blob: 85fd42c1d4572f774fd2f266a9e7b70bf2da1b9a [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorSpaceXform_A2B.h"
#include "SkColorPriv.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_XYZ.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpaceXformPriv.h"
#include "SkMakeUnique.h"
#include "SkNx.h"
#include "SkSRGB.h"
#include "SkTypes.h"
bool SkColorSpaceXform_A2B::onApply(ColorFormat dstFormat, void* dst, ColorFormat srcFormat,
const void* src, int count, SkAlphaType alphaType) const {
SkRasterPipeline pipeline;
switch (srcFormat) {
case kBGRA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::load_8888, &src);
pipeline.append(SkRasterPipeline::swap_rb);
break;
case kRGBA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::load_8888, &src);
break;
case kRGBA_U16_BE_ColorFormat:
pipeline.append(SkRasterPipeline::load_u16_be, &src);
break;
case kRGB_U16_BE_ColorFormat:
pipeline.append(SkRasterPipeline::load_rgb_u16_be, &src);
break;
default:
SkCSXformPrintf("F16/F32 sources must be linear.\n");
return false;
}
pipeline.extend(fElementsPipeline);
if (kPremul_SkAlphaType == alphaType) {
pipeline.append(SkRasterPipeline::premul);
}
switch (dstFormat) {
case kBGRA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::swap_rb);
pipeline.append(SkRasterPipeline::store_8888, &dst);
break;
case kRGBA_8888_ColorFormat:
pipeline.append(SkRasterPipeline::store_8888, &dst);
break;
case kRGBA_F16_ColorFormat:
if (!fLinearDstGamma) {
return false;
}
pipeline.append(SkRasterPipeline::store_f16, &dst);
break;
case kRGBA_F32_ColorFormat:
if (!fLinearDstGamma) {
return false;
}
pipeline.append(SkRasterPipeline::store_f32, &dst);
break;
case kBGR_565_ColorFormat:
if (kOpaque_SkAlphaType != alphaType) {
return false;
}
pipeline.append(SkRasterPipeline::store_565, &dst);
break;
default:
return false;
}
pipeline.run(0,count);
return true;
}
static inline bool gamma_to_parametric(SkColorSpaceTransferFn* coeffs, const SkGammas& gammas,
int channel) {
switch (gammas.type(channel)) {
case SkGammas::Type::kNamed_Type:
return named_to_parametric(coeffs, gammas.data(channel).fNamed);
case SkGammas::Type::kValue_Type:
value_to_parametric(coeffs, gammas.data(channel).fValue);
return true;
case SkGammas::Type::kParam_Type:
*coeffs = gammas.params(channel);
return true;
default:
return false;
}
}
SkColorSpaceXform_A2B::SkColorSpaceXform_A2B(SkColorSpace_A2B* srcSpace,
SkColorSpace_XYZ* dstSpace)
: fLinearDstGamma(kLinear_SkGammaNamed == dstSpace->gammaNamed()) {
#if (SkCSXformPrintfDefined)
static const char* debugGammaNamed[4] = {
"Linear", "SRGB", "2.2", "NonStandard"
};
static const char* debugGammas[5] = {
"None", "Named", "Value", "Table", "Param"
};
#endif
int currentChannels;
switch (srcSpace->iccType()) {
case SkColorSpace_Base::kRGB_ICCTypeFlag:
currentChannels = 3;
break;
case SkColorSpace_Base::kCMYK_ICCTypeFlag:
currentChannels = 4;
// CMYK images from JPEGs (the only format that supports it) are actually
// inverted CMYK, so we need to invert every channel.
// TransferFn is y = -x + 1 for x < 1.f, otherwise 0x + 0, ie y = 1 - x for x in [0,1]
this->addTransferFns({1.f, 0.f, 0.f, -1.f, 1.f, 0.f, 1.f}, 4);
break;
default:
currentChannels = 0;
SkASSERT(false);
}
// add in all input color space -> PCS xforms
for (int i = 0; i < srcSpace->count(); ++i) {
const SkColorSpace_A2B::Element& e = srcSpace->element(i);
SkASSERT(e.inputChannels() == currentChannels);
currentChannels = e.outputChannels();
switch (e.type()) {
case SkColorSpace_A2B::Element::Type::kGammaNamed:
if (kLinear_SkGammaNamed == e.gammaNamed()) {
break;
}
// take the fast path for 3-channel named gammas
if (3 == currentChannels) {
if (k2Dot2Curve_SkGammaNamed == e.gammaNamed()) {
SkCSXformPrintf("fast path from 2.2\n");
fElementsPipeline.append(SkRasterPipeline::from_2dot2);
break;
} else if (kSRGB_SkGammaNamed == e.gammaNamed()) {
SkCSXformPrintf("fast path from sRGB\n");
// Images should always start the pipeline as unpremul
fElementsPipeline.append_from_srgb(kUnpremul_SkAlphaType);
break;
}
}
SkCSXformPrintf("Gamma stage added: %s\n", debugGammaNamed[(int)e.gammaNamed()]);
SkColorSpaceTransferFn fn;
SkAssertResult(named_to_parametric(&fn, e.gammaNamed()));
this->addTransferFns(fn, currentChannels);
break;
case SkColorSpace_A2B::Element::Type::kGammas: {
const SkGammas& gammas = e.gammas();
SkCSXformPrintf("Gamma stage added:");
for (int channel = 0; channel < gammas.channels(); ++channel) {
