0, while max(0, NaN) = NaN.
return V::Min(V::Max(x, 0.0f), 255.0f);
}
// [0.0f, 1.0f] -> [0.0f, 255.xf], for small x. Correct after truncation.
template <typename V>
static inline V sk_linear_to_srgb_needs_trunc(const V& x) {
// Approximation of the sRGB gamma curve (within 1 when scaled to 8-bit pixels).
//
// Constants tuned by brute force to minimize (in order of importance) after truncation:
// 1) the number of bytes that fail to round trip (0 of 256);
// 2) the number of points in [FLT_MIN, 1.0f] that are non-monotonic (0 of ~1 billion);
// 3) the number of points halfway between bytes that hit the wrong byte (131 of 255).
auto rsqrt = x.rsqrt(),
sqrt = rsqrt.invert(),
ftrt = rsqrt.rsqrt();
auto lo = (13.0471f * 255.0f) * x;
auto hi = SkNx_fma(V{+0.412999f * 255.0f}, ftrt,
SkNx_fma(V{+0.687999f * 255.0f}, sqrt,
V{-0.0974983f * 255.0f}));
return (x < 0.0048f).thenElse(lo, hi);
}
// [0.0f, 1.0f] -> [0.0f, 1.0f]. Correct after rounding.
template <typename V>
static inline V sk_linear_to_srgb_needs_round(const V& x) {
// Tuned to round trip each sRGB byte after rounding.
auto rsqrt = x.rsqrt(),
sqrt = rsqrt.invert(),
ftrt = rsqrt.rsqrt();
auto lo = 12.46f * x;
auto hi = V::Min(1.0f, SkNx_fma(V{+0.411192f}, ftrt,
SkNx_fma(V{+0.689206f}, sqrt,
V{-0.0988f})));
return (x < 0.0043f).thenElse(lo, hi);
}
template <int N>
static inline SkNx<N,int> sk_linear_to_srgb(const SkNx<N,float>& x) {
auto f = sk_linear_to_srgb_needs_trunc(x);
return SkNx_cast<int>(sk_clamp_0_255(f));
}
// sRGB -> linear, using math instead of table lookups.
template <typename V>
static inline V sk_linear_from_srgb_math(const V& x) {
// Non-linear segment of sRGB curve approximated by
// l = 0.0025 + 0.6975x^2 + 0.3x^3
const V k0 = 0.0025f,
k2 = 0.6975f,
k3 = 0.3000f;
auto hi = SkNx_fma(x*x, SkNx_fma(x, k3, k2), k0);
// Linear segment of sRGB curve: the normal slope, extended a little further than normal.
auto lo = x * (1/12.92f);
return (x < 0.055f).thenElse(lo, hi);
}
// Same as above, starting from ints.
template <int N>
static inline SkNx<N,float> sk_linear_from_srgb_math(const SkNx<N,int>& s) {
auto x = SkNx_cast<float>(s);
// Same math as above, but working with x in [0,255], so x^n needs scaling by u^n.
const float u = 1/255.0f;
const SkNx<N,float> k0 = 0.0025f,
k2 = 0.6975f * u*u,
k3 = 0.3000f * u*u*u;
auto hi = SkNx_fma(x*x, SkNx_fma(x, k3, k2), k0);
auto lo = x * (u/12.92f);
return (x < (0.055f/u)).thenElse(lo, hi);
}
#endif//SkSRGB_DEFINED