SkCSXformPrintf(" %s", debugGammas[(int)gammas.type(channel)]);
}
SkCSXformPrintf("\n");
bool gammaNeedsRef = false;
for (int channel = 0; channel < gammas.channels(); ++channel) {
if (SkGammas::Type::kTable_Type == gammas.type(channel)) {
SkTableTransferFn table = {
gammas.table(channel),
gammas.data(channel).fTable.fSize,
};
this->addTableFn(table, channel);
gammaNeedsRef = true;
} else {
SkColorSpaceTransferFn fn;
SkAssertResult(gamma_to_parametric(&fn, gammas, channel));
this->addTransferFn(fn, channel);
}
}
if (gammaNeedsRef) {
fGammaRefs.push_back(sk_ref_sp(&gammas));
}
break;
}
case SkColorSpace_A2B::Element::Type::kCLUT:
SkCSXformPrintf("CLUT (%d -> %d) stage added\n", e.colorLUT().inputChannels(),
e.colorLUT().outputChannels());
fCLUTs.push_back(sk_ref_sp(&e.colorLUT()));
fElementsPipeline.append(SkRasterPipeline::color_lookup_table,
fCLUTs.back().get());
break;
case SkColorSpace_A2B::Element::Type::kMatrix:
if (!e.matrix().isIdentity()) {
SkCSXformPrintf("Matrix stage added\n");
addMatrix(e.matrix());
}
break;
}
}
// Lab PCS -> XYZ PCS
if (SkColorSpace_A2B::PCS::kLAB == srcSpace->pcs()) {
SkCSXformPrintf("Lab -> XYZ element added\n");
fElementsPipeline.append(SkRasterPipeline::lab_to_xyz);
}
// we should now be in XYZ PCS
SkASSERT(3 == currentChannels);
// and XYZ PCS -> output color space xforms
if (!dstSpace->fromXYZD50()->isIdentity()) {
addMatrix(*dstSpace->fromXYZD50());
}
switch (dstSpace->gammaNamed()) {
case kLinear_SkGammaNamed:
// do nothing
break;
case k2Dot2Curve_SkGammaNamed:
fElementsPipeline.append(SkRasterPipeline::to_2dot2);
break;
case kSRGB_SkGammaNamed:
fElementsPipeline.append(SkRasterPipeline::to_srgb);
break;
case kNonStandard_SkGammaNamed: {
for (int channel = 0; channel < 3; ++channel) {
const SkGammas& gammas = *dstSpace->gammas();
if (SkGammas::Type::kTable_Type == gammas.type(channel)) {
static constexpr int kInvTableSize = 256;
std::vector<float> storage(kInvTableSize);
invert_table_gamma(storage.data(), nullptr, storage.size(),
gammas.table(channel),
gammas.data(channel).fTable.fSize);
SkTableTransferFn table = {
storage.data(),
(int) storage.size(),
};
fTableStorage.push_front(std::move(storage));
this->addTableFn(table, channel);
} else {
SkColorSpaceTransferFn fn;
SkAssertResult(gamma_to_parametric(&fn, gammas, channel));
this->addTransferFn(fn.invert(), channel);
}
}
}
break;
}
}
void SkColorSpaceXform_A2B::addTransferFns(const SkColorSpaceTransferFn& fn, int channelCount) {
for (int i = 0; i < channelCount; ++i) {
this->addTransferFn(fn, i);
}
}
void SkColorSpaceXform_A2B::addTransferFn(const SkColorSpaceTransferFn& fn, int channelIndex) {
fTransferFns.push_front(fn);
switch (channelIndex) {
case 0:
fElementsPipeline.append(SkRasterPipeline::parametric_r, &fTransferFns.front());
break;
case 1:
fElementsPipeline.append(SkRasterPipeline::parametric_g, &fTransferFns.front());
break;
case 2:
fElementsPipeline.append(SkRasterPipeline::parametric_b, &fTransferFns.front());
break;
case 3:
fElementsPipeline.append(SkRasterPipeline::parametric_a, &fTransferFns.front());
break;
default:
SkASSERT(false);
}
}
void SkColorSpaceXform_A2B::addTableFn(const SkTableTransferFn& fn, int channelIndex) {
fTableTransferFns.push_front(fn);
switch (channelIndex) {
case 0:
fElementsPipeline.append(SkRasterPipeline::table_r, &fTableTransferFns.front());
break;
case 1:
fElementsPipeline.append(SkRasterPipeline::table_g, &fTableTransferFns.front());
break;
case 2:
fElementsPipeline.append(SkRasterPipeline::table_b, &fTableTransferFns.front());
break;
case 3:
fElementsPipeline.append(SkRasterPipeline::table_a, &fTableTransferFns.front());
break;
default:
SkASSERT(false);
}
}
void SkColorSpaceXform_A2B::addMatrix(const SkMatrix44& matrix) {
fMatrices.push_front(std::vector<float>(12));
auto& m = fMatrices.front();
m[ 0] = matrix.get(0, 0);
m[ 1] = matrix.get(1, 0);
m[ 2] = matrix.get(2, 0);
m[ 3] = matrix.get(0, 1);
m[ 4] = matrix.get(1, 1);
m[ 5] = matrix.get(2, 1);
m[ 6] = matrix.get(0, 2);
m[ 7] = matrix.get(1, 2);
m[ 8] = matrix.get(2, 2);
m[ 9] = matrix.get(0, 3);
m[10] = matrix.get(1, 3);
m[11] = matrix.get(2, 3);
SkASSERT(matrix.get(3, 0) == 0.f);
SkASSERT(matrix.get(3, 1) == 0.f);
SkASSERT(matrix.get(3, 2) == 0.f);
SkASSERT(matrix.get(3, 3) == 1.f);
fElementsPipeline.append(SkRasterPipeline::matrix_3x4, m.data());
fElementsPipeline.append(SkRasterPipeline::clamp_0);
fElementsPipeline.append(SkRasterPipeline::clamp_1);
}